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Offering self-sampling for HPV testing improves the effectiveness of current cervical screening programs by increasing

population coverage. Molecular markers directly applicable on self-samples are needed to stratify HPV-positive women at risk

of cervical cancer (so-called triage) and to avoid over-referral and overtreatment. Deregulated microRNAs (miRNAs) have been

implicated in the development of cervical cancer, and represent potential triage markers. However, it is unknown whether

deregulated miRNA expression is reflected in self-samples. Our study is the first to establish genome-wide miRNA profiles in

HPV-positive self-samples to identify miRNAs that can predict the presence of CIN3 and cervical cancer in self-samples. Small

RNA sequencing (sRNA-Seq) was conducted to determine genome-wide miRNA expression profiles in 74 HPV-positive self-

samples of women with and without cervical precancer (CIN3). The optimal miRNA marker panel for CIN3 detection was

determined by GRridge, a penalized method on logistic regression. Six miRNAs were validated by qPCR in 191 independent

HPV-positive self-samples. Classification of sRNA-Seq data yielded a 9-miRNA marker panel with a combined area under the

curve (AUC) of 0.89 for CIN3 detection. Validation by qPCR resulted in a combined AUC of 0.78 for CIN3+ detection. Our study

shows that deregulated miRNA expression associated with CIN3 and cervical cancer development can be detected by sRNA-Seq

in HPV-positive self-samples. Validation by qPCR indicates that miRNA expression analysis offers a promising novel molecular

triage strategy for CIN3 and cervical cancer detection applicable to self-samples.
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Introduction
In many countries, the participation of women in population-
based cervical screening is suboptimal which hampers the
effectiveness of the screening program.1 Women who do not
participate (30% of invited women in The Netherlands),
so-called nonattendees, are at increased risk of developing
cervical intraepithelial neoplasia grade 3 or worse (CIN3+).2

Offering self-sampling for high-risk HPV (hrHPV) testing to
nonattendees has been shown to increase the efficacy of
the screening program3 and has demonstrated to be equally
effective in detecting CIN3+ when compared to HPV testing
on physician-taken specimens.4,5 Therefore, self-sampling
for HPV testing is now offered to nonattendees in The
Netherlands. To discriminate between women with a transient
(clinically irrelevant) HPV infection and women with clinically
meaningful cervical disease, additional risk assessment (so-
called triage) is necessary. For cervical scrapes, testing of HPV-
positive women by (repeat) cytology is a generally acknowl-
edged triage strategy.6,7 Since cytological examination of self-
samples is not reliable,8 women testing positive for hrHPV on
their self-sample need to have a physician-taken smear for tri-
age testing by cytology. This prerequisite for cervical cytology
for previous nonattendees, has shown to be associated with
loss to follow-up.9 Therefore, the identification and subsequent
use of nonmorphological, molecular triage markers that can be
directly applied on self-samples becomes very important.

Molecular triage methods that have been described so far
for application on self-samples include HPV16/18 genotyp-
ing10,11 and DNA methylation marker analysis.9,10,12,13 Micro-
RNAs (miRNAs) have emerged as key regulators of gene
expression and their involvement in carcinogenesis has now
been widely accepted.14 They are increasingly recognized as
promising biomarkers for cancer diagnostics and may provide
alternative molecular triage markers. Interestingly, Tian et al.
reported that miRNA detection in HPV-positive cervical
scrapes has a superior performance over cytology for the detec-
tion of high-grade CIN lesions in a referral population,15 which
indicates the potential of miRNA detection for triage testing of
HPV-positive women in cervical screening programs.

A number of studies have demonstrated altered miRNA
expression patterns in cervical cancer cell lines and cervical
cancer tissues.16 However, little is known about genome-wide
miRNA expression patterns in CIN lesions17,18 and no data is
presently available on miRNA expression profiles in HPV-

positive self-samples. Importantly, previous research has shown
that the clinical performance of molecular markers may be
dependent on the sample type used,12 given that the cellular
composition may differ between tissues, physician-taken cervi-
cal scrapes and self-samples and the fact that nondisease-related
cells such as vaginal cells are largely overrepresented in self-
samples. Accordingly, the optimum miRNAs listed so far may
not be directly extrapolated to self-samples.

Our study set out to directly determine the genome-wide
miRNA profiles in self-samples aiming to establish a miRNA
signature for CIN3 detection to serve as a novel triage method
for HPV-positive self-samples. To this end, we performed small
RNA next-generation sequencing (sRNA-Seq) on HPV-positive
self-samples from women with CIN3 lesions and women with-
out cervical disease in follow-up (≤CIN1), obtained from a pro-
spective screening trial among nonattendees.3 Penalized logistic
regression analysis resulted in the identification of a panel of
9 miRNAs that together could detect CIN3 with high discrimi-
natory power. The performance of this miRNA signature was
subsequently validated by qPCR in an independent sample
series of HPV-positive self-samples.

Materials and Methods
Clinical cervical specimens and RNA extraction
For the discovery set, we used 74 hrHPV-positive cervicovagi-
nal self-samples that were collected from nonattendees partici-
pating in the PROHTECT 1 trial (NTR792)3 with the first
generation Delphi-screener (Delphi-Bioscience, The Nether-
lands) between December 2006 and December 2007. Detailed
characteristics of study design and clinical specimens, inclu-
sion criteria and follow-up procedures have been described
previously.3 miRNA sequencing data from a pilot experiment
of 12 self-samples for power calculations revealed a ratio of
1 (hrHPV-positive controls) to 1 (CIN3) for proper marker
discovery. Therefore, the discovery set consisted of 36 control
women with either histologically confirmed ≤CIN1 or that
displayed hrHPV clearance combined with normal cytology in
follow-up (hereafter referred to as controls; median age of 37;
range 31–56), and 38 women (cases) who were histologically
diagnosed with a CIN3 lesion (median age of 39; range
31–62). CIN2 lesions were not included given their ambiguous
classification; they often represent a misclassified CIN1 or
CIN3.19 Controls and cases were matched according to age
and HPV type. Total RNA was isolated using Direct-Zol™

What’s new?
MicroRNAs (miRNAs) are suspected of playing a role in cervical cancer development. They are also potential markers for the

identification of human papillomavirus (HPV)-infected women who are at risk of cervical cancer. Here, using small RNA

sequencing of HPV-positive self-samples from women with and without cervical precancer (CIN3), the authors identify a miRNA

signature consisting of multiple miRNAs that is strongly predictive of CIN3. Validation of this signature by qPCR revealed a

good clinical performance for CIN3+ detection. The findings suggest that miRNA analysis is an effective means of CIN3+

prediction in HPV-positive self-samples obtained for cervical cancer screening.

Snoek et al. 373

Int. J. Cancer: 144, 372–379 (2019) © 2018 The Authors. International Journal of Cancer published by John Wiley & Sons Ltd on behalf

of UICC.

T
um

or
M
ar
ke
rs

an
d
Si
gn

at
ur
es



RNA Miniprep (Zymo Research, Freiburg, Germany) after the
manufacturer’s instructions.

For the validation set, we used 155 hrHPV-positive lavage
self-samples that were collected from nonattendees participat-
ing in the methylation triage arm of the PROHTECT 3A trial
(NTR2606)9 with the second generation Delphi-screener
(Delphi-Bioscience, The Netherlands) between November
2010 and December 2011. Detailed characteristics of study
design and clinical specimens, inclusion criteria and follow-up
procedures have been described previously.9 These
155 hrHPV-positive self-samples consisted of 101 control
women with either histologically confirmed ≤CIN1 or that
displayed hrHPV clearance combined with normal cytology in
follow-up (hereafter referred to as controls; median age of 42;
range 33–63), 49 women who were histologically diagnosed
with a CIN3 lesion (median age of 40; range 33–58) and five
women who were histologically diagnosed with squamous cell
carcinoma (SCC) (median age of 47; range 38–58). Further-
more, 36 hrHPV-positive brush-based self-samples (median
age of 46; range 27–83) were included that were obtained
from women who visited the Antoni van Leeuwenhoek Hospi-
tal/Netherlands Cancer Institute or Academic Medical Center
Amsterdam for treatment of SCC between 2015 and 2017
(X15MET and SOLUTION study). Total RNA was isolated
using Trizol reagent (Thermo Fisher Scientific, Bleiswijk, The
Netherlands) according to the manufacturer’s instructions.

Samples from both PROHTECT trials were tested for HPV
by GP5+/6+ PCR using the Diassay EIA HPV GP HR kit
(Diassay, Voorburg, The Netherlands) as described previ-
ously.9,20 Samples from the XMET and SOLUTION studies
were tested for HPV using the HPV-Risk Assay (Self-screen
BV, Amsterdam, The Netherlands).21

Ethical approval was obtained from the National Health
Council (PROHTECT trials) and Institutional Review Board
of the Antoni van Leeuwenhoek Hospital/Netherlands Cancer
Institute (METC15.1468) and VU University Medical Center
(METC2016.213). All participants gave informed consent.

All samples were used in an anonymous fashion in accor-
dance with the “Code for Proper Secondary Use of Human
Tissues in the Netherlands” as formulated by the Dutch Fed-
eration of Medical Scientific Organizations (http://www.fmwv.
nl and www.federa.org).22

Library construction and deep sequencing
Preparation of cDNA libraries was performed with equal
amount of input RNA per sample (1,000 ng of total RNA)
using the TruSeq Small RNA Sample Preparation Kit accord-
ing to the manufacturer’s instruction (Illumina, San Diego,
CA). In brief, cDNA libraries were measured on an Agilent
2100 Bioanalyzer (Agilent Technologies) and up to five sam-
ples were pooled in equimolar concentrations for the sequenc-
ing run. Sequencing was performed single read 50 (SR50)
cycles on a HiSeq 2500 (Illumina) for 74 samples (36 controls,
38 CIN3).

Data processing miRNA sequencing
In order to obtain miRNA expression profiles, all raw small
RNA sequencing data was analyzed using the miRDeep2 algo-
rithm.23,24 In brief, read counts were filtered for low-quality
sequences, adapters and sequences shorter than 18 nucleotides
followed by alignment to the human genome (hg19). Input
from known miRNAs was obtained from miRBase version 20.25

To avoid multiple counting of miRNA sequences that can origi-
nate from several genomic loci, we only counted the expression
of miRNA paralogs once. As part of our quality control, we
assessed the distribution of miRNA read counts and excluded
those samples that depicted an atypical distribution (Supporting
Information Fig. S1). Based on this criterion, 10 samples with
insufficient quality were excluded. Another eight samples were
already excluded on forehand because of low sequencing depth.

After quality control, miRNA read counts were normalized
according to the trimmed mean of M values (TMM) normali-
zation strategy.26 Subsequently, normalized miRNA read
counts were square root transformed to the quasi Gaussian
scale followed by miRNA data standardization. Finally, from
2,577 known miRNAs according to miRBase 20, only those
miRNAs that exhibited nonzero read counts in at least three
samples were included. This resulted in a total set of 772 miR-
NAs with an average of 416 miRNAs per sample (controls:
403, CIN3: 434). Raw sequencing reads and quantified read
counts are available from the NCBI Gene Expression Omni-
bus (GEO) through series accession number GSE104758.

Statistical analysis miRNA sequencing and microarray data
Adaptive group regularized (logistic-) ridge regression
(GRridge)27 was applied to the preprocessed miRNA sequenc-
ing data (expression values). Auxiliary information, namely
abundance and conservation status,28 was incorporated to
build the omics-based prediction model. Post hoc feature
selection was subsequently applied to the GRridge model,
which resulted in the identification of nine miRNAs to be fur-
ther validated by quantitative PCR (qPCR). More details of
the GRridge predictive modeling as well as the results (includ-
ing data preprocessing and predictive modeling) have been
described elsewhere.29 The performance of the GRridge pre-
diction model on the miRNA expression data was assessed by
leave-one-out cross-validation (LOOCV), then visualized by
the receiver operating characteristics (ROC) curve and quanti-
fied by area under the curve (AUC).

In-house available genome-wide microarray miRNA pro-
files of cervical tissues,30 including normal cervical tissues,
CIN2/3 lesions (hereafter referred to as high-grade CIN) and
SCC were utilized to evaluate the expression patterns of the
selected miRNAs. Due to limitations in accurate histologic
grading of high-grade CIN on frozen tissue specimens, CIN2
and CIN3 were grouped together in this sample series.30 Since
the miRNA microarray did not include probes for miR-184,
the expression of miR-184 in cervical tissues could not be
evaluated. For the selected miRNAs, we employed the
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Kruskall-Wallis omnibus test and the post-hoc nonparametric
test to compare miRNA expression between biological groups.
Obtained P values were adjusted for multiple comparisons.
Statistical analyses were performed in R open source software
by implementing the GRridge27 package.

Quantitative RT-PCR (qPCR)
Expression of hsa-let-7b-5p, hsa-miR-9-5p, hsa-miR-15b-5p,
hsa-miR-20a-5p, hsa-miR-31-5p, hsa-miR-93-5p, hsa-miR-
183-5p, hsa-miR-184, and hsa-miR-222–3p was determined
using TaqMan microRNA assays (002619, 000583, 000390,
000580, 002279, 001090, 002269, 000485, 002276; Thermo
Fisher Scientific). Since we most recently described hsa-miR-
423-3p and hsa-miR-30b-5p as suitable normalization strategy
for hrHPV-positive self-samples,31 these miRNAs were included
as reference genes (002626, 000602; Thermo Fisher Scientific).

The manufacturer’s protocol was adapted in order to multi-
plex reverse transcription of all 9 miRNA markers and 2 refer-
ence genes (11 miRNAs in total) and validated in comparison
to singleplex reverse transcription reactions. In short, the spe-
cific reverse transcription primers were combined in a primer
pool and cDNA was synthesized in 16.5 μL reactions contain-
ing 9 μL primer pool, 0.45 μL dNTPs (100 mM), 2.25 μL 10×
RT buffer, 0.3 μL RNase inhibitor (20 U/μL), and 4.5 μL Multi-
Scribe Reverse Trancriptase (TaqMan microRNA Reverse Tran-
scription kit, Thermo Fisher Scientific). We used 50 ng total
RNA as reverse transcription template.

Quantitative PCR reactions were performed in 10 μL, con-
sisting of 5 μL TaqMan® Universal Master Mix II no UNG,
0.5 μL miRNA specific TaqMan assays (Thermo Fisher Scien-
tific), 3.5 μL H2O and 1 μL cDNA. The ABI 7500 Fast Real-
Time PCR System (Thermo Fisher Scientific) was used for
quantification. Cycle conditions used for cDNA synthesis and
PCR were according to the manufacturer’s protocols.

Samples that exhibited Cq values >32 for the geomean of
the reference genes were considered unsuitable for miRNA
qPCR analysis. Based on this criterion, one CIN3 self-sample
was excluded. For the remaining self-samples, miRNA expres-
sion was normalized to the geometric mean of the reference
genes applying the 2‑ΔCt method.32

Detailed characteristics of physician-taken cervical scrapes
(Supporting Information Fig. S3), including miRNA expres-
sion analysis by qPCR have been described previously.33

Statistical analysis miRNA qPCR data
Since our panel of miRNA markers should be able to detect
cervical precancerous lesions with increased risk to progress
to cervical cancer as well as cervical cancer with high discrimi-
natory power, we combined CIN3 and cervical cancer samples
(CIN3+) for the analysis of the validation set. Logistic regres-
sion analysis was performed to assess the prediction ability of
the six miRNAs on the normalized qPCR data for detection of
CIN3+. First, the Cq ratio of each miRNA was transformed to
the square root scale. Next, univariable logistic regression

model was fitted to observe the performance of each miRNA.
Multivariable logistic regression with backward elimination
was subsequently applied to define the best combination of
miRNAs to differentiate self-samples from women with CIN3
+ from hrHPV-positive controls. Supporting Information
Table S1 shows the contribution (standardized coefficient) of
each miRNA in the most optimal prediction model. The per-
formance of the most optimal prediction model on the trans-
formed miRNA expression data was visualized by ROC curve
and evaluated by AUC, sensitivity and specificity. 95% confi-
dence intervals (CI) were calculated for the AUC obtained for
the most optimal prediction model.34 Additionally, we
employed the Kruskall-Wallis omnibus test and the post-hoc
nonparametric test to compare miRNA expression between
biological groups. Obtained P values were adjusted for multi-
ple comparisons. All statistical analyses were performed in R
open source software using the pROC35 package.

Results
Discovery of a miRNA signature in HPV-positive self-samples
In order to identify a CIN3-specific miRNA signature in self-
samples, we performed genome-wide small RNA sequencing
on 74 HPV-positive self-samples (discovery set). This yielded
an average of 41 million raw reads per sample (controls:
48 million, CIN3: 37 million). After preprocessing (for details
please refer to Materials and Methods), we obtained an
average of 25 million reads per sample (controls: 29 million,
CIN3: 23 million) of which approximately 24% was mapped
to the human genome (controls: 20%, CIN3: 24%). Most non-
human reads mapped to Lactobacillus. A fraction of the
mapped reads represented miRNAs, with an average of 4%
per sample (controls: 5%, CIN3: 3%). Based on quality control
assessment (for details please refer to Materials and Methods),
18 samples were excluded resulting in a total of 56 samples
(32 controls, 24 CIN3) for further analysis.

To identify a miRNA signature with high discriminatory
power for CIN3, we performed adaptive group regularized ridge
regression, GRridge,27 which enables objective use of codata.
This resulted in the identification of a panel of 9 miRNAs (let-
7b, miR-9, miR-15b, miR-20a, miR-31, miR-93, miR-183, miR-
184, and miR-222) as strong predictor of CIN3 with an AUC of
0.89 (Fig. 1a). The expression of all miRNAs was found to be
increased in CIN3 compared to HPV-positive controls (Fig. 1b).

In order to ensure that the identified miRNA markers in
self-samples are related to cancer development, we next analyzed
in-house available genome-wide miRNA profiles of a set of
37 cervical tissues (10 controls, 18 high-grade CIN, 9 SCC).30 In
concordance with the expression patterns observed in self-sam-
ples, we observed increased expression for miR-9, miR-15b,
miR-20a, miR-93 and miR-183 in cervical tissues from women
with high-grade CIN compared to controls (Fig. 2). For let-7b,
miR-31 and miR-222, however, we found similar or decreased
expression levels in high-grade CIN cervical tissues compared to
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controls, although these differences were not significant (Fig. 2).
Importantly, all miRNAs except let-7b showed increased expres-
sion in SCC compared to controls.

Validation of the miRNA signature by qPCR in HPV-positive
self-samples
To validate the clinical performance of the 9 miRNAs identi-
fied in the discovery phase, we performed miRNA qPCR in an
independent set of 191 HPV-positive self-samples (validation
set). Among the 9 miRNAs, 3 miRNAs (miR-9, miR-183 and
miR-184) exhibited very low expression level, detected at an
average Cq of >32. Since the quantification of low expressed
transcripts can reduce reproducibility and substantially

increase technical PCR noise,31 we excluded these 3 miRNAs
from subsequent analysis.

In concordance with the results presented for the discovery
set, we found a significant difference for miR-15b and miR-93
between self-samples from women with CIN3 and HPV-
positive controls (Fig. 3b). In contrast, for let-7b we observed
significantly lower expression levels in CIN3 self-samples
compared to the HPV-positive controls, and even lower levels
in SCC (Fig. 3b). Interestingly, however, the results for let-7b
are in line with the data from cervical tissues for which we
also observed decreased expression of let-7b in SCC (Fig. 2).
For miR-31 no significant difference between the biological
groups was observed (Fig. 3b). Furthermore, all miRNAs
except miR-31 and let-7b showed significantly increased
expression levels in self-samples from women with SCC com-
pared to HPV-positive controls (Fig. 3b).

Next, we performed univariable logistic regression to assess
the performance of each miRNA and multivariable logistic
regression followed by backward elimination to identify the
best combination of miRNA markers. Since we set out to find
a panel of miRNA markers that can be applied in cervical
screening that should be able to detect both CIN3 and cervical
cancer with high discriminatory power, we combined CIN3
and cervical cancer (CIN3+) for the analysis of the validation
set. The best clinical performance was achieved by multivari-
able logistic regression with a panel of 5 miRNAs (let-7b,
miR-15b, miR-20a, miR-93, and miR-222) for which we
obtained an AUC of 0.78 (95% confidence interval (CI):
0.7173–0.8479) for CIN3+ detection (Fig. 3a). Expectedly we
observed a better clinical performance for the 5-miRNA
marker panel compared to the individual clinical performance
of the miRNAs (Supporting Information Fig. S2). We
included thresholds corresponding to 65–75% specificity to
determine the sensitivity of the 5-miRNA marker panel for
CIN3 and SCC detection (Table 1). At the threshold corre-
sponding to 65% specificity in HPV-positive controls, the

Figure 2. Expression levels of the miRNA signature in cervical
tissues. Log2 expression levels obtained from miRNA microarray
data of 8 out of 9 miRNAs in cervical tissues (10 controls (open box),
18 high-grade CIN (light gray box), 9 SCC (dark gray box)). * p < 0.05,
** p < 0.01, *** p < 0.001.

Figure 1. Identification of a CIN3-specific miRNA signature in HPV-positive self-samples (a) Receiver operating characteristics (ROC) curve and area
under the curve (AUC) of a 9-miRNA marker panel for CIN3 detection in HPV-positive self-samples (discovery set; 32 controls and 24 CIN3). (b)
Square root expression levels of the 9 miRNAs in HPV-positive self-samples (discovery set; 32 controls (open box) and 24 CIN3 (light gray box)).
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5-miRNA marker panel revealed a sensitivity of 67% (32 out
of 48) for CIN3 detection. Importantly, 38 out of 41 (93%) of
the cervical cancers were detected (Table 1).

Discussion
This is the first study to determine genome-wide miRNA pro-
files in HPV-positive self-samples to allow for direct and objec-
tive triage in cervical screening. Since HPV-positive self-
samples are relatively impure due to the large amount of non-
cervical (i.e., vaginal cells, lymphocytes) and normal cervical
epithelial cells, we applied our recently proposed GRridge
model27 to identify a miRNA signature with high discrimina-
tory power for CIN3 detection. This method enables objective
use of auxiliary data such as miRNA abundance and conserva-
tion and was previously shown to outperform other prediction
methods.29 We identified a miRNA signature consisting of
9 miRNAs (let-7b, miR-9, miR-15b, miR-20a, miR-31, miR-93,
miR-183, miR-184, miR-222) with high discriminatory power
for CIN3 detection in HPV-positive self-samples (AUC = 0.89).

Importantly, our study shows the feasibility of conducting
sRNA sequencing for miRNA quantification on self-samples. It
should be noted, however, that prior to the analysis we had to
exclude a substantial amount of samples of insufficient quality
(18 out of 74). This quality filtering was important to improve
the miRNA selection and any potential bias introduced is coun-
tered in the validation phase where independent HPV-positive

self-samples were used without any filtering. Moreover, we found
that differential expression of the identified miRNAs could be
confirmed in independent cervical tissue specimens analyzed by a
different method.30 In addition, recent data show increased
expression of miR-15b in HPV-positive physician-taken cervical
scrapes from women with CIN3 and SCC.33 Similarly, prelimi-
nary miRNA expression data show consistent results for miR-
20a, miR-93 and miR-222 in HPV-positive cervical scrapes
(Supporting Information Fig. S3). Taken together, this shows that
the detection of the aforementioned miRNAs in self-samples
reflects cervical disease and supports the validity of our approach.

Consistent with our findings, Li and colleagues found
increased expression of miR-15b, miR-20a, miR-31, miR-93,
and miR-222 in cervical precancerous tissues.36 These miR-
NAs have also been shown to be upregulated in cervical
cancer tissues compared to controls.16,17,37 Moreover, upregu-
lation of miR-15b was found to be directly linked to a chro-
mosomal gain of 3q which is often observed in cervical
cancers.30 Additionally, miR-15b expression was recently
shown to gradually increase from CIN1 to CIN2-3 and cervi-
cal cancer tissues and to be associated with poor prognosis.37

Validation by qPCR in an independent set of HPV-positive
self-samples resulted in a good clinical performance for a
5-miRNA signature consisting of let-7b, miR-15b, miR-20a,
miR-93, and miR-222 (AUC = 0.78) with a sensitivity of 67%
and a specificity of 65% for CIN3 detection. Importantly, 93%
(38 out of 41) of the cervical cancers were detected. Since two of
the three miRNA negative cervical cancer self-samples were just
below the threshold this may indicate that these miRNA negative
self-samples do not contain sufficient numbers of representative
cells or well-sampled material and warrant additional testing.
Compared to previously described molecular triage markers in
HPV-positive self-samples,9,12,38–40 we obtained a nearly compa-
rable clinical performance for CIN3+ detection as observed for
DNA methylation panels.9,38 Unlike DNA methylation analysis,

Table 1. Clinical performance of the 5-miRNA marker panel in

HPV-positive self-samples

Specificity (%) Sensitivity CIN3 (%) Sensitivity SCC (%)

75 50 88

70 54 88

65 67 93

Figure 3. Clinical performance and expression levels of the miRNA markers in HPV-positive self-samples. (a) ROC curve and AUC of a 5-miRNA
marker panel (let-7b, miR-15b, miR-20a, miR-93, and miR-222 in HPV-positive self-samples for CIN3+ detection (validation set; 101 controls,
48 CIN3, 41 SCC). (b) Square root expression levels (relative to miR-423 and miR-30b) of the 6 miRNAs in HPV-positive self-samples
(validation set; 101 controls (open box), 48 CIN3 (light gray box), 41 SCC (dark gray box)). * p < 0.05, ** p < 0.01, *** p < 0.001.
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miRNA quantification by qPCR does not require bisulfite con-
version prior to PCR amplification and low amounts of starting
material are sufficient for accurate and reproducible analysis.
Unfortunately, most miRNA quantification methods only offer
assays for each miRNA individually. For future (semi)high-
throughput full molecular screening a combined measurement of
several miRNAs into one single test would be desirable. Although
we included a multiplex reverse transcription (RT) step that
allows for simultaneous transcription of all our miRNAs includ-
ing reference genes, further technical advancements are war-
ranted, thereby saving self-sampled material, time and costs.

One limitation of our study that should be considered in
interpreting our findings is that we were unable to validate all
9 miRNAs by qPCR due to low expression levels of 3 miRNAs
(miR-9, miR-183, miR-184). This could have affected the per-
formance of the miRNA signature in the validation set. Also,
we applied a different method for validation compared to the
discovery (qPCR versus sRNA-Seq). Although several studies
have shown close correlations between qPCR and RNA-Seq
data,41 differences in miRNA quantification between the
methods have been reported.42,43 A possible explanation for
discrepancies between the methods could be the existence of
miRNA variants. With the rapid development of sRNA-Seq
came the realization that numerous miRNAs exist as multiple
length variants, which are termed isomiRs.44 The majority of
length variants are located at the 30end of the miRNA
sequence44 which could potentially hamper their identification
by qPCR.45 This might explain our discordant results for let-
7b between the discovery and validation set. We found signifi-
cantly increased expression of let-7b in CIN3 compared to
controls in the discovery set, while its expression was found
downregulated in CIN3 and SCC in the validation set. Inter-
estingly, reduced expression of let-7b in SCC was also
observed in cervical tissue specimens, for which we have
miRNA microarray data.30 Since miRNA probes used in
microarrays are designed to detect the canonical miRNA
sequence as listed in miRBase,46 and do not bind to all iso-
miRs as detected by sRNA-Seq, these microarray results are
likely to better reflect the results obtained with qPCR. The
mapping strategy that we applied for the sRNA-Seq data did
not allow for the analysis of isomiRs. Therefore, extensive
analysis of our sRNA-Seq data is needed in order to elucidate
the presence and marker value of isomiRs in self-samples.

Despite the description of various detection methods for
efficient and accurate quantification of miRNAs,47 only some
of these approaches have been tested for their ability to distin-
guish between highly similar miRNA sequences. Although
these methods possess high sensitivity for specific sequences,
they are not adequately specific and closely related isomiRs
are also detected.48 Therefore, further advancements in isomiR
detection methods are needed in order to accurately quantify
individual isomiRs.

Furthermore, the use of HPV-positive self-sample series
from a population of nonattending women can be considered
as a limitation. Therefore, future confirmation in a regular
population-based sample series is warranted. Also, further
research on the miRNA signature in HPV-positive clinical
samples, as well as a comparison to established triage methods
including cytology and HPV16/18 genotyping is needed to
confirm the value of the miRNA signature for triage.

In conclusion, by genome-wide miRNA profiling on HPV-
positive self-samples, we identified a CIN3-specific miRNA sig-
nature with good performance. Subsequent validation by qPCR
on an independent set of HPV-positive self-samples showed a
good clinical performance of this miRNA signature for CIN3+
detection. Our findings indicate that miRNA analysis on HPV-
positive self-samples can greatly improve the management
of HPV-positive women and facilitates the implementation of
self-sampling in cervical cancer screening programs.
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