
polymers

Review

Encapsulation of Natural Bioactive Compounds by
Electrospinning—Applications in Food Storage and Safety

Bogdănel Silvestru Munteanu 1 and Cornelia Vasile 2,*

����������
�������

Citation: Munteanu, B.S.; Vasile, C.

Encapsulation of Natural Bioactive

Compounds by

Electrospinning—Applications in

Food Storage and Safety. Polymers

2021, 13, 3771. https://doi.org/

10.3390/polym13213771

Academic Editors: Zeynep Aytac and

Tao Xu

Received: 11 September 2021

Accepted: 26 October 2021

Published: 31 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Physics, Alexandru Ioan Cuza University, 11 Carol I Bvd, 700506 Iasi, Romania; muntb@uaic.ro
2 Laboratory of Physical Chemistry of Polymers, “P. Poni” Institute of Macromolecular Chemistry, Romanian

Academy, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
* Correspondence: cvasile@icmpp.ro

Abstract: Packaging is used to protect foods from environmental influences and microbial contami-
nation to maintain the quality and safety of commercial food products, to avoid their spoilage and
to extend their shelf life. In this respect, bioactive packaging is developing to additionally provides
antibacterial and antioxidant activity with the same goals i.e., extending the shelf life while ensuring
safety of the food products. New solutions are designed using natural antimicrobial and antioxidant
agents such as essential oils, some polysaccharides, natural inorganic nanoparticles (nanoclays, ox-
ides, metals as silver) incorporated/encapsulated into appropriate carriers in order to be used in food
packaging. Electrospinning/electrospraying are receiving attention as encapsulation methods due to
their cost-effectiveness, versatility and scalability. The electrospun nanofibers and electro–sprayed
nanoparticles can preserve the functionality and protect the encapsulated bioactive compounds
(BC). In this review are summarized recent results regarding applications of nanostructured suitable
materials containing essential oils for food safety.

Keywords: essential oil; bioactive compounds; electrospinning; encapsulation

1. Introduction

Packaging is used to protect foods from environmental factors and microbial contami-
nation to maintain food quality and safety [1]. Food spoilage or poisoning directly affecting
public health can be reduced through bioactive packaging, which extends the shelf life of
perishable food particularly those susceptible to microbial alteration [2].

Unlike modified atmosphere packaging where the role is only to restrict exchanges of
CO2, O2, water vapor, and aromatic compounds between the food and its external or local
environment [3], bioactive packaging provides antibacterial and antioxidant activity with
the goal of extending shelf life and the safety of food [4].

The development of active/bioactive materials aiming to the maintaining or enhancing the
safety and quality of packaged food by the incorporation of antimicrobial natural compounds
and/or antioxidant natural compounds [5] is now an active research area [6–10]. Unfortunately,
their use in natural form in food packaging materials in foods is restricted because of their low
stability against temperature, oxygen, or light exposure during processing of the food, distribu-
tion, and storage [11]. Also, their uncontrolled release profiles can significantly deteriorate their
biological benefits [11]. To overcome these limitations, appropriate carriers and encapsulation
techniques were designed.

The natural bioactive compounds (BCs) with antimicrobial and antioxidant activities
as essential oils, some polysaccharides [12,13], natural inorganic particles (oxides, nan-
oclays, metals, such as silver) [14] into food packaging can protect food from microbial
alteration and extend shelf life, reducing economic losses and health issues caused by
foodborne pathogens [15,16].
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2. Essential Oils

Essential oils (EO) are natural substances extracted from plants herbs and spices
such as garlic, black cumin, cloves, cinnamon, thyme, basil, bay leaves, coriander, mus-
tard, rosemary, sage and others [17] as complex mixtures of aromatic and volatile organic
compounds [18]. They resulted as secondary metabolites that plants produce for protec-
tion by acting as insecticidal and antimicrobial agents or for attracting insects for flower
pollination [18].

The essential oils are obtained from different parts of the aromatic plants (mainly the
flowers and leaves) but almost every part of a plant such as stems, roots, flowers, leaves,
fruits, stem bark and even in seeds. EOs can be extracted in different ways [19].

The essential oils are highly volatile, lipid-soluble liquids [20]. They are also soluble
in organic solvents such as ethanol, acetone, and methanol [21]. Their density is less than 1,
with few exceptions (cinnamon, sassafras, clove, vetiver EOs) [22].

Due to the constituents of the essential oils, they have a wide range of antimicrobial,
antioxidant activities [23]. Furthermore, many of these volatile constituents have anti-
fungal effect against yeasts as well as filamentous fungi, being potentially useful as food
preservatives [24,25].

By their antioxidant activity they are also beneficial in various food industries for
preserving food against the lipid peroxidation caused by the free radicals on fats and
oils [26]. Lipid peroxidation usually results in unpleasant odors and flavors of foods causing
deterioration of the food quality and also decreasing the nutritional value of food [27].
Due to their perceived safety profiles EOs as natural antioxidants are favored over the
synthetic antioxidants such as butylated hydroxyanisole and butylhydroxytoluene whose
applicability have been discouraged due to safety, health, and environmental concerns [28].

Complex mixture of components of EOs that give a characteristic odor and flavor to
the plants are usually rich in phenols, esters, terpenes, sesquiterpenes, aldehydes, ethers,
peroxides, alcoholic compounds, phenylpropanoids, among others [22,25].

Constituents of the essential oil such as thymol, carvacrol, γ-terpinene, eugenol have
antioxidant effects [29] while other constituents such as limonene, eugenol, pinene, carvone,
and linalool carvacrol have been suggested as agents responsible for the antimicrobial
efficiency against food-borne pathogens [30]. Eugenol exhibited rapid bactericidal activity
against Salmonella enterica serovar Typhimurium, terpineol had good bactericidal effect
against S. aureus strains, carveol, citronellol and geraniol presented a rapid bactericidal
activityagainst E. coli [31]. The higher antimicrobial activity was explained by the presence
of hydroxyl groups (alcohol and phenolic compounds) [31]. The compounds such as
benzoic acids, benzaldehydes, and cinnamic acid have shown up to 50% inhibition of
Listeria monocytogenes under anaerobic conditions [32].

The EOs of similar plants have been reported to have differences in composition
depending on the geographical location that the plant is found [33]. Also, EOs composition
and yield can vary with habit conditions and climate, harvesting stages, planting, and
preparation methods, plant age and genetics [34]. Weather parameters such as rain and the
temperature of the atmosphere have been found to influence the content of the oil and the
composition of the aromatic plants [35].

The main components of some EOs recently studied are presented in Table 1.



Polymers 2021, 13, 3771 3 of 28

Table 1. Main constituents of some EOs.

Essential Oil Main Components Observations Ref.

Ginger, garlic, tick berry, and
Mexican marigold

There were 18 major classes that were identified
with average percent chemical composition of

>1% with terpenes having the highest
composition for all the tested plants. Other

major chemical classes identified included esters,
ketones, organosulfur compounds, alkanes,

cycloalkanes, steroids, aromatic hydrocarbons,
alkanols, cycloalkanols, alkenols, carbonates,
fatty acids, carbaldehyde, aldehydes, alkenes,
ethers, carboxylic acid, alkaloids, and organic

acids

All the tested plants have similar
chemical compounds and can

therefore be exploited for
synergistic utility.

[36]

Aloe debrana roots

A total of 14 compounds representing 99.1% of
the EO composition isolated by hydrodistillation

were identified with thymohydroquinone
dimethyl ether (47.1%) as a major constituent.

From simultaneous distillation extraction were
identified 33 compounds, which represent 88.8%
of the EO constituents with thymohydroquinone
dimethyl ether (39.6%), thymol (7.7%), humulene
epoxide II (5.8%), dibutyl phthalate (5.0%) and

carvacrol (4.2%) as major components.

Antibacterial activity against
Gram-positive S. aureus at 0.5 and

1.0 mg/mL.
Antioxidant activity with IC50

values of 48 ± 12 micrograms/mL
in 2,2-diphenyl-1-picrylhydrazyl

(DPPH) and 51 ± 2
micrograms/mL in H2O2.

[37]

Heteromorpha arborescens
leaves

The major constituents observed in the EO
extracted by Solvent-Free Microwave Extraction

include α-pinene (6%), D-limonene (11.27%),
β–ocimene (9.09%), β–phellandrene (6.33%),
β-mycene (8.49%), caryophyllene (5.96%), and

camphene (4.28%). The main components
obtained by hydrodistillation were α-pinene

(4.41%), β-pinene (10.68%), β–ocimene (6.30%),
germacrene-D (5.09%), humulene (5.55%), and

α-elemene (6.18%).

[38]

α-pinene as the component (up to 75.40%) along
with the other main components: eucalyptol,

caryophyllene, borneol, camphene and
verbenone.

Humidity and rainfalls did not
affect EO components [39]

Rosemary

The main constituents are camphor (5.0–21%),
1,8−cineole (15–55%), α-pinene (9.0–26%),
borneol (1.5–5.0%), camphene (2.5–12%),

b-pinene (2.0–9.0%) and limonene (1.5–5.0%) in
proportions that vary according to the vegetative

stage and bioclimatic conditions

[40,41]

Wild Populations of Ferulago
cassia Boiss

The major components were chrysanthenyl
acetate (13.54–24.49%),

2,3,6–trimethylbenzaldehyde (5.94–25.52%),
L-limonene (4.69–27.44%), α-pinene

(7.64–12.43%), β-myrcene (3.44–10.38%) and
L-phellandrene (2.90–9.75%).

[42]

Cryptocarya impressa,
Cryptocarya infectoria, and
Cryptocarya rugulosa; three
Cryptocarya species from

Malaysia

High percentages of α-cadinol (40.7%) and
1,10-di-epi-cubenol (13.4%) in C. impressa oil,

β-Caryophyllene (25.4%) and bicyclogermacrene
(15.2%) in C. infectoria oil, while

bicyclogermacrene (15.6%), δ-cadinene (13.8%),
and α-copaene (12.3%) were predominate in C.

rugulosa oil.

[43]
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Table 1. Cont.

Essential Oil Main Components Observations Ref.

Fresh rhizomes, flowers; and
leaves of Zingiber kerrii Craib

α–pinene; β-pinene; and terpinen–4–ol from the
rhizome extract, (E)-caryophyllene from the

flower extract, α-pinene; (E)-caryophyllene; and
n-hexadecanoic acid from the leaf extract.

Due to the small amount of
phenolic compounds, the EOs

extracted from the rhizomes had
low antioxidant activity and

moderate activity against
bacterial strains.

[44]

Thymus convolutus Klokov camphor 16.6%.

Strong antimicrobial activity
against Escherichia coli,

Enterobacter aerogenes, Proteus
vulgaris, and Pseudomonas
aeruginosa with minimum

inhibitory concentration (MIC)
values of 125 micrograms/mL

[45]

Leaves and flowers of Salvia
hydrangea

Oil composition was affected by the part of the
plants used: the most abundant bioactives

contained in leafs were (+)-spathulenol (16.07%),
1,8-cineole (13.96%), trans-caryophyllene (9.58%),
β-pinene (8.91%) and β–eudesmol (5.33%) and

those in flowers were caryophyllene oxide
(35.47%), 1,8–cineole (9.54%),

trans-caryophyllene (6.36%), β-eudesmol
(4.11%), caryophyllenol-II (3.46%) and camphor

(3.33%).

Both oils showed a significant
inhibitory and lethal effect on the

Gram-negative bacteria
Pseudomonas aeruginosa (MIC ~ 16
µg/mL), Shigella dysenteriae and
Klebsiella pneumoniae (MIC ~ 62

µg/mL).

[46]

Different Brazilian
Celastraceae species

Cis- and trans-linalool oxide, nerylacetone,
linalool, β-ionone, α-ionone, nerolidol, decanal,

and dodecanoic acid.
[47]

fruit and herb of Coriandrum
sativum

Commercial coriander EO is dominated by
linalool (62.2–76.7%) with lesser quantities of
α-pinene (0.3–11.4%), γ-terpinene (0.6–11.6%),
and camphor (0.0–5.5%). Commercial cilantro

essential oil is composed largely of (2E)-decenal
(16.0–46.6%), linalool (11.8–29.8%),

(2E)-decen-1-ol (0.0–24.7%), decanal (5.2–18.7%),
(2E)-dodecenal (4.1–8.7%), and 1-decanol

(0.0–9.5%).

[48]

Curcuma longa, Pimenta dioica,
Rosmarinus officinalis, and

Syzygium aromaticum

Eugenol (88% in S. aromaticum and 16% in P.
dioica), methyl eugenol (53% in P. dioica), and
α-turmerone (44%), β–turmerone (20%), and

Ar-turmerone (17%) in C. longa. Major
componets in Rosmarinus officinalis are 1,8-cineole
(53%), α-pinene (15%), and (−) camphor (9%).

S. aromaticum EO exhibited the
highest antifungal effect, followed
by P. dioica and to a lesser extent

C. longa.
Rosmarinus officinalis poorly

inhibited fungal growth.

[49]

Liquidambar formosana

(E)-caryophyllene (3.3–64.4%), α-pinene
(0.6–34.5%), β-pinene (0.6–26.0%), camphene

(0.3–17.3%), and limonene (0.2–7.9%).
(-)-α-Pinene, (-)-β-pinene, (-)-camphene, and
(-)-limonene were the dominant enantiomers.

Antimicrobial activities with MIC
≤ 625 micrograms/mL against a
panel of potentially pathogenic

bacteria.

[50]

Volatile compounds of the
fruit and leaf EOs of the

African star fruit,
Chrysophyllum albidum G. Don

The fruit essential oil exhibited
broad-spectrum antimicrobial

activity in the antimicrobial
susceptibility test, with MIC

ranging from 0.195 to
6.250 mg/mL, while the leaf EOs

showed antimicrobial activity
with MIC in the range of

6.875–13.750 mg/mL.

[51]
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Table 1. Cont.

Essential Oil Main Components Observations Ref.

Needles of Pinus radiata D.
Don

monoterpene hydrocarbons (86.4%) with
β-pinene (40.2%), limonene (25.5%) and

α-pinene (15.2%).
[52]

Aerial parts of Phlomis
bucharica, P. salicifolia and P.

sewerzowii

thymol (20%) and camphor (14%) in P. bucharica
oil. Methyl palmitate (51%) in P. salicifolia and

thymol (35%) in P. sewerzowii essential oil.

The EOs of P. salicifolia showed
the highest antibacterial activity. [53]

Aerial parts of Englerastrum
gracillimum Th. C. E. Fries

α-humulene (30.5%), followed by cubenol
(19.8%), γ-muurolene (14.0%),

(E)–β–caryophyllene (5.8%), β–gurjunene (5.2%),
and curzerene (4.9%).

Antioxidant activity
Antibacterial activity against
multi-resistant Acinetobacter

baumannii P1483,
extended-spectrum β-lactamase
(ESBL)-Escherichia coli Bu8566,
Salmonella spp. H1548, Proteus
mirabilis Bu190, Enterobacter
cloacae Bu147, Pseudomonas
aeruginosa (ATCC 27853),

Escherichia coli (ATCC 25922),
Klebsiella pneumoniae (ATCC
700603), methicillin-resistant
Staphylococcus aureus P1123,

Enterococcus faecium H3434, and
Staphylococcus aureus (ATCC

25923).

[54]

3. Encapsulation

EOs and other active compounds, in natural form, have restricted applicability [55]
because of their poor stability, as they are easily degraded [56] by oxidation, hydrolysis,
crystallization or enzymatic deterioration, during storage or processing in harsh conditions
in the presence of oxygen and light [57]. Also, it is important to consider that these active
compounds have low thermal stability, since high temperature used during food processing
causes loss of their functionalities [58]. This can significantly deteriorate their flavor,
solubility and biological benefits as is the case with the pomegranate peel extract which is
currently affected by color and instability issues associated with easy oxidation [59] or the
EO of Satureja hortensis which drastically changes its composition through the heating of the
samples over 160 ◦C [60]. Also, volatility [55] and low water solubility [61] are associated
with the EOs when exposed to air, which limits its application in food preservation [62].
The strong and intense flavor of EOs may be transferred as taste to the packed food [63,64]
as well.

For these reasons, a protection technique is required before the addition of natural EOs
(or other BCs) into food systems [65]. Consequently, many researchers have encapsulated
them into other protection materials in order to make full use of their anti–oxidant and
antimicrobial properties [66].

The research developments in the area of the nanoencapsulation of BCs in food pack–
aging materials are continuously growing [67] as the nanoencapsulation [68] can protect
the BCs against oxidative degradation upon exposure to air or high temperatures during
food processing [69], and can enhance the bioavailability of the BC, releasing them in a
controlled manner and preserving their activity [70]. For example, encapsulating thyme EO
into β-cyclodextrin/ε−polylysine can reduce undesirable deficiencies such as volatility and
hydrophobicity of the BCs [71]. The antimicrobial carvacrol can be protected/encapsulated
in a starch fiber matrix, to avoid direct contact with food and reduce the effects on sensorial
features [72]. Encapsulation in zein microparticles improved thermal stability of polyphe-
nols from maqui fruit extract when exposed to high temperatures related to processed
foods [73]. Orange and thyme oil adsorbed in halloysite or montmorillonite clay and
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then encapsulated in a polyethylene/polyamide/polyethylene multilayer film prolongated
aroma release [74]. Encapsulation of black pepper (Piper nigrum L.) EO into sodium alginate
and gelatin by complex coacervation avoid the loss of the main volatile from EOs which
were preserved (80% of their original content) [75].

There are several methods to encapsulate/protect these sensitive natural bioactive
antioxidants/antibacterials (including phenolic compounds, etc.) in food packaging for
active compound delivery: films [76–78], microencapsulation via the spray-drying (wall
materials that suitably protect the inner EOs from oxidation and evaporation) [79], nano-
precipitation [80], but recently, electrohydrodynamic processes [81] “electrospinning” [82]
and “electrospraying” [83,84] have received increased attention due to their versatility,
cost-effectiveness, and scalable technologies [85–88].

4. Encapsulation by Electrospinning

A typical electrospinning set-up has a high voltage power supply connected to a metallic
nozzle and a metallic collector. When a high voltage is applied between the solution of the
polymer and a metallic collector, a drop of a polymer solution ejected at the tip of the nozzle
will turn into a conical droplet known as the Taylor cone (Figure 1a), the electrostatic repulsive
force acting on the drop surface counteracts the surface tension and a liquid jet is ejected
that is deposited onto the collector in the form the nanofiber mesh [89]. Electrospinning and
electrospraying can operate at ambient conditions (atmospheric pressure and room temperature)
producing micro/nanostructures in dried form in a one-step process [90]. The viscosity of
the solution is the dominant parameter which decides if fibers (electrospinning) or droplets
(electrospraying) will be obtained (Figure 1b). A too low viscosity results in droplets of polymer
(electrospray) due to the interruption of polymeric filaments. The boundary concentration
between electrospray and electrospinning depends on the molecular weight of the polymer and
the nature of the solvent [91].

Figure 1. (a) Taylor cone and whipping instability in a typical electrospinning setup; (b) The same
polymer can generate fibers (electrospinning) or droplets (electrospraying) depending on the viscosity
of the solution; (c) emulsion versus coaxial electrospinning.

The needle electrospinning is inexpensive and versatile but its use in applications is
restricted because its low production rate. Also, the needle blocking frequently occurs,
particularly with high viscosity polymer and functional nanoparticles/bioactive substances
in the spinning solution, which makes it difficult to produce nanofibers continually. There-
fore, the needleless electrospinning was developed [92] for mass production of nanofibers.
During needleless electrospinning the polymeric multi-jet initiation is a self-initiated pro-
cess taking place on a free liquid surface and usually rotating disks/cylinders are used to
feed the initiated Taylor cones with polymeric solution to keep the electrospinning process
continuous and not interrupted [93,94].

A profiled multi-pin electrospinning setup may overcome the limitations of the needle-
less and needle electrospinning (for example uncontrolled/uneven Taylor cone formation,
needle clogging, and the requirement of very high voltage). A profiled multi-pin sur-
face is designed to support the nano/microparticles in the polymer solutions [93]. This
increases the range of multifunctional electrospun nanofiber applications by the develop-
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ment of a single matrix with multifunctional characteristics and improved mechanical and
electrochemical performances [93].

The most common approaches used to encapsulate bioactive antioxidants/antibacterials
into nanofibers are emulsion and coaxial electrospinning (Figure 1c). In both cases the
nanofibers generated have an outer polymeric sheath (base polymer) and inner bioactive
core, although the processes involved are different: coaxial electrospinning generates
core–sheath fibers by physical separation of two polymeric solutions flowing through
concentrically aligned nozzles: an outer sheath polymeric solution and the second inner
polymeric solution containing the bioactive substance [95]. The emulsion electrospinning
involves a single polymeric solution containing an emulsion of the bioactive substances;
the subsequent separation of the emulsified droplets into the sheath polymeric phase takes
place as the solvent evaporates from the electrospun fibers [96].

The obtained electrospun nanofibers and electrosprayed nanoparticles can serve
as protection for the bioactive compounds against any severe conditions (such as high
temperatures and/or pressures involved during packaging or food processing, storage,
light, oxidation) preserving the functionality of the active compound encapsulated within
the electrospun nanofibers [97] as well as controlled delivery/release of bioactive com-
pounds [98]. Their efficiency in maintaining the stability of the bioactive compound [99]
enhances the bioavailability and bioactivity during processing, storage and consumption,
the encapsulation process alleviating the unpleasant flavor or taste of phenolics [100,101].

For food packaging, the electrospun/electrosprayed nanofibers/nanoparticles can be
more efficient than films in view of several advantages such as larger surface to volume
ratio, higher crack resistance, interconnective structure, good adhesion properties (in case
of coatings) and higher porosity, high loading capacity of the active compounds [102–104].
Using this approach, new packaging can be formulated in a single step with the additional
advantage of simultaneously and intrinsically producing interlayers [105–107] (coatings [108])
with encapsulation performance [109]. This offers several benefits compared to the traditional
encapsulation techniques which may be detrimental for the active properties of many of the
antimicrobials and antioxidants (EO) due to the high temperatures used for drying the obtained
materials [110,111].

Compared to the traditional encapsulation techniques which may be detrimental
for the active properties of many of the antimicrobials and antioxidants (i.e., EO) due
to the high processing temperatures used for drying the obtained materials [110,111]
electrospinning offers the advantage of the absence of heat [100,112,113] during the drying
of the structures. As the solvent is evaporated during the flight of the solution towards
the collector due to the high voltage application [114], no high temperature applied [113].
This is important for preserving the structure and achieving high encapsulation efficacy
of the thermo-sensitive [115] and volatile [113] bioactive substances upon processing and
storage [73].

Besides the advantage of low processing/production temperature, the electrospun
nanofibers can also show an increase of the thermal stability [116–118] during the sub-
sequent thermal processing of the bioactive compounds, which are known to be highly
sensitive to thermal treatments [119] (polyphenols, principally anthocyanins) [73]. For
example, volatile bioactive substances (carvacrol [72]) encapsulated in the nanofibers have
greater thermal stability than in the free form, which broadens the processing temperature
range. Similar results were found in carvacrol and thymol loaded zein nanoparticles [120]:
an enhanced thermal stability of EOs loaded-zein nanofibers was a consequence of the in-
teraction [121] between the polymer and EOs, which leads to a higher heat resistance of the
resulting nanofibers, compared with the unprotected EOs. Electrosprayed hydroxypropyl-
β-cyclodextrin microcapsules containing maqui fruit extract were successfully obtained
and had lower polyhenolic content reductions when exposed at high thermal conditions
simulating baking conditions compared with the non-encapsulated samples [73]. Chi-
tosan/polycaprolactone electrospun nanofibers with chlorogenic acid loaded halloysite
nanotubes (HNTs) had improved thermal stability due to the hydroxyl groups present in
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the cavity of HNTs interacting with bioactive molecules via hydrogen-bonds for efficient en-
capsulation and controlled release [122,123]. Immobilized enzymes present higher thermal
stability than the free enzymes [124,125], which makes the immobilization in crosslinked
fibers to be effective in increasing thermal stability of enzymes which is beneficial for
applications in which food products are subjected to high temperatures [72,124].

5. Applications of Nanofibers Containing Essential Oils for Food Safety

As natural active compounds in food industry, EOs and plant extracts have attracted
considerable research, because they have demonstrated biological activities of which the
most important are the antimicrobial, antioxidant activity, [126,127]. For example, EOs from
bay (Laurus nobilis) and rosemary (Rosmarinus officinalis) have been studied as natural food
preservatives because of their antimicrobial and antioxidant activity [128,129]. Biodegrad-
able active food packaging structures with good water and thermal stability based on
hybrid cross-linked electrospun polyvinyl alcohol electrospun nanofibers containing essen-
tial oils from Laurus nobilis and Rosmarinus officinalis were successfully tested to chicken
fillets [130]. Pomegranate peel extract is rich in polyphenols, including a wide variety
of tannins, exhibits antibacterial activity because the morphology of microorganisms is
modified by precipitating proteins, causing cell membrane leakage and cell lysis [131,132].
Chitosan films incorporated with Plectranthus amboinicus EO had antimicrobial activity
against food pathogens, together with good water vapor barrier [133]. Antioxidant films
with reduced water vapor transmission rate obtained by coating the polylactic acid (PLA)
substrate with chitosan enriched with 1% and 2% rosemary EO delayed the lipid oxidation
of raw chicken meat [134]. Chicken breast samples wrapped with starch films incorporated
with 1.0% rosehip extract had lower peroxide values compared with non- rosehip extract
films as well as the non–packaged control, suggesting that lipid oxidation in the chicken
breast is inhibited by the inclusion of rosehip extract [135]. Addition of 1.5% cymbopogon
citratus EO to chitosan film (solvent casting) increased water vapor permeability about
30%, decreased film solubility in water and extended meat shelf life as total bacterial count
was in acceptable range after 10 days of storage [136].

Besides the EO, among the active compounds that have received attention recently
are spices, herbs, chitosan and its mixtures [137], bacteriocins etc. [138].

Various antimicrobial/antioxidant electrospun nanofibers containing EOs or other
BCs with applications in food preservation are presented in Table 2.

Table 2. Antimicrobial/antioxidant electrospun nanofibers with applications in food preservation.

BC as EO and Other Activity and Application Ref.

Lemon essential oils

Lemon essential oil (LEO) was absorbed by thermally stable and
porous vermiculite (VML) to form LEO/VML complex, which is
further coupled with konjac glucomannan-grafted-poly (acrylic

acid)/polyvinyl alcohol (KGM-g-PAA/PVA) electrospun composite.
The VML (1 g) can significantly reduce LEO loss and achieves a

sustained control LEO release from the electrospun composite, which
can effectively inhibit the growth of E. coli during storage, thus

prolonging shelf life of chilled pork meat for 3 days.

[139]

Rosemary

Rosemary essential oil was encapsulated in zein-electrospun fibers at
different concentrations of loading (0%, 2.5%, 5%, and 10% v/v). Disc
diffusion indicated that zein-electrospun mats generated inhibition
zones against S. aureus and E. coli. The release test revealed that pH
values significantly affect the release of rosemary essential oil from

fibers. The results demonstrated how loading zein-electrospun fibers
with rosemary essential oil can benefit food packaging.

[140]
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Table 2. Cont.

BC as EO and Other Activity and Application Ref.

Cinnamon

Electrospun polyvinyl alcohol/cinnamon essential oil/β-cyclodextrin
(PVA/CEO/β-CD) antimicrobial nanofibrous film exhibited excellent

antimicrobial activity S. aureus and E. coli.. Furthermore, the mild
electrospinning process was favorable for maintaining greater

cinnamon essential oil in the film resulting in an improved
antimicrobial activity compared with that of casting film. The

prolonged shelf-life of strawberries packed with the antimicrobial
PVA/CEO/β–CD nano-film togheter with the preservation of the

sensorial property during storage indicates its potential for the
application in active food packaging. Additionally, it is non-toxic and

biodegradable, thus potential in active food packaging for the
concern of food security and environmental problems.

[141]

Thyme

Nanofibers based on poly(vinyl pyrrolidone)/gelatin/thyme
essential oil using oil-in-water emulsions displayed good

antibacterial activity against S. aureus, E. coli, C. albicans, P. aeruginosa,
and E. faecalis increasing with thyme EO concentration. Nanofibers
stored at 24 ◦C and 37 ◦C demonstrated antibacterial activity over a

period of 192 h.

[142]

Lemongrass

Electrospun gelatin nanofibers with lemongrass essential oil (LEO) as
potential biodegradable and active food packaging show

antimicrobial activity against Staphylococcus aureus and Salmonella
Typhimurium. Fourier transform infrared spectroscopy showed the

effective penetration of LEO in gelatin fibers without chemical
interaction or destroying the structure of LEO or gelatin. Thermal

analyses indicated that thermal stability of the essential oil enhanced
by encapsulation.

[143]

Oregano

Electrospun nanofibers prepared from
poly(3-hydroxybutyrate-co-3-hydroxyvalerate) derived from

fermented fruit waste (bio-papers) containing 2.5 wt% oregano
essential oil and 2.25 wt% zinc oxide nanoparticles showed high

antimicrobial activity for up to 48 days against Staphylococcus aureus
and Escherichia coli.

[144]

Coconut sap (neera) from the coconut
tree (Cocos nucifera L.) is a healthy and

refreshing drink.Neera is highly
susceptible to acetic natural

fermentation process fermentation by
the inherent yeasts (particularly

Saccharomyces cerevisiae). These must
be eliminated by filtration using

polycaprolactone (PCL) membrane
and so quality of the drink is

preserved

Electrospun polycaprolactone nanofibrous membrane (mean
thickness of 150 µm, 70% porosity, average fiber diameter 900 nm)
was used for the filtration/removal of yeast from coconut neera (a

natural drink that is rich in amino acids, polyphenols, vitamins, and
minerals). The neera filtrate showed a 2 log-reduction in yeast load.

The effective reusability of the membrane and stability of the
nanofiber morphology at repeated usage was confirmed. The filtered
coconut neera had significant changes in titratable acidity, pH, and

color, slight reductions in the total polyphenolic content and minerals,
while no significant changes were observed in total soluble solids

content.

[145]

The higher surface to volume ratio and porous structures generated through electro-
spinning [146], have a beneficial effect for the long-term application of antimicrobials in
comparison with the film casting approach [113]: For example, after 28 days of storage (at
the end of the storage time), the zein nanofibers loaded EOs showed significantly lower
bacterial counts than the zein cast films containing the same amount of EO (from Laurus
nobilis and Rosmarinus officinalis). The morphology of the obtained structures had a signifi-
cant effect regarding the long–term release (sustained antimicrobial activity), indicating
the efficiency of the encapsulation to protect the active compounds by slowing down their
volatilization [113]. The fast release of EO from the zein cast film expeditiously reduced
the bacteria at short storage times. However, later on the effect was reduced [113].
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Enhanced interactions/compatibility between the bioactive compounds and the en-
capsulating materials can sustain the release of antimicrobial agents over longer time from
the fiber mats. For example electrospun nonwovens containing 30% carvacrol encapsulated
in starch sustained antimicrobial activity for at least 30 days against L. monocytogenes,
Salmonella Typhimurium, E. coli and S. aureus. [72] due to the interactions between starch
and carvacrol (evidenced by FT-IR and the increased viscosity due to the carvacrol addi-
tion). Therefore, the starch nanofibers are auspicious materials to be used as a vehicle for
carvacrol release in antimicrobial and antioxidant food packaging [72].

The addition of green tea extract to the protein (gelatin or zein) nanofibers encapsulat-
ing curcumin resulted in strong interactions with the proteins (gelatin), which improved
the protective effect of the fibers and slowed down the curcumin release in hydrophobic
food simulants (although it did not prevent their collapse in water) [147]. Due to the poor
solubility of curcumin in aqueous media, it was developed a strategy based on its incorpo-
ration through liposomes, which allowed the successful incorporation of the curcumin into
gelatin fibers. Very high encapsulation efficiencies were attained for both zein and gelatin,
with zein showing an augmented preservation effect [147].

The low and sustained release of antimicrobial agents from the nanofiber mats is
expedient since it minimizes bacterial colonization for a longer period of time [148,149].
Thus, for chitosan/poly(ε-caprolactone) nanofibers containing oregano essential oil most
of the oil (55–80%) was not released after 96 h, which demonstrates the durability of EO
in the electrospun fiber mats [148]. In the kinetic release profiles, before the long and
steady plateau indicative of EO release by diffusion from the bulk of the fibers, an initial
burst release related to the near-to-surface residing oregano essential oil molecules can
be observed [148]. In addition, as the content of the oregano essential oil increased, the
amount of released oil from the fibrous mats increased [148,150].

6. Base Polymers Used to Encapsulate Active Substances in Nanofibers

The traditional packaging mainly consisting of plastic materials is a considerable
interest because the packaging wastes are non–degradable [151]. Biodegradable bio-based
materials with biodegradability and nontoxicity have attracted attention as a sustainable
alternative for the development of biodegradable and active food packaging due to the en-
vironmental benefits [152]. The most used biodegradable biopolymers for electrospinning
are extracted/derived from biopolymers/biomass starches, cellulose, cellulose acetate,
chitin, chitosan, proteins (gelatin, zein, silk) [102,153], bio–engineered polymers (such as
poly(hydroxy alkanoates (PHAs), [poly(glutamicacid) which are bio-synthesized using
microorganisms and plants], [154,155], obtained from bio-derived monomers such as poly-
lactic acid [154,155]. Synthetic biopolymers such as poly(ethylene glycol) (PEG), poly (vinyl
alcohol) (PVA), poly(ethylene oxide) (PEO), poly(caprolactone) (PCL), are also used [156].

Among the proteins, the zein has attracted attention as a result of its good proper-
ties such as toughness, flexibility, compressibility, hydrophobicity, nontoxicity, and low
cost [157,158]. Also, gelatin, as a natural biomolecular polymer extracted from connective
tissue in animals, is chosen due to its high biosecurity [159]. As a synthetic biopolymer,
polyvinyl-alcohol is a water soluble polymer with biodegradability, non-toxicity, biocom-
patibility, very good optical properties, and good film-forming ability which make it useful
for the development of active food packages or coatings [160,161].

Among the natural polymers chitosan is nontoxic, edible, and biodegradable derived
by deacetylation of chitin which is the second most abundant biopolymer in nature after
cellulose. Besides its antibacterial and antioxidant activity, chitosan has several advantages
including its exceptional biocompatibility and biodegradability [162], good film-forming
properties, nontoxicity, which make chitosan and chitosan-based carriers [163] suitable
for use as active coatings or film material in different food packaging [164,165] or as a
functional/active ingredient to improve the shelf lives of food products [166]. It can be
used as an antioxidant [167] and antibacterial [168] agent and polymer substrate simul-
taneously [76]. From an environmental point of view, chitosan nanofibers as packaging
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materials are made from sustainable sources, bio–friendly, and inherently biodegradable.
Incorporating/encapsulating EO as antimicrobial and antioxidant natural extracts to chi-
tosan films and coatings, can improve the functionality of packaging (shelf−life extension
of food products by controlling the active components release into the surface) [169]. For
example, chitosan films incorporated with essential oil from Plectranthus amboinicus had
antimicrobial activity against food pathogens [133].

Antibacterial packaging nanofibers based on chitosan [170] can preserve the quality
and safety of the food products during distribution and storage due to their physico-
chemical properties [171]. Blend of electrospun chitosan (CS)/poly(ε-caprolactone) (PCL)
containing 5% oregano had antibacterial activity against Gram-positive (Staphylococcus
aureus, Listeria monocytogenes) and Gram−negative (Salmonella enteritidis, Escherichia coli)
bacteria [172]. PLA/Chitosan fibres containing cinnamon EO had a high antibacterial
activity against Escherichia coli and Staphylococcus aureus due to the long-term cinnamon
EOs release [173]. In another study thin chitosan cast films laminated with electrospun
nanofibers containing Zataria multiflora and cinnamon EO produced for active food packag-
ing applications with antifungal antioxidant properties [174].

7. Encapsulation Efficiency in Electrospun Nanofibers

Encapsulation efficiency (EE) of EOs in electrospun fibers depends on a number of
factors, like electrospinning configuration (uniaxial vs. coaxial), the type and the molecular
weight of the electrospun polymer [175], size distribution of the fibers [176].

The EE is also affected by the physical interactions between core and encapsulating
materials [177] which are governed by the chemical nature of the electrospun and the
encapsulated materials (active substance and fiber material) [178,179]. For example, the
presence of apolar amino acids in zein enables interactions with oil constituents, which
makes zein to be an appropriate matrix for EO encapsulation due to its amphiphilic nature
and exhibiting high EE [180].

The decrease in EE upon increasing bioactive concentration it is well known and is
caused by the less efficient coating of the bioactive compound (BC) as the ratio BC/matrix
increases or due to limitations in the loading capacity of the obtained structures [181].
It is possible to develop electrospun fibers incorporating up to approx. 30% oil [112],
although quantities above the 10% may produce inadequate fiber morphologies [182] as
the increased content of the encapsulated material decreases the EE. The volatility of the
encapsulated bioactive substances also influences the EE for the reason that lower EE value
can be associated with higher volatility of EO [183,184].

In many situations, as in controlled release food packaging using BC (or EO) loaded
into nanofibers, the dispersion of the EO in a polymer solution (emulsion electrospinning) is
considered sufficient [185] so a number of publications have focused on the direct blending
of BC with spinning solutions to obtain electrospun nanofibers. However, the release of the
BC from the nanofibers is problematic due to the initial burst release of the encapsulated
bioactive compounds physically absorbed on fiber surface [186]. For example, curcumin
encapsulated into electrospun gelatin nanofibers exhibited a burst release from the fiber
surface (70% release after only 4 h) [153]. Caffeine incorporated in cellulose spinning
solution had a fast release of 60% caffeine from the nanofibers in aqueous solution [187].

Also, the surface of electrospun nanofibers may be influenced by the presence of the
emulsion of the BC due to the phase separation during the electrospinning process, as a
consequence of the evaporation of the most volatile components of EOs and their poor
miscibility with the polymer [188]. The addition of black pepper EO to the PLA/acetone
solution resulted in fibers with surface nano-pores elongated along the fibers, which is
the direction of polymer stretching during the electrospinning process—Figure 2. Despite
the evaporation of some chemical constituents of EOs during electros pinning, the oil
retained its antibacterial activity suggesting that the volatile components of the EO were
evaporated only at the fiber surface. In order to preserve the oil functionality, the fibers
were coated with a thin layer of medium molecular weight chitosan by immersion in the
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chitosan solution. In this way the presence of the chitosan coating limited the extraction in
ethanol of the black pepper EO [189].

Figure 2. SEM micrographs of PLA-BP fibres uncoated ((a) magnification scale 1 µm) and
((b) magnification scale 2 µm) coated with chitosan [189]. Reprinted with permission from ref. [189].
2021 MDPI, Basel, Switzerland, 2021.

The core-shell nanofibers fabricated by coaxial electrospinning offer one solution to
avoid the initial burst release of the bioactive compounds physically absorbed on fiber
surface when emulsion electrospinnig or direct blending of bioactive compounds with
spinning solutions is used [185]. Another solution to avoid the burst effect and to provide a
sustained release is the encapsulation within a nano-carrier (e.g., nanotubes, nanoparticles,
nanoemulsions) and subsequent loading (emulsion electrospinning) of the EO/nano-carrier
into electrospun nanofibers [190,191].

For example, cyclodextrins can be used to encapsulate food additives and essential oils
(guest molecules) by non-covalent host-guest inclusion complexes due to their hydrophobic
(host) cavity. Cyclodextrins are non−toxic and biodegradable cyclic oligosaccharides pro-
duced by enzymatic degradation of starch which are composed of α-1,4-linked glucopyra-
nose units forming a truncated cone-like structure. Thymol/gamma-cyclodextrin inclusion
complex together with zein were electrospun in uniform and bead-free zein nanofibers,
which were effective at reducing the bacterial count in meat stored up to 5 days at 4◦C. [103].
In the same respect, thyme EO/β-cyclodextrin/ε-polylysine nanoparticles exhibited better
and prolonged antimicrobial activity than the free thyme EO due to the encapsulation of
thyme EO into β-cyclodextrin cavity and presence of ε-polylysine [71]. Also, an efficient
antioxidant nanofibrous material was obtained by loading quercetin/gamma-cyclodextrin
inclusion complex into electrospun zein nanofibers [192]. Liposome-encapsulated Tea tree
oil loaded into chitosan nanofibers had antibacterial effect against Salmonella enteritidis and
Salmonella typhimurium whitout corrupting the sensory properties of chicken meat [193].
Due to inclusion complexation the pullulan nanofibers containing eugenol encapsulated
in γ-cyclodextrin preserved ~93% of the volatile essential oil (compared with ~23% in
case of pullulan/eugenol nanofibers). The inclusion complexation also increased the ther-
mal stability for eugenol and preserved the antioxidant activity of the nanofibers even
after 3 months’ storage at room temperature (~98%) and heat-treatment at 175 ◦C for 1 h
(~93%) [81].

Essential oils were also encapsulated into chitosan nanoparticles which were subse-
quently loaded into polymeric fibers. For example, emulsion electrospinning was used
to obtain poly(lactic acid) (PLA) nanofibers loaded with cinnamon EO previously en-
capsulated into chitosan nanoparticles. The obtained nanofibers showed high long-term
antibacterial activity against Escherichia coli and Staphylococcus aureus due to the sustained
release of cinnamon EO. When the concentration of chitosan- cinnamon EO nanoparticles
in the PLA solution was increased to 2.5%, the obtained PLA fibers had a smaller diameter
and was observed theformation of beads along the fibers (Figure 3) [194].
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Figure 3. Poly (lactic acid) fibers containing beads of cinnamon essential oil encapsulated into
chitosan nanoparticles (magnification scale 20 µm) [194]. Reprinted with permission from ref. [194]
2017 MDPI, Basel, Switzerland, 2017.

8. Crosslinking of the Electrospun Nanofibers

Despite all the mentioned advantages, some of the drawbacks of certain matrix poly-
mers used for electrospinning (chitosan, polyvinyl alcohol, zein) are their weak mechanical
properties and more importantly their high−water solubility and rapid dissolution rate
which affects the fiber intergrity and limits the applications in real foods with high water
activities [195,196]. In this respect, the crosslinking is a process used to perserve some
characteristics of the base material, such as decreased water solubility and improved
mechanical properties [197,198].

Also, crosslinking delays the release of active compounds caused by the ultrathin
structure of the nanofibers. However, after the crosslinking process, the fibers’ porosity is
reduced [199], limiting the accessibility to the bioactive substance [124,157] which may even
cause its inactivation [124]: For example, the enzyme (α-amylase) linking to the polyvinyl
alcohol (PVA) molecule promoted by the crosslinking (using vapor phase glutaraldehyde),
decreased its enzymatic activity down to 50% after 2 hr. of crosslinking, and after 14
days of storage, decreasing with the crosslinking time. The authors observed that after
crosslinking, nanofibers became densely packed with a compact inter-fiber network, due
to the adherence between the PVA fibers, and as a result, the surface area was reduced,
making the substrate access to the enzyme more difficult [124]. Moreover, the fibers still
maintained part of their fibrous morphology even though they appear practically fused,
suggesting that the crosslinking took place throughout the fibrous conformation [124].

Another benefit of the crosslinking is the reduced interstitial spaces between the biopolymer
chains, which reduces the molecular motion and prevents extensive swelling [200] of the
electrospun fibers [201]. For example, the crosslinked nanofibers based on Colocasia esculenta
tuber protein/chitosan/poly(ethylene oxide) maintained their structure after immersion in
phosphate buffered saline. The crosslinked nanofibers resulted in higher ultimate tensile
strength and lower ultimate strain compared to the non-crosslinked nanofibers [202]. Also, the
crosslinking with various crosslinking agents improved the functionality and applicability of
water soluble based matrices [203,204] such as the PVA/EO uncrosslinked nanofibers whose
fibrillar morphology is completely lost after water immersion [205–207].

Crosslinking can increase the thermal stability of the encapsulated active substances.
For example, in order to overcome its low thermal stabilty, cabreuva EO (extracted from the
wood of Myrocarpus fastigiatus) was encapsulated into nanoparticles of crosslinked chitosan
(with sodium citrate) before loading it into PVA nanofibers. The electrospinning process
maintained the structural configuration in which the essential oil was initially confined as
the thermogravimetric analysis did not detect any loss mass corresponding to essential oil
evaporation [208].
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Crosslinking can be achieved either by physical procedures such as heat treatment, gamma
or ultraviolet irradiation, or by chemical agents (glutaraldehyde, formaldehyde) [209]. However,
most of these crosslinking chemical agents have been reported to be harmful. As an example,
glutaraldehyde is highly toxic and are likely to escape from the packaging material into the
food, with negative impact on food safety [210–212].

Therefore green, non-toxic crosslinking agents are proposed such as genipin found
in gardenia fruit extract and which may become a preferable alternative to glutarald-
heyde [213] or polybasic organic acids [214]. Also, citric acid as a food-grade antioxi-
dant [215], [216], was successfully incorporated as a natural cross-linker for PVA to promote
the crosslinking of the electrospun PVA matrix, in order to avoid the disintegration upon
water immersion [217]. These crosslinked active food packaging structures containing EO
and citric acid had improved water resistance and thermal stability [217] with respect to
their non-crosslinked counterparts [130]. The crosslinked films maintained their fibrillar
morphology in water even if a certain swelling was observed) [130]. The PVA/EO samples
inhibited the lipid oxidation (up to 70%) and displayed antimicrobial activity when applied
onto chicken breast fillets, having a positive effect on both the pH and color parameters
during storage [130]. It was also shown that the addition of adipic acid as a crosslinking
agent could improve the compatibility and interface reaction between polysaccharide
from Dendrobium officinale and polyethylene oxide due to the grafting reaction between
carboxyl groups in adipic acid and hydroxy groups in polysaccharide, which was beneficial
for the reduction of the differences in polarity between polymers [218,219]. Addition of
adipic acid increased the viscosity which resulted in uniform and smoother fibers at high
polysaccharide content together with antibacterial activity against E. coli on pork samples,
without impact on the quality of pork meat [218].

Polyphenols were reported to act as natural cross-linkers for proteins [220], since
they can strongly interact with them through hydrogen bonding and hydrophobic inter-
actions [221]. For example, when green tea extract was incorporated within the gelatin
fibers containing curcumin, an improved curcumin protection was observed together
with a delay in the release of curcumin from the gelatin coatings which was attributed
to the intermolecular interactions established between the polyphenol rich-extract and
the protein [147]. There are also recent studies which reveal that numerous food wastes,
particularly fruit and vegetables by-products, are a good source of bioactive compounds
that can be extracted and reintroduced into the food chain as natural food additives or in
food matrices for obtaining nutraceuticals and functional foods [222].

9. Polysaccharides as Antimicrobial Polymers for Electrospinning

Polysaccharides are macromolecules composed of sugar units linked by glyosidic
bonds which can be found directly in some plants (starch, cellulose, pectin, hemicellulose,
gums), algae (agar, alginates), animals (chitin, chitosan, hyaluronic acid) or can have
bacterial (dextran, xanthan, cellulose) or fungal (pullulan, yeast glucans) origin [223].
Polysaccharides were explored for their antimicrobial properties: their antibacterial mode
of action was shown to be via damaging cellular structural and inhibiting bioenergetics
metabolism [224]. A variety of polysaccharides, such as chitosan, dextran, hyaluronic
acid, cellulose, other plant/animal-derived polysaccharides and their derivatives have
been studied for antimicrobial applications [225] and also, as matrices for incorporate BC
into nanofibres, as it was shown above. Polysaccharides are naturally widespread, safe,
bio–compatible, residue free.

Amongst natural polysaccharides, chitosan was extensively used as base polymer for
electrospinning/electrospraying. Nanofibers based on chitosan (pure or blended with other
materials to improve its processability) can be used to obtain various antimicrobial and
biodegradable composites, membranes, films which may be subsequently crosslinked in
order to increase their strength [226]. These nanofibers can be functionalized with bioactive
agents or nanoparticles and used as films exhibiting excellent antioxidant and antimicrobial
properties for a variety of food products [227].
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For example, antibacterial nanofiber films were prepared by electrospinning gelatin,
chitosan, and 3-phenyllactic acid which can be used as an active food packaging [228].
Chitosan/poly (ethylene oxide) (PEO)/lauric arginate composite electrospun nanofibrous
films showed increased antimicrobial activity against Escherichia coli and Staphylococcus
aureus depending on lauric arginate concentration. The formation of electrostatic and
hydrogen bonding interactions induced by the lauric arginate addition changed the inter-
and intramolecular interactions between PEO and chitosan which influenced the mobility
of the polymer molecules, increased the crystallinity and decreased melting point [229].

Stable silver nanoparticles produced by chitosan mediated green synthesis were
blended with polyvinyl alcohol to form electrospun fibrous composite nano-layers which
showed bioactivity, extended the meat shelf-life by inhibiting microbial degradation of
packaged food due to the cooperative antibacterial activities of chitosan the silver nanopar-
ticles [230].

Chitosan blended with polylactic acid (PLA) was electrospun as fiber layer on to the
surface of a low-density polyethylene (LDPE)/PLA film to produce bilayer antibacterial
films. The addition of the chitosan on the bilayer film resulted in higher antibacterial activi-
ties with reduced oxygen and water vapor permeability of the LDPE/PLA substrate [231].

Applications of cyclodextrins to obtain nanofibres for food applications was also
above presented.

10. Inorganic Bioactive Compounds

Montmorillonite composite/nylon 6 electrospun nanofibres were deposited over polypropy-
lene films [232] to increase their barrier properties against oxygen and moisture, to reduce
moisture absorption and lipid peroxidation in packaged food (potato chips). Shelf life of bread
was extended by 2 days using such composites as packaging materials. The malondialdehyde
levels in potato chips increased from 0.15 to 0.95 µM g−1 suggesting lower rancidity of chips
due to less oxygen permeability. Coating of polypropylene films by electrospinning technique
has many advantages for food packaging industry because a very low amount of raw material
is required to make uniform coating on substrate, composite fibres can by applied for various
packaging applications, with coating thickness in nano range on the surface of conventional
packaging films [232].

The inclusion of inorganic nanoparticles such as nanosilica and nanoclay into electro
spun biopolymeric matrices as polymeric nanofibers enhances and improves the mechan-
ical properties physical and biological properties of polylactic acid [233]. They can act
as nucleating agents being considered as special fillers for polymers. It was mentioned
above that the usage of biopolymers in developing biodegradable food packaging films
as sustainable and safe towards environment is restricted because of the poor mechanical
and barrier properties of the biopolymers. By incorporation into PLA of different types
(montmorillonite and halloysite) in optima concentration of 3 wt.% nanoclays resulted
in the improved mechanical and oxygen barrier properties due to the strong interaction
between nanoclays and tortuous path length created by nanoclays respectively [234].

The metal extensively used in food preservation is silver. Silver nanoparticles (Ag NP)
based-antimicrobial agents show very wide applications, including biomedical applications,
as surface treatment and coatings, in chemical and food industries, and for agricultural
productivity. Their antimicrobial activity depends on size, shape, and chemical composition,
which affect the surface interaction/state of Ag NP [235,236].

AgNPs synthesized from black grapes peel extract have been used to prepare AgPVA
nanofibers with good antibacterial activity against Bacillus cereus, Staphylococcus aureus,
Escherichia coli, and Pseudomonas aeruginosa that increased the shelf life and prevented
the decaying caused due to food pathogens when surface-coated over lemon and straw-
berry [237].

Electrospun nanofibres of cellulose acetate, poly(vinyl chloride), cellulose acetate (CA)
or blends of chitosan/poly-(ethylene oxide) containing AgNP [238–240] had antimicrobial
or antifungal activity against Staphylococcus aureus ATCC 29,213, Propionibacterium acnes
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ATCC 6919, and Gram-negative bacteria, such as Escherichia coli ATCC 25,992 and Pseu-
domonas aeruginosa ATCC 17,933 which makes them potential materials for the development
of active packaging that could extend the shelf life of perishable foods. Nanocomposite
nanofibres of PLA/Ag-NP/VitaminE nanofibers inhibited growth of Escherichia coli, Listeria
monocytogenes and Salmonella typhymurium up to 100% [241].

Most in vitro studies demonstrated the size-, dose- and coating-dependent cellular
uptake of AgNPs, their biodistribution and both in vitro and in vivo toxicity following
various routes of exposure showed Ag accumulation and toxicity to different organs.
Electrospun nanofibers are capable of improving several attributes of chemical (bio)sensors
used to monitor quality of food products and for and agricultural applications, due to the
high specific surface area, high porosity and 1-D confinement characteristics.

Electrospun antimicrobial fibrous membranes based on PLA biopolymer containing
ZnO provided UV light barrier an antibacterial effect against Escherichia coli and Staphylo-
coccus aureus. The ZnO addition (with an optimum content of ZnO 0.5 wt.%) improved
the mechanical properties of the nanocomposites making them suitable for food pack-
aging applications [242]. A bilayer film with antioxidant and antimicrobial activity was
developed from biodegradable polymers with an outer extruded layer of thermoplastic
starch and ZnO nanorods and the inner layer of poly(vinyl alcohol) electrospun fibers
containing rosemary polyphenols. ZnO nanorods in the outer layer inhibited the growth
of Escherichia coli over its surface, while rosemary polyphenols included in the inner mat
showed an antioxidant activity in food simulant. Furthermore, the inner layer hindered
Zn(II) migration from the outer layer towards food simulant and decreased the water vapor
permeability by 42% compared to the pure thermoplastic starch film [243].

11. Films or Coatings Incorporating Essential Oils: Applications for Food Safety

Besides the encapsulation in nanofibers, the EOs can be incorporated in films and
sheets or as coatings to improve the quality of food or polymeric materials destined to food
preservation. Some examples are given in Table 3.

Table 3. Application of some EOs incorporated in films or coatings for food preservation and safety.

EO Application Ref.

Thyme and garlic

Mozzarella coated with the edible film (zein and +3% of a mixture of
thyme and garlic essential oils 1:1). This film could be applied as
natural additive, contributing to the microbiological and sensory
characteristics of the mozzarella whith the benefit of 50% of salt

reduction.

[244]

Tarragon

Tarragon essential oil was added to the sausages at a concentration
that was reported to exhibit antimicrobial activity in meat (0.1% v/w).
The 0.1% (v/w) addition of tarragon essential oil decreased the flavor
and overall acceptability of the Frankfurter type sausages. However,
it can be said that the undesired effect of the tarragon essential oil on

the flavor and the overall acceptability could be eliminated by
modifying the added amount of the essential oil.

[245]

Citrus

This study evaluated the antimicrobial potentials of Citrus EOs
against spoilage microorganisms isolated from selected fruits.

In vitro antimicrobial efficacies of Citrus EOs and their synergistic
potentials were tested against isolated spoilage microorganisms

(Bacillus spp., Micrococcus luteus, Serratia marcescens, Aspergillus spp.,
Mucor piriformis, Fusarium oxysporum, Penicillium spp., Rhizopus spp.,

Alternaria alternata).
The synergism between lime and lemon at ratio 1:1 had better
antimicrobial activity than each essential oil when used alone

Gas chromatography–mass spectrometry (GC–MS) revealed the
presence of limonene, beta-pinene, alpha-phellandrene, terpinen-4-ol,

alpha-terpineol and geraniol in EOs of lime and lemon.

[246]
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Table 3. Cont.

EO Application Ref.

Juniper fruits (Juniperus communis L.),
lemongrass leaves (Cymbopogon

citratus), rosemary leaves (Rosmarinus
officinalis), black pepper (Piper nigrum)

fruits

P. orientalis strains isolated from food probes lose their ability to move,
change their morphology, and also reduce their metabolic activity

under the influence of oils in low concentrations. However, they do
not die, and properties such as the ability to produce ammonia, the
ability to production of indole from the amino acid tryptophan as
well as the ability to assimilation of saccharides are maintained.

[247]

Rosemary alcholic extract as powder

Films of PLA, bio-plasticizers, vitamin E and rosehip seed oil
encapsulated into chitosan by the emulsion method were obtained by
melt compounding to obtain a controlable composition for films with

different properties/antimicrobial and antioxidant activity,

[13]

Oregano and thyme

In vitro studies have shown that oregano and thyme EOs are effective
against foodborne bacteria,

isolated from fermented meat products and cheeses, such as
Escherichia coli, Listeria monocytogenes, Salmonella spp., and

Staphylococcus aureus. However, EOs of thyme and oregano seem to
control the growth of fungi Botrytis cinerea and Aspergillus spp.,

affecting the shelf-life of fruits during postharvest. The EOs of sage
and rosemary have shown little or no antimicrobial activity. The

optimal composition used for shelf-life studies was determined based
on the results of in vitro studies.

Shelf-life extension studies using several EOs (cinnamon, clove,
oregano, rosemary, sage, and thyme) and aromatic and medicinal

plants were performed using pork meat, goat cheese, strawberries,
and table grapes.

Practical applications. For shelf-life studies a cotton gauze
impregnated with 1:10 EO dilution was put (a) inside the

polyethyleneterephthalate (PET) boxes containing strawberries or
grapes (EO diluted in food grade ethanol) or (b) on the inner surface
of PET boxes containing the meat (EO diluted in water). For cheese

shelf-life studies oregano EO as well as oregano dry leaves were used
as ingredients in cheese production.

The use of cinnamon, sage, and thyme EOs in the preservation of
strawberries and table grapes enabled the extension of shelf−life by
controlling the fungal growth. The use of the oregano and oregano

EO toghether enabled the extension of the shelf-life for cheese from 6
to 8 days, since no significant changes were observed in the

microbiota of chees. Due to its in vitro antibacterial activity against
gram−negative bacteria thyme EO was effective in controlling the

population of enterobacteria present in pork meat.

[248]

Thyme and clove

The addition of thyme and clove essential oils (especially thyme) to
the sausage composition increased the shelf-life (frozen storage-18◦C
for three months), prevented the deterioration of sausage, inhibited
lipid peroxidation and decreased the necessary nitrite’s proportion to
sausage for avoiding the formation of carcinogenic N-nitrosamines,
lowered residual nitrite, and TBC (Total Bacteria Count) in sausage.

The tested EOs increased the inhibitory influence of nitrite on
Proteus, Klebsiella, Aspergillus niger, and Candida albicans in sausage.

[249]

Argan and clove

PLA coated with chitosan/argan or clove EO showed increased
hydrophilicity, especially for argan, in retarding the food spoilage of
meat, and cheese. Argan, and clove oil offered good UV protection,

biodegradability of PLA films with the antibacterial/antioxidant
function of vegetal oils.

[250]
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Table 3. Cont.

EO Application Ref.

Cardamom, cinnamon, clove,
eucalyptus, lemongrass, lime, nutmeg

and rosemary

In vitro tests of the essential oils were evaluated for their
antimicrobial activity against three Pseudomonas species associated

with microbial spoilage of refrigerated tilapia. Cinnamon EO had the
highest antimicrobial activity, followed by clove EO. The remaining

essential oils had weak activity. The Cinnamon EO reduced the
Pseudomonas viable count in in fish extract model at refrigeration
temperature but to a lesser extent than when it was applied at the

same concentrations in culture medium.

[251]

Cinnamon
The antifungal activity against A. niger and M. racemous were

improved by the addition of nano and micro emulsion of cinnamon
EO to the carboxymethyl cellulose edible films.

[252]

Thyme, lemongrass, juniper, oregano,
sage, fennel, rosemary, mint, rosehips,

dill

Antimicrobial activity of different selected EOs on some pathogenic
and spoilage bacteria isolated from the surface of various fresh

vegetables. The most resistant isolates appeared to be Curtobacterium
herbarum, Achromobacter xylosoxidans, and Enterobacter ludwigii, while
Pseudomonas hibiscicola was the most sensitive. Of the chosen plant

essential oils, the most pronounced antimicrobial effect was detected
in the case of oregano. The essential oils of thyme and mint also
showed elevated antimicrobial activity. A synergistic effect was

observed in case of five combinations of essential oil therefore thay
are good candidates for the preservation of fresh vegetables.

[253]

12. Conclusions

Electrospun nanocomposites/(nano)fibers (respectively electrospinning/electrospraying)
require less amounts of raw materials, but properties are enhanced due to nanometric dimen-
sions, which makes them a cost–effective alternative to conventional polymers and methods of
packaging like Modified Atmosphere Packaging (MAP). Presently, encapsulation of bioactive
compounds by electrospinning/electrospraying procedures is applied mainly at laboratory
scale but also at pilot scale and industrially, with an impressive research interest with the aim of
application in various domains as biomedical, biosensors, food preservation and safety, etc.

Although synthetic bioactive compounds are approved in many countries for food
applications, they are not easily accepted by consumers, existing an increasing interest to
replace them by natural bioactive compounds. The natural bioactive compounds can be
used as food additives to preserve the food quality and safety, and as food supplements or
nutraceuticals to correct nutritional deficiencies, maintain a suitable intake of nutrients, or
to support physiological functions, etc. Bioactive compounds can be used as a single added
component in a matrix or as blends of nanocomposites containing organic and inorganic
bioactive compounds. Toxicological effects and specific regulation for the safety of human
consumption and the environment are the main challenges in using most additives in
food [254].

New classes of bioactive compounds are being developed such as cyanobacterial
bioactive compounds, bioactive molecules from microalgae, nuisance cyanobacteria as
anticancer agents, substances from fungi, and many other useful in therapeutic applica-
tions [243].
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