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Abstract: Finite-time isothermal processes are ubiquitous in quantum-heat-engine cycles, yet com-
plicated due to the coexistence of the changing Hamiltonian and the interaction with the thermal
bath. Such complexity prevents classical thermodynamic measurements of a performed work. In
this paper, the isothermal process is decomposed into piecewise adiabatic and isochoric processes to
measure the performed work as the internal energy change in adiabatic processes. The piecewise
control scheme allows the direct simulation of the whole process on a universal quantum computer,
which provides a new experimental platform to study quantum thermodynamics. We implement the
simulation on ibmqx2 to show the 1/τ scaling of the extra work in finite-time isothermal processes.

Keywords: quantum thermodynamics; quantum circuit; open quantum system; isothermal process;
IBM quantum computer

1. Introduction

Quantum thermodynamics, originally considered an extension of classical thermody-
namics, has sharpened our understanding of the fundamental aspects of thermodynam-
ics [1–6]. Along with the theoretical progress, experimental tests and validations of the
principles are relevant in the realm. Simulation of the quantum thermodynamic phenom-
ena [7–10], as one of the experimental efforts, has been intensively explored with specific
systems, e.g., a single trapped particle for testing the Jarzynski equation [11,12], the trapped
interacting Fermi gas for quantum work extraction [13,14], and the superconducting qubits
for the shortcuts to adiabaticity [15,16]. These specific systems often have limited functions
to test generic quantum thermodynamic properties. In quantum thermodynamics, the
concerned system, as an open quantum system, generally evolves with the coupling to
the environment. Simulations of open quantum systems have been proposed theoretically
in terms of quantum channels [17–21], and realized experimentally on various systems,
e.g., trapped ions [22], photons [23], nuclear spins [24], superconducting qubits [25], and
IBM quantum computer recently[26,27]. The previous works mainly focus on simulating
fixed open quantum systems, where the parameters of the systems are fixed with the
evolution governed by a time-independent master equation. To devise a quantum heat
engine, it is necessary to realize tuned open quantum systems to formulate finite-time
isothermal processes.

Simulation with generic quantum computing systems shall offer a universal system to
demonstrate essential quantum thermodynamic phenomena. Yet, simulation of a tuned
open quantum system remains a challenge mainly due to the inability to physically tune
the control parameters and the difficulty to measure the work extraction. In quantum ther-
modynamics, the work extraction, as a fundamental quantity [28–30], requires the tuning of
the control parameters. Such requirement is achievable in the specifically designed system,
e.g., the laser-induced force on the trapped ion [11], the trapped frequency of the Fermi
gas [13,14], and the external field in the superconducting system [15,16]. However, on a
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universal quantum computer, e.g., IBM quantum computer (ibmqx2), the user is forbidden
to tune the actual physical parameters since the parameters have been optimized to reduce
errors. An additional problem is the measurement of the work extraction. In classical
thermodynamics, it is obtained by recording the control parameters and measuring the
conjugate quantities, but such measurement is not suitable in the quantum region [31].

In this paper, an experimental proposal is given to overcome the difficulty in sim-
ulating a finite-time isothermal process. We introduce a virtual way to tune the control
parameters, i.e., without physically tuning the parameters. The dynamics are realized
by quantum gates encoded the parameter change. As a demonstration, we realize the
simulation of a two-level system on ibmqx2 [32] for the isothermal processes, which are
fundamental to devise quantum heat engines, yet complicated due to the coexistence of
the changing Hamiltonian and the interaction with the thermal bath.

To implement the simulation on a universal quantum computer, we adopt a discrete-
step method to approach the quantum isothermal process [33–38]: the isothermal process
is divided into series of elementary processes, each consisting of an adiabatic process and
an isochoric process. In the adiabatic process, the parameter tuning is performed virtually
with the unitary evolution implemented by quantum gates. In the isochoric process, the
dissipative evolution is carried out with quantum channel simulation [23,25,39–42] with
ancillary qubits, which play the role of the environments[18,21,26]. With this approach,
we achieve the simulation of the isothermal process on the generic quantum computing
system without physically tuning the control parameters. The piecewise control scheme
distinguishes work and heat, which are separately generated and measured as the internal
energy change in the two processes. In the current simulation, the energy spacing of the
two-level system is tuned with the unchanged ground and excited states. The tuning of
the energy spacing is virtually performed via modulating the thermal transition rate in the
isochoric process.

In our proposal, the simulation with a universal quantum computer brings clear
advantages. First, the arbitrary change of the control parameters is archived by the virtual
tuning via the simulation of corresponding dynamics, avoiding the difficulty in tuning the
actual physical system. In turn, the parameters can be controlled to follow an arbitrary
designed function. Second, we can realize the immediate change of environmental parameters,
such as the temperature. The effect of the bath is reflected through the state of the auxiliary
qubits, which can be controlled flexibly with quantum gates.

2. Discrete-Step Method to Quantum Isothermal Process

In quantum thermodynamics, the concerned system generally evolves under the
changing Hamiltonian while in contact with a thermal bath. The interplay between quan-
tum work and heat challenges to characterize the quantum thermodynamic cycle on the
microscopic level, where the classical method to measure the work via force and distance,
is not applicable [31]. For the timescale of the tuning far smaller than the thermal bath
response time, the evolution is thermodynamic adiabatic, where the heat exchange with
the thermal bath can be neglected, and the internal energy changes due to the performed
work through the changing control field. The opposite extreme case with the unchanged
control parameters is known as the isochoric process, where the internal energy changes
are induced by the heat exchange with the thermal bath. Therefore, work and heat are
separated clearly in the adiabatic and isochoric processes, and are obtained directly by
measuring the internal energy change.

To simulate the general processes on a universal quantum computer, a piecewise
control scheme is necessary to express the continuous non-unitary evolution in terms of
quantum channels, where the evolution in each period is constructed by the simulations
of open quantum systems [21]. To separate work and heat, we adopt the discrete-step
method by dividing the whole process into series of piecewise adiabatic and isochoric
processes [33–38]. In Figure 1, the discrete-step method is illustrated with the minimal
quantum model, a two-level system with the energy spacing ω(t) between the ground state
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|g〉 and the excited state |e〉. Such a two-level system can be physically realized with a qubit,
as an elementary unit of the quantum computer. For the clarity of the later discussion,
we use the term “two-level system” to denote the simulated system and “qubit” as the
simulation system hereafter without specific mention.

system
qubit

ancillary
qubits ...{ Bath

two-level system

Figure 1. Simulation of the isothermal process on the superconducting quantum computer. The
finite-time isothermal process is divided into series of piecewise adiabatic and isochoric processes. In
the adiabatic process, the energy of the two-level system is tuned with the switched-off interaction
between the system and the thermal bath. In the isochoric process, the interaction is switched on
with the unchanged energy spacing ωj. One qubit represents the simulated two-level system, and
the ancillary qubits play the role of the thermal bath at the temperature T. After implementing the
quantum circuit, the system qubit is measured to obtain the internal energy.

The state of the two-level system is represented by the density matrix ρs(t) of the
system qubit, and the thermal bath is simulated by ancillary qubits. Initially, the system
qubit is prepared to the thermal state ρs(0) at the temperature T. The evolution of the
tuned open quantum system is implemented with single-qubit and two-qubit quantum
gates. The internal energy of the two-level system is E(t) = ω(t)pe(t), where the energy of
the ground state is assumed as zero, and the population in the ground (excited) state is
pg(t) = 〈g|ρs(t)|g〉 (pe(t) = 〈e|ρs(t)|e〉).

For the system to be simulated, we use the discrete-step method to approach the
finite-time isothermal process for the two-level system. The discrete isothermal process
contains N steps of elementary processes with the total operation time τ + τadi, where
τ (τadi) denotes the operation time in the isochoric (adiabatic) process. Each elementary
process is composed of an adiabatic and an isochoric processes. We set the equal operation
time for every elementary process δτ = (τ + τadi)/N, with the duration τ/N (τadi/N) for
each isochoric (adiabatic) process.

In the adiabatic process, the system is isolated from the thermal bath and evolves
under the time-dependent Hamiltonian. Such a process is described by a unitary evolution
with the time τadi/N. The performed work is determined by the change of the internal
energy at the initial and the final time. For a generic adiabatic process, the unitary evolution
of the system can be simulated with the single-qubit gate acted on the system qubit. In this
paper, we consider the adiabatic process as the quench with zero time τadi = 0, occurred
at time tj−1 = (j− 1)δτ, j = 1, 2, ..., N. As the result of the quench, the energy spacing is
shifted from ωj−1 to ωj, while the density matrix ρs(tj−1) remains unchanged after the
quench. At the initial time t0 = 0, the energy is quenched from ω0 to ω1 after the initial
preparation. The performed work for the quench at time tj−1 reads

Wj = (ωj −ωj−1)pe(tj−1). (1)

To obtain the performed work, we only need to measure the excited state population
pe(tj−1) of the system qubit at the beginning of each isochoric process.
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In the isochoric process of the j-th elementary process (tj−1 < t ≤ tj), the two-level
system is brought into contact with the thermal bath at the temperature T. The evolution is
given by the master equation

ρ̇s = −i[Hj, ρs] + γ0NjL (σ+)[ρs]

+ γ0(Nj + 1)L (σ−)[ρs], (2)

with
L (σ)[ρs] = σρsσ† − 1

2
σ†σρs −

1
2

ρsσ†σ. (3)

Here, Hj = ωj|e〉〈e| is the Hamiltonian of the system during the period tj−1 < t ≤ tj,
Nj = 1/[exp(βωj) − 1] is the average photon number with the inverse temperature
β = 1/(kBT), and σ+ = |e〉〈g| (σ− = |g〉〈e|) is the transition operator. In this process,
the change of the internal energy is induced by the heat exchange with the thermal bath,
and no work is performed. During the whole discrete isothermal process, the work is only
performed at the time tj.

We explicitly give the equations for each element of the density matrix according to
Equation (2). The populations in the ground and excited states satisfy

ṗg = γ0(Nj + 1)pe − γ0Nj pg, (4)

and pe = 1− pg. The off-diagonal elements ρeg(t) = 〈e|ρs(t)|g〉 and ρge(t) = 〈g|ρs(t)|e〉 satisfy

ρ̇eg = −iωjρeg − γ0(2Nj + 1)ρeg, (5)

and ρge(t) = ρ∗eg(t). With the unchanged energy eigenstates, the diagonal and the off-diagonal
elements of the density matrix evolve separately during the whole isothermal process.

3. Simulation with Quantum Circuits

In this section, we first show the simulation of one elementary process in the circuit.
The simulation is formulated for the adiabatic and the isochoric processes as follows.

Adiabatic process. In the superconducting quantum computer, e.g., IBM Q system,
the tuning of the physical energy levels of qubits is unavailable for the users. The physical
parameters are fixed at the optimal values to possibly reduce noises and errors induced by
decoherence and imperfect control.

We consider the Hamiltonian of the simulated two-level system as H(t) = ω(t)|e〉〈e|
with the piecewise tuned energy spacing

ω(t) = ωj, tj−1 < t ≤ tj with j = 1, 2..., N. (6)

We will show that the tuning of the energy spacing ω(t) only affects the thermal
transition rate. In the simulation, the thermal transition is simulated through the quantum
channel simulation, and can be flexibly modulated by single-qubit gates acted on the ancil-
lary qubits. Therefore, we do not have to physically tune any parameters of the quantum
computer, and just algorithmically modulate the simulated thermal transition instead. We
propose a virtual tuning of the energy spacing with details explained as follows.

In the virtual process, we need to simulate the unitary evolution of the adiabatic
process with single-qubit gates acted on the system qubit. For the adiabatic process, i.e.,
the quench, the state of the system does not evolve in a short period. We just pretend that
the energy of the simulated system is tuned from ωj−1 to ωj in the j-th adiabatic process.
This virtual tuning of the energy is reflected by the modulation of the transition rate in the
simulation of the isochoric process.
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Isochoric process. The dynamical evolution of the isochoric process can be simulated
with the generalized amplitude damping channel (GADC)

ρs(tj) = E
(j)

GAD[e
−iHjδτρs(tj−1)e

iHjδτ ], (7)

where E
(j)

GAD = p(j)
↓ E

(j)
↓ + p(j)

↑ E
(j)
↑ is divided into two sub-channels, the amplitude damp-

ing channel
E
(j)
↓ [ρs] = M(j)

0 ρs M(j)†
0 + M(j)

1 ρs M(j)†
1 , (8)

and the amplitude pumping channel

E
(j)
↑ [ρs] = M(j)

2 ρs M(j)†
2 + M(j)

3 ρs M(j)†
3 . (9)

The corresponding Kraus operators are M(j)
0 = cos θj|e〉〈e|+ |g〉〈g|, M(j)

1 = σ− sin θj,

M(j)
2 = |e〉〈e|+ cos θj|g〉〈g| and M(j)

3 = σ+ sin θj. The coefficient p(j)
↑ = 1/[exp(βωj) + 1]

(p(j)
↓ = 1− p(j)

↑ ) shows the probability of excitation (de-excitation) of the two-level system
induced by the thermal bath. The evolution time of the j-th elementary process is encoded
in the control parameter θj via

cos θj = exp[−γ0δτ

2
coth(

βωj

2
)]. (10)

With infinite operation time, the ideal discrete isothermal process is realized by setting
θj = π/2, where the system reaches thermal equilibrium at the end of each isochoric process.

For the initial thermal state ρs(0) = exp(−βH(0))/Tr[exp(−βH(0))], the off-diagonal
element remains zero throughout the whole process in the current control scheme. In this
situation, the evolution by Equation (7) is simplified as

ρs(tj) = E
(j)

GAD[ρs(tj−1)]. (11)

For an initial state with non-zero off-diagonal elements, the off-diagonal elements does
not affect the evolution of the populations. This comes from the fact that the diagonal and
the off-diagonal elements satisfy separate differential equations by Equations (4) and (5).

Figure 2 shows the quantum circuit to simulate the isochoric process. The two sub-
channels E

(j)
↓ and E

(j)
↑ are realized with an ancillary qubit initially prepared in the ground

state. The circuits for these two sub-channels are illustrated in Figure 2a. The meaning of
each gate is explained at the bottom of Figure 2. Such simulation circuits are extensively
studied in the field of quantum computing and quantum information that we will not
explain the setup in detail [40].

To achieve the random selection of the two sub-channels, we design two simulation
methods, the hybrid simulation, and the fully quantum simulation, as shown in Figure 2b,c,
respectively. The former uses one ancillary qubit for each elementary process under the
assist of a classical random number generator (CRNG). The latter utilizes fully quantum
circuits with two ancillary qubits for each elementary process. In Table 1, we summarize
the simulation procedure for the adiabatic and the isochoric processes.
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Rx

Rx

cZ Rx

(a)

Rx

cZ

X

Rx cZ Rx

X

cZ Rx

X

Rx

CRNG

Amplitude damping channel Amplitude pumping channel

(b) (c)

(d)

Hybrid simulation Fully quantum simulation

Gate instruction

Figure 2. The quantum circuits in one elementary process. (a) The amplitude damping (pumping)

channel E
(j)
↓ (E (j)

↑ ) in the hybrid simulation. (b) One elementary process in the hybrid simulation.
The selection of the two sub-channels is realized by the classical random number generator. (c) One
elementary process in the fully quantum simulation. The selection of the two sub-channels is assisted
by another ancillary qubit. (d) Instruction of gates in the current simulation.

Table 1. The discrete isothermal process to be simulated and the two simulation methods, the hybrid simulation and the
fully quantum simulation

To be Simulated: Simulation

Discrete Isothermal Process Hybrid Simulation with CRNG Fully Quantum Simulation

Adiabatic process U[R(t)], t ∈ [tj−1, tj] The unitary evolution is realized with the virtual tuning on the system Hamiltonian.

Isochoric process System relaxation in
Equation (2)

Generalized amplitude damping

channel E
(j)

GAD with the classical random
number generation

Generalized amplitude damping channel

E
(j)

GAD with an additional qubit at the state
cos(αj/2)|0〉+ i sin(αj/2)|1〉

Parameters Duration: δτ = tj − tj−1
Temperature: T cos θj = exp[− γ0δτ

2 coth(
βωj

2 )]
cos θj = exp[− γ0δτ

2 coth(
βωj

2 )]

cos(αj/2) = [p(j)
↓ ]1/2

3.1. Hybrid Simulation of Isochoric Process with Classical Random Number Generator (CRNG)

With the limited number of qubits, it is desirable to reduce the unnecessary usage
of qubits. For the quantum channel of the system qubit, one ancillary qubit is inevitably
needed to simulate the non-unitary evolution of the open quantum system [42]. In this
method, one qubit represents the two-level system, and each elementary process adds
one more ancillary qubit. Therefore, it requires N + 1 qubits to simulate the N-step
isothermal process.

In the hybrid simulation, the CRNG is used to select the sub-channel O[l]
j = E

(j)
↑ or

E
(j)
↓ for the isochoric process in the j-th elementary process, as shown in Figure 2b. l denotes

the l-th simulation of the discrete isothermal process. For each isochoric process, the CRNG
generates a random number r[l]j ∈ [0, 1] with uniform distribution. The sub-channel O[l]

j is

selected as E
(j)
↓ (E (j)

↑ ) when the random number satisfies r[l]j ≤ p(j)
↓ (r[l]j > p(j)

↓ ).
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3.2. Fully Quantum Simulation of Isochoric Process

For the system with adequate available qubits, the selection of the two sub-channels
can be realized on fully quantum circuit by adding two ancillary qubits for each ele-
mentary process, as shown in Figure 2c. In each step, one more ancillary qubit is used,
prepared to the super-position state cos(αj/2)|0〉+ i sin(αj/2)|1〉 through the Rx(αj) gate

with cos(αj/2) =
√

p(j)
↓ . This method requires 2N + 1 qubits to simulate the N-step

isothermal process.
Currently, we have solved the problem of separating work and heat. The unitary

evolution of the adiabatic process requires isolation from the environment, while the
isochoric process needs contact with the environment. Switching on and off the interaction
with the thermal bath is complicated and requires enormous efforts, especially in the
quantum region for a microscopic system. Fortunately, the design of the quantum computer
with a long coherent time ensures the isolation from the environment. The simulation of
the quantum channel is designed to simulate the effect of the environment. The advantage
of quantum channel simulation over the real coupling to the environment is the flexibility
to tune the control parameters, e.g., the temperature, the coupling strength, et al.

The whole evolution of the isothermal process is realized by merging the circuit of
each elementary process. In Figure 3, the circuit for the two-step isothermal process is
shown as an example. Figure 3a shows the excited state population pe(t) with the tuned
energy spacing ω(t) in a two-step isothermal process. The energy spacing is increased
from ω0 to ω2 in two steps, while the excited state population decreases from p0 to p2.

Rx

Rx

Rx

cZ Rx

Rx

cZ

q[0]

q[1]

q[2]

q[3]

q[4]

Rx Rx

Isothermal Adiabatic Isochoric

Rx

Rx cZ Rx

q[0]

q[1]

q[2]

cZ

RxRx

X X X

(a)

(b)

(c)

Discrete isothermal process to be simulated

Hybrid simulation with CRNG

Fully quantum simulation

X X X

Figure 3. The circuit of the two-step isothermal process on ibmqx2. (a) Excited state population-
energy (pe − E) diagram. (b) The circuit for the hybrid simulation. In each elementary process, the
X gate is (or not) implemented for the sub-channel selected as the amplitude pumping (damping)
channel according to the classical random number. Each elementary process requires another ancillary
qubit. (c) The circuit for the fully quantum simulation. Each elementary requires two ancillary qubits.

Figure 3b shows the quantum circuit for the hybrid simulation on ibmqx2. With the
five qubits, it is feasible to simulate a four-step isothermal process on ibmqx2. Due to the
limited qubit number, the initial state is prepared as a pure state to mimic the thermal
state in the current simulation. The populations in the energy eigenstates of the pure state
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is equal to those of the thermal state, while the non-zero off-diagonal elements lead to
the coherence as the superposition of the excited and the ground states. As stated in the
description of the isochoric process, such coherence does not affect the evolution of the
populations. With another ancillary qubit, a thermal state of the two-level system can be
initially prepared through the entanglement between the system and the ancillary qubit.

In the hybrid simulation, the sub-channel O[l]
j of each elementary process is selected

as either the amplitude damping E
(j)
↓ or the pumping one E

(j)
↑ . For an N-step isothermal

process, there are 2N selections of the sub-channels {O[l]
1 ,O[l]

2 , ...,O[l]
j , ...O[l]

N }. The circuit
of each selection with N = 2, 3 and 4 is implemented on ibmqx2. For each selection, the
excited state population p[l]e (tj) at each step is obtained by repeated implementations of
the corresponding circuit. The work in each selection, namely the microscopic work, is
given by

W [l] =
N

∑
j=1

(ωj −ωj−1)p[l]e (tj−1). (12)

The performed work W of the whole process is the average of the microscopic
work W [l].

Figure 3c shows the fully quantum simulation realized on ibmqx2. With the five qubits,
it is possible to realize at most two-step isothermal process, since the qubit resetting
process is not permitted on ibmqx2. In the fully quantum simulation, the same circuit is
implemented repetitively, and the excited state population pe(tj) is obtained by measuring
the state of the system qubit. The performed work for the simulated system is given by

W =
N

∑
j=1

(ωj −ωj−1)pe(tj−1). (13)

Since ibmqx2 does not allow the user to reset the state of the qubit, each elementary
process requires new ancillary qubit(s). With the ability to reset the ancillary qubit, two
(three) qubits are enough to complete the simulation with the hybrid simulation (fully
quantum simulation) by resetting the ancillary qubit(s) at the end of each isochoric process.
This control scheme is realized in Ref. [25] to simulate repetitive quantum channels on
a single qubit.

4. Testing 1/τ Scaling of Extra Work

One possible application of the thermodynamic simulation is to test the 1/τ scaling of
the extra work, where τ indicates the operation time of the finite-time isothermal process.
In equilibrium thermodynamics, the performed work for a quasi-static isothermal process
is equal to the change of the free energy ∆F [43]. The quasi-static isothermal process
requires infinite time to ensure equilibrium at every moment. For a real isothermal process,
irreversibility arises accompanied with the extra work. For a fixed control scheme, it is
proved that the extra work decreases inverse proportional to the operation time at the
long-time limit [44–47]. Such 1/τ scaling has been verified for the compression of dry air
in the experiment [48].

The superconducting quantum circuit provides an experimental platform to study
quantum thermodynamics. We demonstrate the scaling behavior of the extra work in
finite-time isothermal process can be observed with the current experimental proposal.
Here, the parameters of the simulated two-level system are chosen as γ0 = 1 and β = 1
for convenience. The energy spacing is tuned from ω0 = 1 to ωN = 2 in N steps of
elementary processes.

In Figure 4, the 1/N scaling of the extra work is shown with the ibmqx2 simulation
results (Supplementary Materials) for different operation time δτ = 0.5 (blue dashed curve)
and 10 (red solid curve). For large step number N, it is observed that the extra work is
inverse proportional to the step number as W − ∆F ∝ 1/N [33,37,38]. The free energy
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difference of the final and the initial state, namely the performed work in the quasi-static
isothermal process is

∆F = ωN −ω0 − kBT ln
1 + eβωN

1 + eβω0
. (14)

With the chosen values of the parameters, the explicit value of the free energy dif-
ference is ∆F = 0.186. Since the total operation time is τ = Nδτ, the 1/N scaling is
consistent with the 1/τ scaling of the extra work in finite-time isothermal processes. The
discrete isothermal processes are simulated on ibmqx2 for N = 2, 3 and 4 with the hybrid
simulation (empty squares) and N = 2 with the fully quantum simulation (pentagrams).

★★

★★◇
◇

◇

◇

◇
◇

1/N scaling

0 2 4 6 8 10

0.02

0.04

0.06

0.08

Figure 4. 1/N scaling of the extra work for the discrete isothermal process. The operation time of
each isochoric process is set as δτ = 0.5 (blue dashed curve) or 10 (red solid curve). The ibmqx2
simulation results for N = 2, 3 and 4 are plotted. The empty squares present the results by the hybrid
simulations, and the pentagrams for the fully quantum simulation. The 1/N scaling is shown by the
solid black curve.

Figure 5 compares the simulation results on ibmqx2 and the numerical results. In (a)
and (b), the work distribution of the hybrid simulation results (blue solid line) is compared
to the exact numerical results (gray dashed line), with the operation time δτ = 0.5 in (a)
and δτ = 10 in (b). For the hybrid simulation on ibmqx2, the maximum step number is
N = 4 with the five qubits. To mimic the random selection of the sub-channel, we simulate
every possible selection of the sub-channels in the isochoric processes and measure the
state populations of the system qubit. For each selection, the corresponding circuit is
implemented on ibmqx2 for 8192 shots. The average work is obtained by summing the
work in each selection with the corresponding probability p{Kj} = ∏j p(j)

Kj
(Kj =↑ or ↓). If

the random selections of the sub-channels are possible, p{Kj} should be determined by the
CRNG. Yet, here the probability of the selection p{Kj} is not implemented in the experiment

but calculated with p(j)
Kj

since the random selection of the two sub-channels cannot be
implemented on ibmqx2.

Figure 5c,d show the excited state population of the system qubit for the fully quantum
simulation of two-step isothermal process on ibmqx2. The operation time of each isochoric
process is δτ = 0.5 in (c) and δτ = 10 in (d). The excited state populations pe(tj) at
tj = 0, δτ and 2δτ are obtained by implementing 40960 shots of the corresponding circuits.
Compared to those of the numerical result (gray bar), the ibmqx2 simulation results (blue
bar) are larger, since the noises in the quantum computer generally lead to a more mixed
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state. At the end t = 2δτ of the process, the most quantum gates are used, and the absolute
error reaches about 0.05. The fidelity between the simulation and the numerical results

F(t) =
√

p(num)
g (t)p(sim)

g (t) +
√

p(num)
e (t)p(sim)

e (t) is explicitly F(2δτ) = 0.998 and 0.999
for the second step t = 2δτ in (c) and (d), respectively.
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Figure 5. Comparison of the ibmqx2 simulation and the numerical results. (a,b) show the microscopic
work in the hybrid simulation with the step number N = 2, 3 and 4. The ibmqx2 simulation result
(blue solid line) is compared with the numerical result (gray dashed line). (c,d) show the excited state
population pe(t) at each step in the fully quantum simulation of the two-step isothermal process. The
ibmqx2 simulation results (blue bar) are compared to the numerical results (gray bar).

The performed work in both the hybrid simulation and the fully quantum simulation
is obtained according to Equations (12) and (13), as listed in Table 2. In Figure 4, the extra
work in the ibmqx2 simulation results exceeds that of the numerical result due to the
accumulated error in long circuits. The error mainly comes from the two-qubit gates, since
the error probability in two-qubit gates (from 1.344× 10−2 to 1.720× 10−2) greatly exceeds
that of single-qubit gates (from 3.246× 10−4 to 2.164× 10−3) [32]. The computing accuracy
might be improved by using either quantum error correction or quantum mitigation [49].
Limited to the precision of operation on ibmqx2, the results deviate from the theoretical
expectations.
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Table 2. The performed work obtained by the ibmqx2 simulation and the numerical results.

N
δτ = 0.5 δτ = 10

W ibmqx2 Wexact W ibmqx2 Wexact

Hybrid simulation

2 0.251 0.245 0.232 0.226

3 0.246 0.233 0.221 0.212

4 0.243 0.224 0.217 0.206

Fully quantum simulation 2 0.251 0.245 0.238 0.226

The current simulation scheme have only considered the commutative Hamiltonian
at different steps [H(tj), H(tj′)] = 0 and the adiabatic process as the quench with zero time
δτadi = 0. It can also be generalized to the discrete isothermal process with finite-time
adiabatic processes, where the effect of the non-commutative Hamiltonian will increase
the extra work [50]. For a generic adiabatic process, the unitary evolution of the two-
level system should be simulated with the single-qubit gates on the system qubit. The
off-diagonal elements of the initial density matrix cannot be neglected, since the changing
ground and excited states lead to the interplay between the off-diagonal elements and
the populations. Besides, the current simulation can be simplified for the ideal discrete
isothermal process, where the perfect thermalization of the isochoric processes allows
simulating each elementary process separately by preparing the equilibrium states at the
beginning of the adiabatic processes [38].

With the limited number of qubits, we only show a few data points in Figure 4.
It requires either more usable qubits or the ability of resetting to simulate the discrete
isothermal process with a larger step number N in experiment. Another topic is to test
the optimal control scheme [36]. For the given operation time τ, the control scheme is
optimized to reach the minimum extra work. The lower bound of the extra work is related
to the thermodynamic length [44,46,51,52], which endows a Riemann metric on the control
parameter space. The current experimental proposal might also be utilized to measure the
thermodynamic length of the isothermal process for the two-level system.

5. Conclusions

We show an experimental proposal to simulate the finite-time isothermal process of
the two-level system with the superconducting quantum circuits. Two methods, the hybrid
simulation, and the fully quantum simulation, are proposed to realize the generalized
amplitude damping channel. Assisted by the classical random number generator or the
quantum superposition, the hybrid or the fully quantum simulation can simulate an N-step
isothermal process with N + 1 or 2N + 1 qubits, respectively.

We have used the quantum computer of IBM (ibmqx2) to demonstrate the simulation
of the discrete isothermal processes, which have been realized for four steps with the hybrid
simulation and two steps with the fully quantum simulation. If more steps of elementary
processes can be realized experimentally, the 1/τ scaling of the extra work can be tested by
the thermodynamic simulation on the universal quantum computer.

Supplementary Materials: The following are available online at https://www.mdpi.com/1099-430
0/23/3/353/s1 for the experimental data on ibmqx2.
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