
nutrients

Article

β-glucan Salecan Improves Exercise Performance and
Displays Anti-Fatigue Effects through Regulating
Energy Metabolism and Oxidative Stress in Mice

Xi Xu 1,†, Yijian Ding 2,†, Yunxia Yang 1, Yan Gao 1, Qi Sun 1, Junhao Liu 1, Xiao Yang 1,
Junsong Wang 1 and Jianfa Zhang 1,*

1 Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China;
xuxi@njust.edu.cn (X.X.); yyx0625@outlook.com (Y.Y.); 113102000225@njust.edu.cn (Y.G.);
311020270@njust.edu.cn (Q.S.); craigdragon@icloud.com (J.L.); yangxiaodirk@163.com (X.Y.);
wang.junsong@gmail.com (J.W.)

2 Department of Physical Education, Nanjing University of Science & Technology, Nanjing 210094, China;
felao@163.com

* Correspondence: jfzhang@mail.njust.edu.cn; Tel./Fax: +86-25-8431-8533
† These authors contributed equally to this work.

Received: 21 May 2018; Accepted: 26 June 2018; Published: 3 July 2018
����������
�������

Abstract: Fatigue induced by prolonged exercise not only leads to the decrease of exercise capacity,
but also might be the cause of many diseases. In consideration of the side effects of pharmacological
drugs, dietary supplements seem to be a better choice to ameliorate exercise-induced fatigue.
The present study aimed to investigate the anti-fatigue effect of Salecan, a novel water-soluble
β-glucan, during exercise and explore the underlying mechanisms. Male Institute of Cancer Research
(ICR) mice were divided into five groups, including the Rest group and the other four Swim-groups
treated with Salecan at 0, 25, 50, and 100 mg/kg/day for four weeks. Salecan treatment markedly
increased the exhaustive swimming time of mice in the forced swimming test. Exercise fatigue
and injury-related biochemical biomarkers including lactate, blood urea nitrogen (BUN), creatinine
kinase (CK), alanine transaminase (ALT), and aspartate transaminase (AST) were ameliorated by
Salecan. Salecan reversed the decreased serum glucose levels and glycogen contents caused by
exercise. In addition, Salecan improved oxidative stress induced by exercise through regulating
Nrf2/HO–1/Trx signaling pathway. Thus, the beneficial effects of Salecan against fatigue may be
due to its positive effects on energy metabolism and antioxidation defence. Our results suggest that
Salecan could be a novel potential candidate for anti-fatigue dietary supplements.
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1. Introduction

Fatigue, a common and complicated symptom, could have negative effects on health conditions,
work efficiency, life quality, and social relationships. According to the causes of fatigue, it can be
classified as physical, mental, or disease-related [1–5]. Exercise-induced fatigue is not fully understood,
although it has been investigated by plenty of researchers. The mechanisms that contribute to
exercise-induced fatigue may include the decrease of energy stores, the accumulation of the end
products of metabolism, disorder of the internal environment, and high levels of oxidative stress [6–9].
The purposes of anti-fatigue studies are to increase exercise capacity and to shorten the recovery time
after fatigue. In consideration of the side effects of pharmacological drugs, such as safety and legality
issues, dietary supplements seem to be a better choice to treat exercise-induced fatigue.
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Because no single biomarker could precisely reflect the extent of exercise-induced fatigue,
combinations of different biomarkers have been widely used [10]. According to the test methods,
biomarkers of exercise-induced fatigue could be classified as dry, wet, or volatile [10]. Dry biomarkers
are usually least invasive and easy to detect. Power output measures, electrophysiological measures,
and cardiologic measures are the most commonly used dry biomarkers [10]. Most of the wet biomarkers
derive from blood and only some from the saliva, urine, or tissue [10]. The most widely used wet
biomarkers are those originating from muscle damage, adenosine triphosphate (ATP) depletion,
oxidative stress, or immunological compromise [10–12]. Because oxygen delivery and utilization are
important to sustain the endurance performance of muscle, maximal oxygen uptake is considered as
one of the volatile biomarkers [10].

β-glucans are naturally occurring polysaccharides with poly-branched β-(1-3)-D-glucans or
β-(1-6)-D-glucose side chains, and are widely distributed in the cell walls of fungi or bacteria, cereal
plants, and seaweeds [13,14]. A number of studies have reported the biological functions of β-glucans,
such as modulating the immune system, protecting against tumors, and reducing the absorption of
cholesterol and fat [15,16]. Salecan is a novel water-soluble β-glucan produced by Agrobacterium sp.
ZX09. It is an extracellular polysaccharide with a structure consisting of the following repeating unit:
3)-β-D-Glcp-(1→3)-[β-D-Glcp-(1→3)-β-D-Glcp-(1→3)]3-α-D-Glcp-(1→3)-α-D-Glcp-(1→ (Figure 1a) [17].
The safety of Salecan has been examined in a previous acute and subchronic experiment [18]. Previous
studies also found that Salecan exhibits multiple biological activities, such as protecting against liver
injury [13,19,20] and gastrointestinal diseases [21,22]. Because previous studies suggested the possible
anti-oxidation ability of Salecan [13,19], we asked whether Salecan could be a dietary supplement
to ameliorate exercise-induced fatigue. In the present study, we used a mice model to simulate
exercise-induced fatigue, and examined the anti-fatigue effects of Salecan during exercise.
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Figure 1. Chemical structure of the repeated unit of Salecan (a) and the experiment scheme (b). Rest
group: mice that received phosphate buffer saline (PBS) intragastrically and did not take the swimming
test; Swim-Ctrl, Swim-LS, Swim-MS, and Swim-HS groups: mice that received 0, 25, 50, and 100 mg/kg
of Salecan intragastrically respectively for four weeks before taking a 15-min swimming test.

2. Materials and Methods

2.1. Preparation of Salecan

Salecan was extracted from the fermentation broth of Agrobacterium sp. ZX09 by centrifugation
and ethanol precipitation, and was further purified as previously described [17,23,24]. Briefly,
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gel filtration chromatography was performed with a Sepharose CL-4B (Pharmacia, Shanghai, China)
column (1.5 × 60 cm), and the polysaccharides were eluted with 50 mmol/L phosphate buffer, pH 7.2,
at the rate of 1 mL/min. Fractions containing polysaccharides were collected, and the purity of purified
Salecan was determined to be more than 95%.

2.2. Mice and Treatment

Male six-weeks-old Institute of Cancer Research (ICR) mice, purchased from the Model Animal
Research Center of Nanjing University (Nanjing, China), were used in the study. The animals
were maintained under a 12/12 h light/dark cycle with lights on at 7:00 a.m. and off at 7:00 p.m.,
and with free access to regular chow food and water. The mice were randomly divided into five
groups: (1) Rest group that received phosphate buffer saline (PBS) intragastrically (N = 12); (2) to
(5) Swim-Ctrl, Swim-LS, Swim-MS, and Swim-HS groups that received 0, 25, 50, and 100 mg/kg of
Salecan intragastrically, respectively (N = 18 in each group). After treatment with PBS or Salecan once
a day for 28 consecutive days, six mice in group (2) to (5) were assigned to take the forced swimming
test, while the 12 mice left in group (2) to (5) underwent a 15-min swimming test, and the mice in group
(1) were used as the non-swim control (Figure 1b). The body weights of mice were recorded weekly.
Sample size was determined by power analysis with the following assumptions: α of 0.05 (two-tailed),
power of 90%. The values used in the calculation were based on the preliminary data obtained in our
laboratory, as well as on the published studies that used these biochemical techniques. All animal care
and use procedures were approved by the Institutional Animal Care and Use Committee at the Nanjing
University of Science and Technology (ACUC-NUST-20170026), and were performed according to the
Chinese guidelines for the care and use of laboratory animals.

2.3. Forced Swimming Test

One hour after the last PBS or Salecan treatment, the forced swimming test was performed
as previously described with minor modifications [25]. Briefly, mice were placed individually in a
swimming pool filled with water (25 ± 2 ◦C) to a depth of 30 cm. A tin wire (5% of body weight) was
attached to the tail root of each mouse. The exhaustive swimming time was recorded when the loss of
coordinated movements and failure to return to the surface within 7 s were observed in each mouse.

2.4. Biochemical Analysis

One hour after the last PBS or Salecan treatment, the mice in group (2) to (5) were forced to
swim in water at 25 ± 2 ◦C for 15 min without any loads, and the mice in group (1) were used as the
non-swim control. After the swimming exercise, all mice were sacrificed, and the blood samples, livers,
skeletal muscles, hearts, and kidneys were collected. Serum alanine transaminase (ALT), aspartate
transaminase (AST), creatinine kinase (CK), blood urea nitrogen (BUN), glucose levels, and lactate
dehydrogenase (LDH) activity were measured using an Olympus AU2700 automatic biochemical
analyzer (Olympus, Tokyo, Japan). The concentrations of lactate in the serum were determined
according to the instructions (Jiancheng, Nanjing, China).

2.5. Tissue Glycogen Examination and Oxidative Stress-Related Parameters Analysis

The livers and muscles were homogenized with saline and the concentrations of glycogen
and oxidative stress-related parameters (malondialdehyde (MDA), glutathione (GSH), superoxide
dismutase (SOD)) were determined using available kits (Jiancheng, Nanjing, China).

2.6. Tissue Energy Metabolic Enzymes Analysis

Mice treated with PBS or Salecan (100 mg/kg) separately for three days were analyzed for the
activities of energy metabolic enzymes in the liver and muscle (N = 6). The liver or muscle was
homogenized and centrifuged. The activities of pyruvate kinase (PK), succinate dehydrogenase
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(SDH), malate dehydrogenase (MDH), and Na+-K+-ATPase in the supernatant were analyzed with
commercially available kits (Jiancheng, Nanjing, China).

2.7. RNA Isolation and Real-Time Polymerase Chain Reaction (PCR) Analysis

Total RNA was extracted using TRIzol (Invitrogen, Carlsbad, CA, USA). Reverse transcript
reaction was carried out by commercial reverse transcript enzyme (KeyGene, Nanjing, China).
Quantitative real-time PCR was carried out using an ABI 7300 real-time PCR system with a
cDNA sample, and amplification was carried out in a 20 µL reaction volume containg 1×
SYBR Green PCR Master Mix (Applied Biosystems, Foster City, CA, USA). The primers used
were nuclear factor erythroid 2-related factor 2 (Nrf2), F: TCCGCTGCCATCAGTCAGTC, R:
ATTGTGCCTTCAGCGTGCTTC; hemeoxygenase-1 (HO-1), F: TGCAGGTGATGCTGACAGAGG, R:
GGGATGAGCTAGTGCTGATCTGG; thioredoxin (Trx)1, F: CGTGGTGGACTTCTCTGCTACGTGGTG,
R: GGTCGGCATGCATTTGACTTCACAGTC; Trx2, F: GCTAGAGAAGATGGTCGCCAAGCAGCA,
R: TCCTCGTCCTTGATCCCCACAAACTTG; thioredoxin reductase (TrxR)1, F: GGCCAACAAA
ATCGGTGAACACATGGAAG, R: CGCCAGCAACACTGTGTTAAATTCGCCCT; TrxR2, F:
GTCCCCTCCCACATCAAAAAACTCCCAAC, R: GGCCCACAGGACAGTGTCAAAGGTGC;
glutaredoxin (Grx)1, F: TGCAGAAAGACCCAAGAAATCCTCAGTCA, R: TGGAGATTAGATCA
CTGCATCCGCCTATG; Grx2, F: CATCCTGCTCTTACTGTTCCATGGCCAA, R: TCATCTT
GTGAAGCGCATCTTGAAACTGG; glutathione reductase (GR), F: GCCTTTACCCCGATGTA
TCACGCTGTG, R: TGTGAATGCCAACCACCTTTTCCTCTTTG. Relative expression in comparison
with that of GAPDH was calculated using the comparative computed tomography method.

2.8. Western Blot

Cytoplasmic and nuclear proteins in the liver and muscle were extracted using nuclear and
cytoplasmic protein extraction kits (Beyotime, Shanghai, China). Proteins were separated by SDS-PAGE
(10% gel), transferred to 0.22 µm polyvinylidene fluoride (PVDF) membranes (Biosharp). After blocking
with 5% skim milk powder (Biosharp) in TBST (0.1% TWEEN-20), the membranes were incubated with
Nrf2 primary antibody (Proteintech, Chicago, IL, USA) overnight, washed with TBST, and incubated
with secondary antibody at room temperature for one hour. Chemiluminescent Substrate System from
KPL was utilized for final detection.

2.9. Statistical Analysis

The statistical analyses of the results were performed using GraphPad Prism 5 software (GraphPad
Software, San Diego, CA, USA). The data were first analyzed by one-way ANOVA, and then unpaired
or two-tail paired t-test was used to evaluate the significance of the differences between two groups
when necessary. Spearman rank correlation analyses were performed to evaluate the correlation
between different parameters. The following terminology is used to denote the statistical significance:
* p < 0.05, ** p < 0.01, and *** p < 0.001.

3. Results

3.1. Effects of Salecan on the Body Weight and Histopathology of Mice

The body weights of mice were recorded and the results showed that no significant difference
was found among the five groups (data not shown). The histological analyses were also performed
to evaluate the effect of Salecan on different tissues after acute exercise for 15 min. Salecan treatment
did not significantly change the structure of hepatic sinusoids in liver. Cardiomyocytes in the heart
showed no sign of hypertrophy and hyperplasia, and neither did the rhabdomyocytes in the skeletal
muscle. The morphology of glomerulus and renal tubules did not differ among the control and
Salecan-treated groups (Figure 2). Thus, Salecan treatment did not significantly change the body
weight and histopathology of mice.
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Figure 2. The effects of Salecan on the histopathology of liver, heart, skeletal muscle, and kidney of
mice in different groups. Thick sections of 5 µm were stained with hematoxylin-eosin staining (H & E)
(magnification, ×200).

3.2. Salecan Prolonged the Exhaustive Swimming Time in the Forced Swimming Test

The forced swimming test, the most widely used animal model to investigate the anti-depression
effect of current or novel molecules, has recently been used to evaluate the anti-fatigue activities of
certain agents [26,27]. In the forced swimming test, prolonged swimming time indicates the increase
of exercise capacity and decrease of fatigue [27]. Compared with the Swim-Ctrl group (545.2 ± 57.1 s),
the forced swimming times in the Salecan-treated groups were longer (Swim-LS: 670.8 ± 157.4 s;
Swim-MS: 890.8 ± 150.2 s; Swim-HS: 1031.3 ± 223.8 s), and the differences were statistically significant
(p < 0.001, the statistical significance of the data between different treatments was shown in the
figure) (Figure 3). These results indicated that Salecan had significant anti-fatigue activity and could
increase exercise endurance in a dose-dependent way (correlation analysis between Salecan dosage
and exhaustive swimming time: r = 0.79, p < 0.001).
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Figure 3. The effects of Salecan on the exhaustive swimming times of mice from four groups. Data
are expressed as mean ± SD, N = 6, ** p < 0.01, *** p < 0.001. Swim-Ctrl, the control group; Swim-LS,
the low-dose of Salecan-treated group; Swim-MS, the medium-dose of Salecan-treated group; Swim-HS,
the high-dose of Salecan-treated group.
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3.3. Salecan Ameliorated Exercise Fatigue and Injury-Related Biochemical Parameters after Strenuous Exercise

Several biochemical parameters have been used to evaluate the extent of muscle fatigue and injury
after exercise, such as lactate, BUN, CK, LDH, ALT, and AST [10–12,28]. Compared with the Rest group,
the concentrations of lactate were higher after exercise by 26.72%, Salecan treatment decreased lactate
levels after exercise by 3.40%, 14.55%, and 16.43% respectively (p < 0.05, the statistical significance
of the data between different treatments was shown in the figure) (Figure 4a). Similar trends were
found in the levels of BUN (Swim-Ctrl versus Rest: increased by 29.64%, Swim-LS versus Swim-Ctrl:
decreased by 19.66%, Swim-MS versus Swim-Ctrl: decreased by 19.98%, Swim-HS versus Swim-Ctrl:
decreased by 24.04%, p < 0.01) and CK (Swim-Ctrl versus Rest: increased by 64.88%, Swim-LS versus
Swim-Ctrl: decreased by 20.02%; Swim-MS versus Swim-Ctrl: decreased by 35.10%, Swim-HS versus
Swim-Ctrl: decreased by 35.72%, p < 0.01) (Figure 4b,c). LDH activities were increased after exercise
but decreased in the Swim-HS group (p = 0.07) (Figure 4d). Strenuous exercise also caused the increase
of ALT and AST levels, which were markedly decreased by Salecan treatment (ALT: p < 0.05; AST:
p < 0.001; the statistical significance of the data between different treatments was shown in the figure)
(Figure 4e,f). Correlation analyses were performed between each biochemical parameter and Salecan
dosage or exhaustive swimming time. The results demonstrated that Salecan dosage was negatively
correlated with lactate, BUN, CK, LDH, ALT, and AST levels (Table 1). Exhaustive swimming time
was negatively correlated with CK and AST levels (Table 1).
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Table 1. Correlation analyses between each biochemical parameter and Salecan or exhaustive 
swimming time were performed. BUN—blood urea nitrogen; CK—creatinine kinase; LDH; ALT—
alanine transaminase; AST—aspartate transaminase; MDA—malondialdehyde; GSH—glutathione. 
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CK −0.44 ** −0.49 * 

LDH −0.33 * −0.13 
ALT −0.40 ** −0.32 

Figure 4. The effects of Salecan on exercise fatigue and injury-related biochemical parameters including
(a) Lactate, (b) blood urea nitrogen (BUN), (c) creatinine kinase (CK), (d) lactate dehydrogenase
(LDH), (e) alanine transaminase (ALT), and (f) aspartate transaminase (AST). Data are expressed as
mean ± SD, N = 12, * p < 0.05, ** p < 0.01, *** p < 0.001. Rest, the control group without swimming;
Swim-Ctrl, the control group that swim for 15 min before sample collection; Swim-LS, the low-dose
of Salecan-treated group that swim for 15 min before sample collection; Swim-MS, the medium-dose
of Salecan-treated group that swim for 15 min before sample collection; Swim-HS, the high-dose of
Salecan-treated group that swim for 15 min before sample collection.
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Table 1. Correlation analyses between each biochemical parameter and Salecan or exhaustive swimming
time were performed. BUN—blood urea nitrogen; CK—creatinine kinase; LDH; ALT—alanine
transaminase; AST—aspartate transaminase; MDA—malondialdehyde; GSH—glutathione.

Correlation Coefficient Salecan Exhaustive Swimming Time

Lactate −0.41 ** −0.23
BUN −0.32 * −0.10
CK −0.44 ** −0.49 *

LDH −0.33 * −0.13
ALT −0.40 ** −0.32
AST −0.59 *** −0.44 *

Glucose 0.49 ** 0.49 *
Muscle glycogen 0.52 ** 0.48 *

Muscle MDA −0.71 *** −0.46 *
Muscle GSH 0.52 ** 0.41 *

* p < 0.05, ** p < 0.01, and *** p < 0.001.

3.4. The Regulatory Effect of Salecan on Energy Metabolism

Depletion of energy stores could also lead to exercise fatigue, and this could be revealed by
the levels of blood glucose and the glycogen contents in the liver and muscle [29]. Compared
with the Rest group, serum glucose levels were decreased after exercise in the Swim-Ctrl group
by 18.22%, but elevated by 13.28%, 14.83%, and 28.18% in the Swim-LS, Swim-MS, and Swim-HS
groups, respectively, however, because of the limited sample numbers, the ANOVA analysis did not
reach significance (p = 0.06) (Figure 5a). Positive correlation was found between Salecan dosages and
glucose levels (Table 1). In accordance with the trend of glucose levels in the serum, the glycogen
contents in the muscle were also decreased after exercise by 30.06%, but increased in the Swim-HS
group by 28.42% compared with the Swim-Ctrl group (p = 0.06) (Figure 5b). The glycogen content in
the muscle was also positively correlated with Salecan dosage (Table 1). The glycogen contents of the
liver among different treatments did not reach significance (Figure 5c).

To further investigate the effects of Salecan on the main processes of energy metabolism,
we compared the activities of key energy metabolic enzymes, including PK, SDH, MDH,
and Na+-K+-ATPase, in mice treated with PBS or Salecan for three days. Salecan significantly decreased
the activity of PK in muscle (Figure 5d) and increased the activity of SDH in liver and muscle (Figure 5e).
Salecan did not have an effect on MDH levels, but further decreased the activity of Na+-K+-ATPase
in muscle (Figure 5f,g). As CK and AST were two sensitive fatigue and injury-related indicators in
response to Salecan treatment, we further performed correlation analyses between these biochemical
indicators and energy metabolic enzymes. The data showed that the CK and AST levels are associated
with the fall in muscle glycolytic markers, PK and Na+-K+-ATPase (Table 2). Both muscle and liver
SDH levels were negatively correlated with the AST levels (Table 2).

Table 2. Correlation analyses between biochemical parameters (creatinine kinase (CK), aspartate
transaminase (AST), and malondialdehyde (MDA)) and energy metabolic enzymes. PK—pyruvate
kinase; SDH—succinate dehydrogenase.

Correlation Coefficient CK AST MDA

PK-muscle 0.58 * 0.73 ** 0.27
SDH-liver −0.50 −0.65 * −0.48

SDH-muscle −0.47 −0.61 * −0.53
Na+-K+-ATPase-muscle 0.49 0.66 * 0.00

* p < 0.05 and ** p < 0.01.
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Figure 5. The regulatory effects of Salecan on glucose metabolism including (a) serum glucose,
(b) muscle glycogen content, (c) liver glycogen contents and the effects of Salecan on energy
metabolic enzymes including (d) pyruvate kinase (PK), (e) succinate dehydrogenase (SDH), (f) malate
dehydrogenase (MDH), and (g) Na+-K+-ATPase. Data are expressed as mean ± SD, N = 6, * p < 0.05,
** p < 0.01, *** p < 0.001.

3.5. Salecan Alleviated the Oxidative Stress in Mice after Acute Exercise

During exercise, oxidative stress could lead to muscle damage and fatigue, thus we investigated
the effects of Salecan on oxidative stress. The oxidative stress-related molecules including MDA,
GSH, and SOD were examined. Compared with the Rest group, MDA levels in the liver and muscle
were significantly increased after strenuous exercise, this increase was partly reversed by Salecan
treatment (liver: p < 0.001; muscle: p < 0.001; the statistical significance of the data between different
treatments was shown in the figure) (Figure 6a,d). The GSH contents in the liver and muscle were
markedly decreased after exercise, but elevated after Salecan treatment (liver: p < 0.01; muscle:
p < 0.05) (Figure 6b,e). Similar to the changes of the GSH contents, the SOD activities were significantly
decreased after exercise, but increased in Salecan-treated groups (liver: p < 0.01; muscle: p < 0.001)
(Figure 6c,f). Salecan dosage was positively correlated with muscle GSH levels, and negatively
correlated with muscle MDA levels (Table 1). The levels of MDA (the most sensitive biochemical
indicator changed in response to Salecan treatment) were not associated with the changes in energy
metabolic enzymes (Table 2).

To further elucidate the molecular mechanisms of Salecan’s regulatory role on oxidative stress,
we performed real-time PCR and Western blot to study the effects of Salecan on the expression
patterns of some important antioxidant signaling pathways. Nrf2, a basic region leucine-zipper
transcription factor, is one of the key mediators involved in the antioxidant system in vivo [30].
Under oxidative stress, Nrf2 could translocate from the cytoplasm to the nucleus, bind to the
antioxidant response element (ARE), and thereby regulate the expression of a large battery of genes
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involved in the cellular antioxidant defence, such as HO-1, Trx, glutathione S-transferase-α1 (GST-α1),
and quinoneoxidoreductasel (NQO1) [30–33]. The real-time PCR results demonstrated that Salecan
significantly increased the expression levels of Nrf2 (Figure 7a). The protein levels of Nrf2 in the
cytoplasm were not significantly changed after Salecan treatment, however, the expression levels of
nuclear Nrf2 were markedly increased in both liver and muscle (Figure 7b), suggesting the activation
of Nrf2 by Salecan. Further analyses of the downstream signaling pathways of Nrf2 demonstrated that
Salecan also increased the mRNA levels of HO-1, Trx2, and TrxR2 in both liver and muscle, and only
increased the levels of TrxR1 and Grx1 in liver, but did not have a significant effect on the expression
of Trx1, Grx2, and GR (Figure 7c–j). Only TrxR2 expression levels were negatively correlated with AST
levels (r =−0.62, p < 0.05). Together, these results suggested that Salecan could regulate oxidative stress
through the Nrf2/HO-1/Trx signaling pathway, thus exerting an anti-fatigue effect during exercise.
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Figure 6. The effects of Salecan on oxidative stress-related parameters in the liver and muscle of mice
from different groups. (a) Liver MDA; (b) liver GSH; (c) liver SOD; (d) muscle MDA; (e) muscle GSH;
and (f) muscle SOD. Data are expressed as mean ± SD, N = 6, * p < 0.05, ** p < 0.01, *** p < 0.001.
Rest, the control group without swimming; Swim-Ctrl, the control group that swim for 15 min before
sample collection; Swim-LS, the low-dose of Salecan-treated group that swim for 15 min before
sample collection; Swim-MS, the medium-dose of Salecan-treated group that swim for 15 min before
sample collection; Swim-HS, the high-dose of Salecan-treated group that swim for 15 min before
sample collection.
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Figure 7. The mRNA and protein levels of (a,b) Nrf2; mRNA expression levels of (c) HO-1, (d) Trx1,
(e) Trx2, (f) TrxR1, (g) TrxR2, (h) Grx1, (i) Grx2, and (j) GR in the liver and muscle of mice from the
control and Salecan-treated groups were analyzed. Ctrl, the control group that received phosphate
buffer saline (PBS) for three days; Salecan, the group that received high-dose of Salecan treatment
for three days. PCNA, proliferating cell nuclear antigen. Data are expressed as mean ± SD, N = 6,
* p < 0.05, ** p < 0.01, *** p < 0.001.

4. Discussion

Searching for effective treatments to alleviate exercise-induced fatigue has been an interesting
research project for sports physiologists and nutritionists. In this study, we found that a new type
of water-soluble β-glucan, Salecan, could markedly alleviate exercise-induced fatigue. Salecan
treatment significantly prolonged the exhaustive swimming time of mice in the forced swimming
test. Exercise fatigue and injury-related biochemical parameters (lactate, BUN, CK, LDH, ALT, AST)
were ameliorated by Salecan. We also demonstrated that Salecan improved exercise fatigue through
regulating energy metabolism and Nrf2/HO-1/Trx signaling-related antioxidation defence. Our results
suggested that Salecan could be a novel potential candidate for anti-fatigue dietary supplements.

Combinations of a variety of biomarkers have been used to evaluate the extent of exercise-induced
fatigue. In this study, both dry and wet biomarkers have been used. The exhaustive swimming time of
mice could be considered as one of the dry biomarkers to reflect the extent of exercise endurance and
fatigue. Salecan treatment prolonged the time to exhaustion in mice, particularly in the Swim-MS and
Swim-HS groups, indicating the anti-fatigue effects of Salecan on mice. Wet biomarkers derived from
blood and tissues were also examined. During strenuous exercise, the generation of ATP shifts from
aerobic processes to anaerobic glycolysis or glycogenolysis. Lactate is a side product of the anaerobic
pathway and the accumulation of lactate often leads to fatigue during exercise [10,11,34]. Lactate levels
were significantly increased after exercise but decreased in the Salecan-treated groups. The decreased
LDH activities after Salecan treatment might be the feedback of the decreased levels of lactate. Another
important biomarker, CK, is one of the indicators of muscle damage [10]. Strenuous exercise that
damages skeletal muscle cell structure at the level of sarcolemma and Z-disks results in an increase in
CK levels [12,35]. From the results of serum biomarkers, we concluded that Salecan could significantly
alleviate exercise fatigue and injury-related biochemical parameters after acute exercise. Except
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for the biomarkers mentioned above, other biomarkers such as C-terminal agrin fragment, muscle
damage parameters (such as myoglobin), and inflammation indicators (including blood leukocytes,
interleukine, cortisol, and C-reactive protein) have also been used in recent years [10,11]. Thus,
an in-depth examination of these fatigue-related biomarkers need to be done to clarify the anti-fatigue
effect of Salecan in future research.

Oxidative stress produced during strenuous exercise may not be responsible only for
exercise-induced fatigue, but also for impaired recovery from exercise [36]. Increased reactive oxygen
species (ROS) production during strenuous exercise leads to the oxidation of proteins, lipids, or nucleic
acids [37]. The production of ROS during exercise is also accompanied with a reduction of antioxidant
capacity [8]. Thus, we examined the levels of oxidative stress with indicators including MDA, GSH,
and SOD in different groups. The results were consistent in the livers and muscles of Salecan-treated
mice, and demonstrated that Salecan significantly reduced oxidative stress during acute exercise.
We further studied the molecular mechanisms involved in antioxidation defence. The basic region
leucine-zipper transcription factor Nrf2 is a key molecule regulating the cellular antioxidant response.
Under oxidative stress, Nrf2 translocates to the nucleus of the cell, where it forms heterodimers with
other transcription factors such as c-Jun and small Maf proteins, binds to the ARE, and regulates
the expression of downstream genes involved in the cellular antioxidant defense, such as HO-1, Trx,
GST-α1, and NQO1 [30–33]. The real-time PCR analyses revealed that Nrf2 expression was enhanced
after Salecan treatment, and the downstream HO-1 and Trx signaling (especially Trx2-TrxR2 signaling)
were also activated.

Glycolysis is the major short term energy source, and when it is altered, other changes occur
such as the change in energy source. The correlation analyses demonstrated that the Salecan dosage
was positively correlated with muscle glycogen, GSH, and glucose levels, and negatively correlated
with MDA, AST, CK, lactate, ALT, LDH, and BUN levels (Table 1). Thus, increasing levels of Salecan
appeared to be associated with reduction in muscle glycogen usage and increases in muscle GSH and
serum glucose levels. These changes also appeared to be associated with the reduction of cellular
damage due to the falls in CK and liver enzyme levels. Thus, β-Glucan Salecan seems to provide an
increased ability to resist the onset of the change from glycolysis to other energy sources and in doing
so, delays the onset of oxidative damage. It was anticipated that these would also be associated with
an increase in serum insulin levels [38], and this needs to be examined in the future.

Strenuous exercise is a very energy-consuming process, which might result in the imbalance
of the internal environment. Fatigue induced by prolonged exercise not only leads to the decrease
of exercise capacity, but also might be the cause of many diseases including vascular and heart
diseases, and skeletal and muscular system diseases [1,7,39]. Here, we demonstrated that Salecan
could significantly alleviate exercise-induced fatigue. The beneficial effects of Salecan against fatigue
may be due to its positive effects on energy metabolism and antioxidation capacity. Except for the
traditional biochemical biomarkers for exercise-induced fatigue, other metabolites related to fatigue
need to be further investigated to better understand the role of Salecan. These findings suggest a
potential use for Salecan as an anti-fatigue dietary supplement in exercise or other factors inducing the
fatigue symptom.
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