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Deer antlers are the only mammalian organs that can fully regenerate each year. During their growth phase, antlers of red deer
extend at a rate of approximately 10 mm/day, a growth rate matched by the antler nerves. It was demonstrated in a previous
study that extracts from deer velvet antler can promote neurite outgrowth from neural explants, suggesting a possible role for
Nerve Growth Factor (NGF) in antler innervation. Here we showed using the techniques of Northern blot analysis, denervation,
immunohistochemistry and in situ hybridization that NGF mRNA was expressed in the regenerating antler, principally in the
smooth muscle of the arteries and arterioles of the growing antler tip. Regenerating axons followed the route of the major
blood vessels, located at the interface between the dermis and the reserve mesenchyme of the antler. Denervation
experiments suggested a causal relationship exists between NGF mRNA expression in arterial smooth muscle and sensory
axons in the antler tip. We hypothesize that NGF expressed in the smooth muscle of the arteries and arterioles promotes and
maintains antler angiogenesis and this role positions NGF ahead of axons during antler growth. As a result, NGF can serve
a second role, attracting sensory axons into the antler, and thus it can provide a guidance cue to define the nerve track. This
would explain the phenomenon whereby re-innervation of the regenerating antler follows vascular ingrowth. The annual
growth of deer antler presents a unique opportunity to better understand the factors involved in rapid nerve regeneration.
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INTRODUCTION
Nerve Growth Factor (NGF) is involved in many aspects of nerve

growth. This small secreted dimeric protein, originally identified

by its ability to promote neurite out-growth, exerts its biological

actions primarily on cells of the nervous system [1]. Binding of

NGF to p75 and trk family receptors on responsive neurons has

been shown to result in their survival and growth during both

embryogenesis and regeneration [2]. NGF is responsible for the

survival of sympathetic and sensory neurons concerned with

nociception and thermoreception and all autonomic axons are

NGF sensitive. Developing peripheral nerves induce expression of

NGF in their targets during embryo development while upregula-

tion of NGF expression by Schwann cells following nerve injury is

thought to facilitate growth of regenerating peripheral axons back

toward their original targets [3]. This subtle difference separates

embryonic NGF expression from that during regeneration. It is,

therefore, possible to distinguish ‘‘generation’’ in which the nerve

induces NGF expression by the target that in turn permits nerve

survival, from ‘‘regeneration’’ when the target expresses NGF to

attract axon regrowth.

NGF has also been found to have non-neuronal functions [4].

Notably NGF has been implicated in the process of angiogenesis

with the trkANGFR and p75NTR receptors for NGF present on

Human Umbilical Vein Endothelial Cells [5]. Other significant

functions of NGF have been in association with tissue repair and

the differentiation associated with ovarian development and

folliculogenesis [6].

NGF is synthesized as a prohormone of 22 kDa which under-

goes proteolytic cleavage. The three dimensional structure of NGF

is determined by the presence of six cysteine residues involved in

disulphide bond formation. These are important in defining the

backbone structure of the protein [7]. The gene for NGF consists

of several small exons coding for multiple precursor forms with the

nerve growth promoting activity confined to exon IV [8].

Deer antlers are elaborate bony structures that are shed and

then completely regenerate each year. This cycle of antler casting

and regeneration is controlled by seasonal fluctuations of

testosterone with antler growth beginning in early spring when

testosterone decreases below threshold levels [9]. During their

growth phase, antlers are enveloped in a unique type of delicate

skin known as ‘‘velvet’’. Antlers are extremely sensitive to nocicep-

tive and discrete touch stimuli and deer have an awareness of

antler position [10]. Velvet antlers are innervated by both

unmyelinated and myelinated sensory nerve fibers, which are

derived from the supraoptic and temporal branches of the

trigeminal nerve, and these nerve fibers follow the same paths as

the major arteries [11]. At the end of summer, an increase in

circulating testosterone levels causes antlers to become fully

calcified and velvet skin to shed. Bony antlers are carried by a stag

throughout the winter season and cast in the following spring.

Antler is a valuable model for the study of nerve growth and

regeneration as the repetitive renewal of a highly innervated,

developmentally regulated organ is not observed in other

mammals. Very little is known, however, about nerve regeneration

and antler innervation during antler renewal. A previous study
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from our group [12] revealed that neurotrophin-3 (NT-3), a nerve

trophic factor, is widely expressed in the growing antlers. NT-3

expression levels are closely correlated with the density and pattern

of innervation of different antler tissue types, being highest in the

segment immediately subjacent to the tip and lowest in the

cartilage layer. NT-3 is not expressed in the tissue positioned

ahead of the most advanced nerve endings. This led the authors to

suggest that NT-3 does not play a role in attracting nerve fibers

towards their target field, but is only involved in their differentia-

tion and survival. As extracts from velvet antler are able to

promote neurite outgrowth from neural explants [13], they must

contain other factors to fulfill the role of attracting nerves. Based

on current knowledge, NGF appears to be a likely candidate.

In the present study, we showed that NGF mRNA was

expressed in the arterial smooth muscle of regenerating antlers.

Using these data we proposed a model of antler innervation

whereby axons grow into the regenerating antler using NGF

expressed by the vascular smooth muscle as a guidance cue to

define the nerve track. Full or partial denervation of the

regenerating antlers significantly increased NGF mRNA expres-

sion in the antler arterial smooth muscle, indicative of a causal

relationship between nerve ingrowth and NGF expression. Our

model explains the phenomenon whereby reinnervation of the

regenerating antler follows vascular ingrowth.

RESULTS

Sequencing of Deer NGF
Prior to commencing this work the sequence for deer NGF was

unknown. Partial sequence coding for the mature protein was

obtained from deer genomic DNA using PCR primers designed

from exon IV of the bovine NGF gene. This deer sequence has

been deposited in GenBank (Accession number AF145043). We

obtained this sequence by analyzing multiple clones (7) from four

individual animals. Deer NGF showed 97%, 92% and 88%

homology to bovine, human and mouse NGF sequences re-

spectively [14,15]. Residues shown to be essential for the biological

activity of NGF in other species were strictly conserved in the deer

sequence. The deduced amino acid sequence for deer NGF

showed that the cysteine (nucleotides 172–174, 202–204 238–240),

histidine (nucleotides 223–225, 250–252), and tryptophan residues

(nucleotides 61–63, 226–228, 295–297) [7] were present. Based on

the high level of homology between this sequence and the

nucleotide sequence of NGF in other species we concluded that we

had isolated the deer NGF homologue.

NGF mRNA expression in the growing antler tip
The expression of NGF in the antler tip was investigated using

Northern blot analysis. Northern blots consisting of mRNA from

different layers within the antler tip (Fig. 1A) and from a mouse

E17.5 embryo were hybridized with a DNA probe for deer

NGF. Localized signal corresponding to an NGF transcript of

an unexpected size (6 kb) was present in the antler reserve

mesenchymal layer (Fig. 1B). This transcript was also present in

the mouse embryo sample. Expression of NGF was low when

compared with autoradiographic signal obtained from b-Actin.

Northern blot analysis was repeated three times using antler tips

from three individual deer.

Immunohistochemical localization of axons in the

antler
Earlier studies provided information describing nerves in the shaft

of the antler but did not give a clear indication of where axons

terminated distally [11,12,16,17]. We wished to determine the

positional relationship between NGF expression and axon

terminals. Neurofilament immunopositive profiles labeled with

rhodamine were detected in antler tissue sections and the

consistent appearance of labeled structures with a similar shape,

size and position in adjacent longitudinal sections indicated

binding of the antibody was specific and reproducible (Fig. 1C).

We concluded that these represented axons, based on the known

specificity of the antibody and the size and shape of the transverse

sectional profiles. Bright field images of the same sections revealed

structures resembling bundles of axons. All negative controls had

low background and no immunopositive profiles.

Antler tip samples were divided into longitudinal sections from

each side of the tip and a central section which spanned from the

apex into the core of the antler. Axons with diameters ranging

from 0.5–3 mm were found mainly in the reserve mesenchymal

layer (Fig. 2A) in the antler tip. Major axons were located near

blood vessels growing alongside the mesenchymal layer at the

interface with the dermis in the side portion of the antler tip

(Fig. 2B). Axons were not detected in the precartilage, transitional

or cartilage layers. Axon density varied across the reserve

mesenchymal layer with more abundant and larger bundles at

Figure 1. A. Layer identification of proliferative zone on a haematoxylin
and eosin, and alcian blue stained growing antler tip section. D, dermis;
RM, reserve mesenchyme; PC, precartilage; TZ, transitional zone; C,
cartilage. Rectangular box indicates position where tissue was sampled
for immunohistochemical localization (Figure 1C). B. Northern blot
analysis showing the distribution of NGF (top) and ß-actin (bottom)
mRNA in the antler tip. Blots containing 5 mg of poly(A) RNA from each
tissue were hybridized with a 32P-labeled DNA probe. Lane 1) E17.5
mouse embryo; Lane 2) C; Lane 3) TZ; Lane 4) PC; Lane 5) RM; Lane 7) D.
The positions of RNA size markers (in kb) are indicated (left). C.
Immunohistochemical localization on a section of antler tip showing
bundles of axons. Serial wax-embedded-sections were labeled with
a fluorescent antibody against neurofilament. Fluorescent images have
been overlaid onto corresponding bright field view. Axon bundles were
not visible when primary antibody was omitted (original size, 106
magnification of original figure).
doi:10.1371/journal.pone.0000148.g001
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the sides of the antler than at the very tip of the antler overlying

the core region.

Axon profiles in denervated antler
Immunohistochemistry was employed to characterize axon

patterns in antlers following severing of the zygomaticotemporal

and infratrochlear branches of the trigeminal nerve and the

auricular palpebral branch of the facial nerve. Contrary to our

expectations, 3 weeks after denervation we found the number of

immunopositive profiles greatly increased (Fig. 2C) in two of the

three denervated antler tips compared to their contralateral

controls. Sections taken from the third denervated antler showed

only sparse innervation (Fig. 2D) compared to its normally

innervated counterpart. Evaluation of the denervation surgery at

the completion of the experiment showed that in two of the

experimental animals surgery was only partially successful. These

corresponded to the first two antlers in which increased axon

profiles were observed. There was no apparent growth of axons

into the base of the antler belonging to the third animal.

Cellular localization of NGF mRNA in the developing

antler
To identify cells expressing NGF in the growing antler tip, and to

determine whether a feedback mechanism exists between the

ingrowing sensory nerve axons and the expression of NGF mRNA,

the tips of both denervated and contralateral control antlers were

subjected to in situ hybridization using a riboprobe for deer NGF.

NGF mRNA was found to be expressed in smooth muscle cells

surrounding the arteries and arterioles at the interface between

dermis and reserve mesenchyme in the intact antler tip (Fig. 3A–

3D), in close proximity to where nerves track in the antler

[11,12,16]. These NGF expressing cells were located principally in

the vascular bed lying at the interface between the reserve

mesenchyme and the dermis (layers illustrated in Fig. 1). NGF was

expressed in the vascular bed both at the lateral side of the antler

and also in the vessels overlaying the most apical point of the tip.

This was closer to the antler tip than our localization of the

majority of axons. The comparative level of hybridization signal in

denervated antler and the contralateral normal control showed an

increase in NGF expression following loss of axons (Fig. 3E–3H).

The overall pattern of NGF mRNA expression, however, did not

change (data not shown). Control (sense) riboprobes gave only

scattered background hybridization.

DISCUSSION
This study has identified nucleotide sequence for deer NGF. PCR

and cloning techniques were used to generate a consensus

sequence for part of the deer NGF mRNA, and this showed

strong homology with NGF of other species. Northern blotting

showed an NGF transcript of approximately 6 kb. This message

was larger than the expected 1.3 kb size suggested by Scott et al

[18]. A 3.6 kb transcript for NGF has previously been identified in

fish [19] and a larger than expected transcript of a closely related

molecule, Brain-Derived Neurotrophic Factor, has been reported

in mice [20]. These findings suggest that the 6 kb NGF transcript

found in antler, and also in the E17.5 mouse embryo, may code for

an NGF precursor initiated from an unidentified exon. Edwards et

al [21] have proposed that different precursor forms may result in

different cellular locations of NGF and could alter the biological

activity of the protein.

Localization of NGF mRNA expression was consistent between

our Northern blot analysis (Fig. 1B) and in situ hybridization

results (Fig. 3). In situ hybridization further demonstrated that the

signals were located at the interface between the reserve

mesenchyme and the dermal layer of the antler, principally in

smooth muscle cells surrounding the arteries and arterioles (Fig. 3).

Antler nerves have been shown previously to follow the same

tracks as those taken by blood vessels [11,12,16]. NGF mRNA

expression in these specific cells may therefore delineate the path

Figure 2. Immunohistochemical localisation of axons on antler tip
sections. The same method was used as for Figure 1C. Bar = 100 mm. A.
Montage of a longitudinal section of central antler tip showing axon
bundles. Bright field is on left. Corresponding fluorescence on the right
showing individual axons in red mainly in the inner reserve
mesenchyme (IR), not found in dermis (De), vascular layer (Vs) and
outer reserve mesenchyme (OR). B. A bundle of axons was near a blood
vessel in the side portion of an intact antler tip. C. Numerous
fluorescent-labelled neurofilaments were observed in the reserve
mesenchymal layer on the sections from the first two denervated
antler tips. D. Positive stained neurofilaments were only sparsely
encountered in the third denervated antler tip.
doi:10.1371/journal.pone.0000148.g002
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that axons are to take as they extend commensurate with antler tip

growth which, at its peak, reaches a rate of more than 10 mm/day

[22]. Conversely, sensory neuron secreted neuropeptides Sub-

stance P and Calcitonin Gene-Related Peptide, both of which are

found to be highly expressed in the growing antler vascular layer

[17], may facilitate blood vessel formation. It is known that both of

these neuropeptides play a stimulating role in endothelial cell

proliferation [17]. Further, the apparent increase in NGF

expression level in these cells following full or partial denervation

of the antler suggests that there is a finely balanced feedback

system between the entering axon and the newly formed smooth

muscle of the antler arterial system.

Comparison of axon density in the distal region with that in the

shoulder region of the antler revealed that the shoulder region was

more densely innervated than the tip region. The most distal

tissues in the antler are those that formed within the last few hours

and presumably axons have not yet grown into these newly formed

regions. The cellular localization of NGF mRNA suggests that

blood vessels at the interface of the reserve mesenchyme and the

dermis act either as the peripheral targets or specify the pathway

for axons innervating the antler. Gibran et al [23] have suggested

that microvascular endothelial cells, induced to produce NGF by

Substance P, may perform a similar function during healing of

cutaneous injury.

The developmental expression of NT-3 correlates well with the

density and pattern of innervation in the antler [12]. Buchman

and Davies (1993) proposed that neurons pass through a neuro-

trophin independent phase before they reach their target field,

then ‘switch’ to a dependency on neurotrophins for survival. The

switch to neurotrophin dependence is thought to be controlled by

an intrinsic timing mechanism within the neuron [20]. The

observation that regenerating axons extend up the antler shaft and

branch to form differentiated sensory terminals, while others

continue to extend to their targets further up the antler [16], is

consistent with an intrinsic timing program for individual neurons.

This would explain why some regenerating axons continue to

elongate distally, while others stop to form sensory terminals.

Antler denervation was followed by up regulation of NGF

mRNA expression in the antler tip and, in this case, resulted in an

increase in the number of axon profiles present near the tip, even

when there were few axon profiles remaining at the base of the

antler. Surgical axotomy of branches of the trigeminal and facial

nerves which provide sensory innervation to antlers is unlikely to

have affected autonomic axons which travel with the antler

arteries. The over expression of NGF in response to the loss of

sensory nerves would stimulate sprouting of parasympathetic

axons. Localized over expression of NGF mRNA at the base of the

antler following denervation surgery may also explain why two of

the experimental animals exhibited an increased number of

immunopositive axonal profiles. Alternatively, the high level of

NGF mRNA produced in response to denervation may aid the

survival of sensory axons in the absence of a cell body. This

phenomenon has been observed in the frog by Humphrey et al

[24], who have suggested that after denervation axons can

survive in vivo without a cell body for up to three weeks. Elevated

NGF levels may maintain sensory axons in a denervated antler,

however, the prospect of these axons growing with the antler for

a further 10 cm over a three week period is difficult to rationalize.

NGF has also been associated with biological functions other

than nerve growth and survival. It has been shown to promote

wound healing [25], and have a role in cell differentiation [26,27].

Its expression can be modulated by retinoic acid [26,28].

Interestingly Allen et al [29] have shown retinoic acid receptors

and significant concentrations of Vitamin A and the RALPH2

enzyme distributed throughout the growing antler tip. One could

hypothesize that retinoic acid may play a role in regulating NGF

expression in the antler vascular bed. In addition, Emanueli et al

[30] have shown that NGF promotes angiogenesis and arteriogen-

esis via the vascular endothelial growth factor (VEGF) pathway

following ischemic injury, with NGF proceeding VEGF action. A

role for NGF in vascularisation, coupled to re-innervation, is

further supported by Reimer et al [31] who showed enhanced

blood vessel and nerve ingrowth to transplanted islet cells in rats

treated with NGF or a combination of NGF and VEGF. We have

concentrated principally on whether NGF acts as a guidance cue

for regenerating antler sensory axons. NGF’s presence in the

vascular bed of the antler tip, however, may suggest it also forms

part of the mechanism for angiogenesis and arteiogenesis in the

regenerating antler.

In summary, we have shown that NGF mRNA is expressed in

the smooth muscle of the arteries and arterioles in the growing

antler tip. Axon pathways in the antler have been shown to follow

the major blood vessels supplying this structure. This vascular

bed lies at the interface between the dermis and the reserve

mesenchyme. The positional relationship between NGF expressed

by the blood vessels and the most distal growth of the axons shows

Figure 3. In situ hybridization showing bright (A, C, E, G) and
corresponding dark (B, D, F, H) field views of a serial sections through
an artery from the intact antler tip (A–D), and an artery from the
denervated antler tip (E–H) of the same deer. A and B, E and F binding
of the antisense NGF riboprobe, while C and D, and G and H show the
sense NGF riboprobe. Bar = 100 um. The magnification of figure 3D
applies to the figures 3E to 3H.
doi:10.1371/journal.pone.0000148.g003
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NGF mRNA closer to the apex of the antler than the majority of

nerve endings. We have also demonstrated that a feedback

mechanism exists between NGF mRNA expression in arterial

smooth muscle and sensory axons in the antler tip. We therefore

propose that axons growing into the antler use NGF expressed by

the vascular smooth muscle as a guidance cue to define the nerve

track. This means that innervation of the antler follows and is

shaped by vascular ingrowth. We suspect that for the sensory

axons to form terminals with their sensory target requires a second

signal, such as an intrinsic timing mechanism, to complete their

development. This model of NGF utilization is most closely

aligned to regenerative nerve growth rather than that which

occurs during embryonic nerve generation. Therefore, the annual

growth of deer antler provides a unique opportunity to better

understand the factors involved in rapid nerve regeneration.

MATERIALS AND METHODS

Tissue Collection
Velvet antler was collected from red deer (Cervus elaphus) 60 days

after casting of the previous year’s hard antler. Local anaesthetic

(bromacaine) was injected around the junction of the pedicle and

the skull before each antler was removed above the pedicle. The

distal 5 cm from each antler was collected for this study. Following

the established methods [32], antler tip tissue for mRNA extrac-

tion was rapidly separated into five morphologically defined layers

(Fig. 4) under a dissecting microscope, snap frozen in liquid

nitrogen and stored at 280uC. These layers were dermis, reserve

mesenchyme, precartilage, transition zone, and cartilage. Antler

tissue samples for in situ hybridization and immunohistochemistry

were immediately fixed in 10% formalin for 24 hours and then

transferred to 70% alcohol, prior to wax embedding. All deer were

supplied and maintained by the AgResearch Invermay Farm,

Mosgiel, New Zealand. The antler removal procedure was

conducted in accordance with the regulations set up by the New

Zealand National Velveting Standards Board.

Surgery
Denervation experiments were carried out, following approval

by the AgResearch Invermay Animal Ethics Committee, to

determine whether there exists a causal relationship between

nerve ingrowth and NGF mRNA expression level. Three 2-year-

old red deer (C. elaphus) stags were selected at 10–20 days post

casting of their previous year’s antlers. At this stage antlers were

between 6 and 8 cm in length. Animals were anaesthetized with

Fentazin (1.8 ml/100 kg). The zygomaticotemporal and infratro-

chlear branches of the trigeminal nerve and the auricular

palpebral branch of the facial nerve innervating one of the antlers

were cut using the procedure reported by Li et al [16], and tied

back onto themselves as described by Wislocki and Singer [11].

This resulted in unilateral sensory denervation of the antler. Post

surgery, animals were administered 1 ml/10 kg Penstrep LA

(BOMAC Laboratories Ltd, Auckland) and their recovery

monitored. Deer were maintained outdoors for 19 days at which

time their antlers measured between 12 and 17 cm in length.

Antlers were removed from the deer and processed as described

above. To evaluate the success rate of denervation, all deer were

sacrificed at the conclusion of the experiment and exploratory

dissections carried out.

Cloning Procedures and Sequencing
Genomic DNA was extracted from deer whole blood. This

material served as the template for PCR using primers designed

from exon IV of the bovine NGF gene (Accession number:

M26809). The forward primer sequence was 59-

GGGGAGTTCTCGGTGTGCGA-39 and the reverse primer

was 59-CACACGCAGGCCGTGTCGAT-39. PCR products

were A/T cloned into the pGEM-TH Easy vector (Promega,

Madison, WI) containing the SP6 and T7 RNA polymerase

promoters flanking the multiple cloning site. DNA was sequenced

using primers to the SP6 and T7 promoters and fluorescent dye

terminator chemistry on an ABI 377 automated cycle sequencer

(Centre for Gene Research, University of Otago).

Northern Blot Analysis
Isolation of mRNA from antler tissues or whole E17.5 mouse

embryos used the MicroPoly(A)Pure mRNA purification kit

(Ambion, Austin, Texas). Approximately 5 mg of mRNA was

subjected to formaldehyde gel electrophoresis and capillary

transferred onto Hybond N+ nylon membrane (Amersham,

UK). Twenty five ng of deer NGF DNA was labeled by random

priming with 10mCi/ml [a32P]dCTP and the probe purified using

a NICKTM Column (Pharmacia LKB Biotechnology, Sweden).

Hybridization was performed at 42uC overnight in 50% forma-

mide [33]. Autoradiography was performed with an intensifying

screen at 280uC.

Immunohistochemical Localization of Axons
The immunohistochemical protocol for nerve staining followed

that described by Li et al [16]. Ten mm paraffin antler tissue

sections were dewaxed in xylene and rehydrated. The primary

antibody raised against a 200 kDa neurofilament polypeptide

(mouse anti-pig, Amersham, UK) was diluted 1:200 in immuno-

diluent and placed on the sections. Controls for immunohisto-

chemical specificity included substituting the equivalent amount of

rabbit immunoglobin (IgG) antibody in place of the primary

antibody as well as omission of the primary antibody. The

secondary antibody (biotinylated sheep anti-mouse, Amersham,

UK) was diluted 1:200 in immunodiluent and then incubated with

the section. This was followed by incubating the sections with

a biotin-streptavidin-rhodamine complex. Slides were cover-

slipped with gelatin and examined using a Zeiss Axioplan

fluorescence microscope. Images were captured using a Pixera

professional digital camera.

Figure 4. Layer identification of unstained proliferative zone in
a growing antler tip. D, RM, PC, TZ, C, are the same as shown in
Figure 1. Rectangular box indicates position where tissue was sampled
for in situ hybridization.
doi:10.1371/journal.pone.0000148.g004
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In situ Hybridization
The in situ hybridization protocol was based on the methods

described by Clark et al [34]. A deer NGF PCR product cloned

into transcription vector pGEMTH Easy (Promega, Madison, WI)

was linearized by restriction digest with either SacII (New England

Biolabs, Beverly, MA) or SalI (Boehringer Mannheim, Germany)

to give sense and antisense probes respectively. Single stranded

sense and antisense riboprobes were labeled by transcription with

10mCi/ml [a33P] UTP as per manufacturers instructions (Pro-

mega, Madison, WI). Sections were counter stained with Gills

Hematoxylin and viewed on an Olympus BX50 microscope using

both bright and dark field illumination.
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