
Academic Editor: Ana Charas

Received: 31 March 2025

Revised: 17 April 2025

Accepted: 22 April 2025

Published: 24 April 2025

Citation: Bai, X.; Lan, B.; Li, X.; Yi, X.;

Pei, S.; Wang, C. Fabrication of

Poly(s-triazine-co-o-aminophenol)

Conducting Polymer via

Electropolymerization and Its

Application in Aqueous Charge

Storage. Polymers 2025, 17, 1160.

https://doi.org/10.3390/

polym17091160

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Fabrication of Poly(s-triazine-co-o-aminophenol) Conducting
Polymer via Electropolymerization and Its Application in
Aqueous Charge Storage
Xueting Bai 1, Bo Lan 1, Xinyang Li 1, Xinlan Yi 2, Shaotong Pei 1 and Chao Wang 3,4,*

1 Hebei Provincial Key Laboratory of Power Transmission Equipment Security Defense, North China Electric
Power University, Baoding 071003, China; xt_baii@163.com (X.B.); rambo596596@163.com (B.L.);
lxygerenyouxiang@163.com (X.L.); peishaotong@ncepu.edu.cn (S.P.)

2 Economic Management Department, North China Electric Power University, Baoding 071003, China;
yixinlan1006@163.com

3 School of Renewable Energy, Inner Mongolia University of Technology, Ordos 017010, China
4 Inner Mongolia Key Laboratory of New Energy and Energy Storage Technology, Hohhot 010051, China
* Correspondence: cwang@imut.edu.cn

Abstract: Designing conducting polymers with novel structures is essential for electro-
chemical energy storage devices. Here, copolymers of s-triazine and o-aminophenol are
electropolymerized from an aqueous solution onto a carbon cloth substrate using the gal-
vanostatic method. The poly(s-triazine-co-o-aminophenol) (PT-co-oAP) is characterized,
and its charge storage properties are investigated in 1 M H2SO4 and in 1 M ZnSO4. At
1 A g−1, the specific capacities of PT-co-oAP reach 101.3 mAh g−1 and 84.4 mAh g−1 in
1 M H2SO4 and in 1 M ZnSO4, respectively. The specific capacity of PT-co-oAP maintains
90.3% of its initial value after cycling at 10 A g−1 for 2000 cycles in 1 M H2SO4. The high
specific capacity achieved originates from abundant surface active sites, facile ion diffusion,
with optimized active site structure achieved by forming copolymer. The charge storage
mechanism involves the redox processes of amino/imino groups and hydroxyl/carbonyl
groups in the copolymer, together with the insertion of cations. Two electrode devices
using two PT-co-oAP and aqueous 1 M H2SO4 are assembled, and the maximum energy
density reaches 63 Wh kg−1 at 0.5 A g−1 with a power density of 540 W kg−1. The capacity
retention of the device after 3000 cycles at 10 A g−1 reaches 81.2%.

Keywords: conducting polymer; PT-co-oAP; electropolymerization; aqueous electrolyte;
electrochemical energy storage

1. Introduction
Electrode materials are essential for high-performance energy storage devices. Con-

ducting polymers, including polyaniline and polypyrrole [1,2], are environmentally benign,
conductive, and inexpensive, and they are considered promising electrode materials for
charge storage [3]. However, due to the repetitive ion insertion and extraction during charg-
ing and discharging, as the electrode material, the stability of conducting polymers needs
improvement [4]. Therefore, designing new conductive polymers with novel morphologies
and novel chemical structures is a promising route to achieve high specific capacity and
stability [5–7].

S-triazine-based covalent bonded frameworks were recently reported to exhibit ex-
cellent charge storage capacity [8]. S-triazine derivatives with aromatic rings exhibit good
thermal stability and a conjugated D-π-A structure, which facilitates charge separation and
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charge transport. The s-triazine ring is capable of binding with cations via π interactions
and with anions through σ interactions. In this way, abundant charge can be stored, endow-
ing s-triazine a promising monomer to construct conducting polymers [9]. O-aminophenol
contains amino and phenolic hydroxyl groups and is also reported to act as a monomer to
construct conducting polymers for charge storage [10]. In poly(o-aminophenol) (PoAP),
hydroxyl/carbonyl and amino/imino groups can serve as active sites to store charge.
Graphene nanosheets-PoAP nanocomposites prepared by potential cycling on a platinum
surface by Heli et al. exhibit a specific capacitance of 281.1 F g−1 at 0.1 A g−1 [11]. Function-
alized graphene oxide nanosheets/PoAP were prepared by Ehsani et al., and the specific
capacitance reached 251.15 F g−1 [12]. Maryam Naseri et al. used electropolymerization to
prepare PoAP/ZnO, which exhibits a specific capacitance of 223 F g−1 [13]. Depending on
the electrochemical method adopted, different structures of poly(o-aminophenol), including
line-shaped and ladder-shaped repeating units, can be constructed.

Electropolymerization offers a facile route to construct copolymers, either layer-by-
layer or random copolymers [14,15]. Copolymers exhibit unique charge storage proper-
ties by combining the functional groups of two monomers. For example, poly(5-amino-
naphthalene sulfonic acid-co-o-aminophenol) (PANS-co-oAP) was electropolymerized on a
carbon cloth (CC) substrate in an aqueous acid electrolyte with both monomers, exhibiting
superior charge storage performance compared to PANS and PoAP [16]. The simultane-
ous presence of electron-donating (amino and hydroxyl) and electron-absorbing (sulfonic
acid) groups in copolymers facilitates charge separation and the generation of active sites.
S-triazine is electron-deficient, and constructing copolymers with electron-rich monomers
is desirable to achieve efficient charge separation and the generation of active sites [17].
Therefore, the copolymer of s-triazine and oAP is constructed using electropolymerization.
The copolymer is characterized, and its charge storage properties are investigated.

2. Experimental
The following reagents are used without further purification: 1,3,5-triazine (C3H3N3,

AR, 97%, Shanghai BiDe Pharmaceutical Technology Co., Ltd., Shanghai, China), o-
aminophenol (C6H7NO, AR, 99%, Shanghai Aladdin Biochemical Technology Co., Ltd.,
Shanghai, China), concentrated sulfuric acid (H2SO4, AR, 98.0%, Shanghai HaoHong
Bio-Pharmaceutical Technology Co., Ltd., Shanghai, China), zinc sulfate (ZnSO4, AR,
99.8%, Shanghai HaoHong Bio-Pharmaceutical Technology Co., Ltd., Shanghai, China),
carbon cloth (SCC130, Suzhou ShengErNuo Technology Co., Ltd., Suzhou, China), and
distilled water.

Electropolymerization was used to obtain copolymers with CC as the substrate in
aqueous acidic solution. The CC was first cut into small pieces of 1 × 2 cm2, washed
repeatedly with water for 30 min, and calcined at 400 ◦C for 90 min. When used as the
working electrode, about a 1 × 1 cm2 surface area was immersed in the electrolyte. Elec-
tropolymerization was carried out using the galvanostatic method, which can deposit
measurable amounts of polymer on CC in a short time. A cleaned graphite rod was
used as the counter electrode, and a saturated calomel electrode (SCE) was used as the
reference in the three-electrode system setup. The electrolyte was a 1 M H2SO4 aque-
ous solution containing 5 mM s-triazine and 2 mM oAP. A constant current density of
0.01 A cm−2 was applied to construct PT-co-oAP. The mass of the PT-co-oAP film obtained
by electropolymerization on CC was measured to be 1.0 mg cm−2 using a laboratory
balance. The PT and PoAP were prepared using a similar method, with the electrolyte
containing only 5 mM s-triazine or 2 mM oAP, respectively, and the deposited masses were
0.4 mg cm−2 and PoAP 0.3 mg cm−2, respectively. Information about instrumentation and
equations is provided in the Supporting Information.
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3. Results and Discussion
Electropolymerization using the galvanostatic method enables a controlled electropoly-

merization rate to be achieved, and large quantities of polymers can be generated in a short
period [18,19]. The PT-co-oAP, PT, and PoAP were electrochemically polymerized onto a
CC substrate from 1 M H2SO4 (Figure S1, Supporting Information). Electropolymerization
is initiated by the generation of radicals at the N sites in oAP and s-triazine. The radicals
can attack adjacent neutral monomers or couple with another radical to form oligomers.
With the repetitive generation of radicals and the growth of the oligomer chain, deposition
happens when the concentration of the oligomer near the electrode surface exceeds solubil-
ity [20]. Solid-state radical generation and coupling form the three-dimensional connected
film at the electrode surface. Figure 1 shows the proposed structure of the PT-co-oAP
film. Figure 2a–c show the scanning electron micrographs (SEM) of PT, PT-co-oAP, and
PoAP, and the SEM of the bare CC is provided in Figure S5. In Figure 2a, the CC surface
is covered by a layer of PT, and the surface appears rough. In Figure 2b, the PT-co-oAP
exhibits a small granular structure of about 300 nm in size. Figure 2c displays the SEM of
PoAP, which also exhibits a granular structure. Figure 2d shows the electron diffraction
spectroscopy (EDS) elemental mapping of PT-co-oAP. The N is from both PT and oAP, and
the uniform distribution of N and O indicates the successful formation of PT-co-oAP on CC.
Note that small amounts of S are also detected from the PT-co-oAP, which result from the
intercalated anions (SO4

2−) during electropolymerization to balance the positive charge of
the polymer [21].
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The surface state of the deposited PT-co-oAP was investigated by X-ray photoelectron
spectroscopy (XPS, Figure 3). Figure 3a shows the deconvoluted high-resolution XPS
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spectra of the C 1s region of PT-co-oAP. The deconvolved peaks at 284.7, 286.8, and 289.0 eV
correspond to the C-C/C=C, C-N/C-O, and C=N/C=O bonds, respectively [22]. The N
1s spectra (Figure 3b) can be deconvoluted into 399.2, 400.1, 400.5, and 401.3 eV peaks
assignable to neutral amine (-NH-), neutral imine (-N=), protonated amine (-NH+-), and
protonated imine (-NH+=), respectively [23]. The doping level calculated by analyzing the
ratio of protonated amino and imino groups to the total N content is 0.51, which is a typical
doping level for conducting polymers [22,24]. This indicates that approximately half of the
N is protonated. Figure 3c shows the deconvoluted high-resolution XPS spectra of the O
1s region, with peaks at 531.9, 533.0, and 533.6 eV, corresponding to C=O, C-O/S-O, and
C-O-C bonds, respectively. The C=O bonds originate from the carbonyl groups formed
by the oxidation of the hydroxyl groups on the oAP or the carbonyl groups generated
during the oxidative electropolymerization of s-triazine [9,16]. Figure 3d shows the XPS
deconvoluted spectra of the S 2p region, with peaks at 169.1 (2p1/2) and 168.2 eV (2p3/2)
corresponding to S in the intercalated sulfate groups [25]. These characterizations show
that the PT-co-oAP film is successfully electropolymerized onto the CC surface.
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Three electrode tests were carried out to investigate the charge storage properties of
PT, PoAP, and PT-co-oAP in 1 M H2SO4. The cyclic voltammetry (CV) of PT, PoAP, and
PT-co-oAP in 1 M H2SO4 in the range of −0.4–1.2 VSCE at 20 mV s−1 are shown in Figure 4a.
For the PT, the redox peaks are at 0.51 VSCE (ox.) and 0.23 VSCE (red.), which is consistent
with reference [9]. For the PoAP, two pairs of redox peaks are present, and the redox peaks
at 0.45 VSCE (ox.)/0.3 VSCE (red.) are significantly higher than those at 0.2 VSCE (ox.)/
0.1 VSCE (red.). This indicates that the linear structure is predominant in PoAP, not the
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ladder structure, and that phenoxazine units are predominant. The redox peaks of PT-co-
oAP are at 0.46 VSCE (ox.)/0.27 VSCE (red.), which are in the middle of PoAP and PT. This
implies that a random copolymer is formed, and the redox properties are tuned through
the electron interaction between the s-triazine and oAP units. The redox peaks originate
from the redox of hydroxyl/carbonyl groups and amino/imino groups, accompanied with
cation insertion and extraction. The GCD curves of PT, PoAP, and PT-co-oAP (Figure 4b) in
1 M H2SO4 at 1 A g−1 all show a small plateau around 0.46 VSCE. The GCD curves of PT
and PoAP are consistent with the CV of PT and PoAP. The potential of this plateau matches
the redox peak potential observed in CV. The specific capacities of PT, PoAP, and PT-co-oAP
in 1 M H2SO4 are calculated by GCD to be 83.8, 62.8, and 101.3 mAh g−1, respectively.
The PT-co-oAP exhibits higher specific capacity than PT and PoAP. The specific capacities
of PT, PoAP, and PT-co-oAP at different current densities are shown in Figure 4c. When
discharged at 2, 3, 5, and 10 A g−1, the calculated specific capacities of PT-co-oAP are 93.3,
90.8, 87.8, and 84.4 mAh g−1, respectively. The decrease in specific capacity with increasing
current density is due to the slow kinetics of the redox process limited by ion insertion and
extraction [26,27]. The capacity retention values of PT, PoAP, and PT-co-oAP are 47.0%,
53.2%, and 61.2%, respectively, when the GCD current density changes from 1 to 10 A g−1.
PT-co-oAP exhibits the highest capacity retention among these electrodes.
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Figure 4. (a) CV of PT, PoAP, and PT-co-oAP from −0.4 to 1.2 VSCE at scan rate of 20 mV s−1 in 1 M
H2SO4; (b) GCD curves of these electrodes at 1 A g−1 charge and discharge current density in 1 M
H2SO4; (c) GCD specific capacities versus current densities in 1 M H2SO4; (d) CV of these electrodes
from −0.5 to 1.1 VSCE at scan rate of 20 mV s−1 in 1 M ZnSO4; (e) GCD curves at 1 A g−1 in 1 M
ZnSO4; (f) GCD specific capacities versus current densities in 1 M ZnSO4. Cycle stability of these
electrodes at 10 A g−1 in (g) 1 M H2SO4 and in (h) 1 M ZnSO4.

As increasing attention is being paid to energy storage systems in aqueous electrolytes
with zinc ions, zinc sulfate solution was used as the electrolyte to evaluate the charge
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storage properties [28,29]. The CV values of PT, PoAP, and PT-co-oAP in 1 M ZnSO4

are given in Figure 4a. The redox peaks of PT are located at 0.42 VSCE (ox.)/0.09 VSCE

(red.), while those of PoAP are located at 0.41 VSCE (ox.)/0.19 VSCE (red.). The PT-co-oAP
exhibits redox peaks at 0.45 VSCE/0.15 VSCE. These redox peaks also originate from the
redox processes of hydroxyl/carbonyl groups and amino/imino groups, accompanied
with cation insertion and extraction. The GCD curves of these electrodes at 1 A g−1 are
shown in Figure 4e. The specific capacities of PT, PoAP, and PT-co-oAP are 46.0, 35.9, and
75.0 mAh g−1, respectively. When discharged at 2, 3, 5, and 10 A g−1, the specific capacities
of PT-co-oAP are 63.1, 56.4, 47.0, and 30.2 mAh g−1, respectively (Figure 4f). When the GCD
current density is in the range of 1 to 10 A g−1, the capacity retention values of PT, PoAP,
and PT-co-oAP are 38.6%, 43.3% and 40.3%, respectively, and significantly lower capacity
retention is observed in 1 M ZnSO4 compared to 1 M H2SO4, which might result from the
complex side reactions in 1 M ZnSO4 that limit the kinetics at high charge and discharge
rates [30–32]. The cycling stability of these electrodes in 1 M H2SO4 and 1 M ZnSO4 at
10 A g−1 is also investigated, and the results are shown in Figure 4g,h. After 2000 cycles,
the specific capacity retention values of PT, PoAP, and PT-co-oAP are 88.4%, 77.4%, and
90.3% in 1 M H2SO4, respectively, and 86.3%, 77.1%, and 88.1% in 1 M ZnSO4, respectively.
This indicates that PT-co-oAP exhibits the best cycling stability in both electrolytes. In
addition, PT-co-oAP also sustains the 10,000-cycle stability test (Figure S4). SEM and XPS
after the stability test (Figures S6 and S9) indicate no significant physical detachment of
the PT-co-oAP from the CC substrate. This implies that specific capacity degradation is
induced from the structural change that leads to a loss of active sites.

Electrochemical impedance spectroscopy was then carried out [33]. Figure 5a shows
the 3D Bode plot of PT-co-oAP obtained in 1 M H2SO4 [34]. The 3D Bode plot shows a low
frequency peak at −0.2–0.8 VSCE, which is consistent with the redox peak potential in CV.
Together with the redox peaks in CV and the asymmetric shape of the GCD curves, the peak
in the 3D Bode plot implies that the PT-co-oAP is a battery-type charge storage material. The
Nyquist plots of these electrodes are shown in Figure 5b. The high-frequency semicircles of
the Nyquist plots of PT, PoAP, and PT-co-oAP can be observed, whose diameter is related to
the charge transfer resistance (RCT) [35]. The RCT of PT-co-oAP is the largest, which indicates
that the redox kinetics of PT-co-oAP is the most sluggish. The low-frequency region Z’
versus ω−1/2 in 1 M H2SO4 is shown in Figure 5c. The slope ∂ (Warburg factor) is related
to ion diffusion impedance [36,37]. ∂ is the smallest for PT-co-oAP (40 Ω s−1/2 rad1/2),
which indicates that ion diffusion is the most facile for PT-co-oAP. The ∂ values are 70
and 23 Ω s−1/2 rad1/2 for PT and PoAP, respectively. Figure 5d exhibits the 3D Bode plot
for PT-co-oAP in 1 M ZnSO4, with low-frequency peaks in the range of −0.2–0.7 VSCE.
PT-co-oAP behaves as a battery-type electrode material in 1 M ZnSO4. The Nyquist plots
of PT, PoAP, and PT-co-oAP in 1 M ZnSO4 (Figure 5e) are typical for capacitive behavior,
where a straight line close to the −Z′′ axis is shown. The RCT of PT-co-oAP is lower than
that of PT but higher than that of PoAP. In both electrolytes, the RCT of PoAP is the lowest,
which indicates its most facile redox kinetics. The ∂ values of PT, PoAP, and PT-co-oAP
are 20, 15, and 26 Ω s−1/2 rad1/2, respectively. In both electrolytes, PT exhibits the highest
diffusion impedance, which is probably a result of the thick-layered morphology of PT.
In contrast, PT-co-oAP exhibits the most facile diffusion, probably originating from the
porous granular shape of the deposits. Also, the change in interfacial hydrogen bonding
structure can affect the ion diffusion processes. However, the RCT of PT-co-oAP is not the
lowest, which implies that the redox kinetics is not accelerated, which is possibly limited
by the electron transfer process induced by the formation of copolymers. In addition, the
structure of the active sites is altered, and the electron interaction may also affect the redox
kinetics. From the CV, PT-co-oAP exhibits the largest integrated area, which indicates that
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the number of active sites is the highest. Though redox kinetics is not the most facile, the
abundant number of electrochemically active sites and facile diffusion enhance the charge
storage performance of PT-co-oAP. The SEM images show that these electrodeposited films
consist of granular and aggregated structures. Though this morphology is common for
electrodeposited films, a highly porous substrate is desirable for polymer deposition to
expose a higher number of electrochemically active sites for charge storage.
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(f) Plot of Z’ vs. ω−1/2 of PT-co-oAP in 1 M ZnSO4.

The charge storage mechanism of the PT-co-oAP was further investigated in both
1 M H2SO4 and 1 M ZnSO4 since the copolymer exhibits the highest specific capacity
among these electrodes. Ex situ XPS was carried out to investigate the charge storage
mechanism [38]. The high-resolution spectra were deconvoluted, and the percentages of
each component in the deconvolution high-resolution XPS spectra are provided in the
Supporting Information. In 1 M H2SO4, the imino groups (-N= and -NH+=) account for
63.94% of the total N at the charged state. In the discharged state, the content of imino
groups decreases to 37.79% (Figure 6a,c). The results indicate that amines are oxidized to
produce imines during charging, while the opposite process occurs during discharging [39].
The ratio of C=O to C-O in the deconvolution O 1s spectra also decreases at the discharged
state (Figure 6b,d). These observations are consistent with the redox peaks observed in
CV. In 1 M ZnSO4, the content of imino groups in the N 1s spectra decreases from 29.96%
at the charged state to 12.22% at the discharged state. The ratio of C=O to C-O decreases
from 0.71 at the charged state to 0.43 at the discharged state. Figure 7c and f show the
variation in Zn peak intensity in 1 M ZnSO4, which is lower at the charged state and higher
at the discharged state. This also indicates that Zn2+ is inserted into the polymer at the
discharged state. Figure 7g displays the proposed charge storage mechanism of PT-co-oAP.
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Figure 7. Deconvoluted XPS spectra of PT-co-oAP in 1 M ZnSO4. (a) N 1s region, (b) O 1s region, and
(c) Zn 2p region when charged to 1.1 V; (d) N 1s region, (e) O 1s region, and (f) Zn 2p region when
discharged to −0.5 V. (g) Proposed charge–discharge mechanism of PT-co-oAP.
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A two-electrode test was further carried out, with two PT-co-oAP electrodes and aque-
ous 1 M H2SO4 as the electrolyte, to construct a charge storage device (Figure 8). Figure 8a
shows the CV of this device at various scan rates. The CV increases in current density with
an increased scan rate, and redox peaks are observed. The GCD curve also shows plateaus,
which implies its battery-type behavior [40,41]. The specific capacities at 0.5, 1, 2, 3, and
5 A g−1 are 30, 24.9, 18.5, 16.1, and 13.1 mAh g−1, respectively (Figure 8b). Figure 8c shows
the Ragone plots comparing this device with those reported in the literature [42]. The maxi-
mum energy density of the device reaches 63 Wh kg−1 at 0.5 A g−1. The C’ and C′′ vary
with frequency (Figure 8d), and the dielectric relaxation time constant τ0 of the device was
calculated to be 1.32 s. This value is lower than that of some carbon-based supercapacitor
electrode materials, which shows its ability to charge and discharge rapidly [43,44]. The
stability analysis of the discharging device is performed, as shown in Figure 8e. The device
shows high stability (81.2%, 3000 cycles).
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at different current densities; (c) the Ragone plot comparing the device in this work with systems
in the literature based on conducting polymers; (d) the dependence of C’ and C′′ over frequency;
(e) capacity retention versus cycle numbers of the device at 10 A g−1.

4. Conclusions
Copolymers of s-triazine and oAP are electropolymerized on the CC substrate

using a galvanostatic method. The PT-co-oAP exhibits a rough surface and can be
used as a battery-type electrode material to electrochemically store charge in both
1 M H2SO4 and 1 M ZnSO4 aqueous solutions. At 1 A g−1, the specific capacities of
PT-co-oAP are 101.3 mAh g−1 and 75.0 mAh g−1 in 1 M H2SO4 and in 1 M ZnSO4, respec-
tively, higher than those of PT and PoAP. The high specific capacity of PT-co-oAP stems
from the increased number of active sites and the improved diffusion kinetics, induced by
the unique structure owing to the formation of a copolymer. The charge storage mechanism
involves the redox processes of amino/imino groups and hydroxyl/carbonyl groups in
the copolymer, together with the insertion of cations (Zn2+ and/or H+). The PT-co-oAP
exhibits high stability towards GCD cycling. The two-electrode device with PT-co-oAP
exhibits a 63 Wh kg−1 energy density at a 540 W kg−1 power density, with 81.2% of the
initial specific capacity being maintained after 3000 cycles. This study demonstrates that
forming copolymers by electropolymerization is an effective method to improve the spe-
cific capacity and energy density of charge storage materials. Further studies focusing
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on precisely controlling the repeating unit of the polymer by electropolymerization are
desirable to achieve high charge storage performance.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/polym17091160/s1, Figure S1: E-t curve for electropolymerization
of 5 mM s-triazine and 2 mM oAP in 1 M H2SO4 at 0.01 A cm−2. Working electrode is CC; Figure S2:
(a) CV of PT-co-oAP at scan rates ranging from 5 to 100 mV s−1 in 1 M H2SO4; (b) Log (i, mA)
versus (c) log (v, mV s−1) plots in 1 M H2SO4.; Figure S3: (a) CV of PT-co-oAP at scan rates ranging
from 5 to 100 mV s−1 in 1 M ZnSO4; (b) Log (i, mA) versus (c) log (v, mV s−1) plots in 1 M ZnSO4;
Figure S4: The cycle stability of these electrodes at 10 A g−1 in (a) 1 M H2SO4 and in (b) 1 M ZnSO4;
Figure S5: SEM images of the CC substrate; Figure S6: SEM images of the PT-co-oAP after GCD
cycling at 10 A g−1 for 10,000 cycles in 1 M H2SO4; Figure S7: XPS survey spectrum of PT-co-oAP;
Figure S8: XPS survey spectrum of PT-co-oAP under various conditions. (a) Charged to 1.2 VSCE and
(b) discharged to −0.4 VSCE in 1 M H2SO4; (c) charged to 1.1 VSCE and (d) discharged to −0.5 VSCE

in 1 M ZnSO4; Figure S9: XPS spectra of (a) C 1s, (b) N 1s, and (c) O 1s regions of PT-co-oAP after
GCD cycling at 10 A g−1 for 10,000 cycles in 1 M H2SO4. Table S1: Components of deconvoluted C 1s
XPS spectra of PT-co-oAP in 1 M H2SO4; Table S2: Components of deconvoluted N 1s XPS spectra
of PT-co-oAP in 1 M H2SO4; Table S3: Components of deconvoluted O 1s XPS spectra of PT-co-oAP
in 1 M H2SO4; Table S4: Components of deconvoluted N 1s XPS spectra of charged or discharged
PT-co-oAP in different solutions; Table S5: Components of deconvoluted O 1s XPS spectra of charged
or discharged PT-co-oAP in different solutions; Table S6: RCT of Nyquist plot in H2SO4; Table S7: RCT

of Nyquist plot in ZnSO4; Table S8: Comparison of specific capacity and cyclic stability among some
previously reported polymer-based electrochemical energy storage systems. References [9,45–49] are
cited in the Supplementary Materials.
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