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Simple Summary: Circulating tumor cells (CTCs) are a promising biomarker for the risk of prostate
cancer aggressiveness and metastasis and play a role in the processes of tumor migration and
metastasis. CTC clusters, which have different physical and biological properties from individual
CTCs, are collections of tumor cells and non-malignant cells, resulting in greater metastatic potential.
Therefore, this review aims to summarize the current knowledge of CTC clusters in metastasis as
well as related biological properties and to suggest possibilities for their usage in diagnostic and
therapeutic practice.

Abstract: Prostate cancer (PCa) exhibits high cellular heterogeneity across patients. Therefore,
there is an urgent need for more real-time and accurate detection methods, in both prognosis
and treatment in clinical settings. Circulating tumor cell (CTC) clusters, a population of tumor
cells and non-malignant cells in the blood of patients with tumors, are a promising non-invasive
tool for screening PCa progression and identifying potential benefit groups. CTC clusters are
associated with tumor metastasis and possess stem-like characteristics, which are likely attributable
to epithelial–mesenchymal transition (EMT). Additionally, these biological properties of CTC clusters,
particularly androgen receptor V7, have indicated the potential to reflect curative effects, guide
treatment modalities, and predict prognosis in PCa patients. Here, we discuss the role of CTC clusters
in the mechanisms underlying PCa metastasis and clinical applications, with the aim of informing
more appropriate clinical decisions, and ultimately, improving the overall survival of PCa patients.

Keywords: circulating tumor cells; circulating tumor cell clusters; prostate cancer; epithelial–mesenchymal
transition; metastasis; androgen receptor V7

1. Introduction

In the United States, prostate cancer (PCa) is the most common cancer diagnosed in
males [1–3]. Since prostate-specific antigen (PSA) was widely applied to the detection of
asymptomatic PCa during the early 1990s [4], overall PCa incidence in males has generally
decreased. This has revealed the immense benefit of inspection tools. Recently, however, it
has been found that early detection of PCa by PSA testing has led to overdiagnosis and
overtreatment. Thus, there is an urgent need for alternative tools [5]. Liquid biopsy, defined
as the analysis of tumor cells and tumor-derived products in the blood and other body
fluids [6], is an alternative to tissue biopsies. It can be used to diagnose and screen for
tumors in real-time. Additionally, it is a noninvasive and replicable way of monitoring
circulating tumor cells (CTCs), cell-free DNA (cfDNA), cell-free RNA (cfRNA), and extra-
cellular vesicles and particles (EVPs). Studies have demonstrated that CTCs’ diagnostic
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efficiency is superior to that of PSA when patients’ PSA levels are between 4–10 ng/mL [7].
In conclusion, biomarkers and enumeration of CTCs show the prospective evaluation of
prognosis and treatment efficacy in metastatic PCa [8–10].

CTCs are rare in the peripheral blood. For instance, single CTCs’ prevalence is from 1
to 10 CTCs per 106–108 white blood cells [11], and CTC clusters are estimated to constitute
only 2–5% of all CTC events detected in circulation [12]. The characteristic markers of CTCs
for isolation include epithelial cell adhesion molecules (EpCAM; transmembrane glyco-
protein), vimentin (VIM; structural cytoskeletal protein), and cytokeratins (CK8, 18, 19).
According to biomarkers and the physical characteristics of CTCs, several recent methods
have been designed to enrich and isolate CTCs from blood cells (especially white blood
cells) (Table 1). For example, devices have been developed to isolate and detect CTCs based
on the presence of specific proteins (CellSearch®(Menarini Silicon Biosystems, Bologna,
Italy), CTC-chip, RosetteSep), gene transcripts (AdnaTest), size (microfluidic chips), den-
sity (Oncoquick), electric charge, secretion of specific proteins (EPISPOT) and invasive
properties [13]. To date, CTCs have been reported in various solid tumors including breast
cancer [14], prostate cancer, lung cancer [15], colon cancer [16], liver cancer [17], and head
and neck cancer [18]. CTCs are generally referred to as either single CTCs or CTC clus-
ters, with the latter considered to have a 23- to 50-fold greater metastatic potential [12,19].
Studies suggest that a CTC cluster contains at least 2 tumor cells (and up to 100) and
several non-malignant cells including but not limited to a heterogeneous group of cells,
for example, tumor-associated macrophages (TAMs), cancer-associated fibroblasts (CAFs),
white blood cells, epithelial cells and platelets [20–25]. In contrast to single CTCs, CTC
clusters show distinctive phenotypes, gene expression, and metastasis patterns, indicating
unique biological properties in neoplasm metastasis. CTC clusters can be detected in
men with either localized PCa or metastatic PCa, and there is a larger enumeration of
CTC clusters in men with advanced PCa during multiple stages of cancer recurrence and
metastasis [22,26–29]. Moreover, CTC clusters have also been detected in prostate cancer
patient-derived xenograft (PDX) models. This has provided a new tool for exploring PCa
metastasis [30].

Table 1. CTC analytes and isolation devices in prostate cancer.

Subcategory Isolation Technology Basis of Detection Key Features Ref.

Antibody CellSearch system EpCAM The most widely
validated CTC detection technology [31]

Antibody - Cell-surface vimentin The ability to detect CTCs
undergone EMT [32]

Gene transcripts AdnaTest KLK3, PSMA, and
EGFR PCR High sensitivity [33]

Gene transcripts DDPCR
KLK2, KLK3,

HOXB13, GRHL2,
and FOXA1 PCR

Low blood volume, little on-site
processing, and long stability for

batch processing
[33]

Microfluidics Cluster-Chip Cell–cell adhesion

Label-free, the ability to isolate
unfixed CTC clusters

from unprocessed
whole blood specimens

[25]

Abbreviations: CTC—circulating tumor cell; EpCAM—epithelial cellular adhesion molecule; EMT—epithelial–
mesenchymal transition; PCR—polymerase chain reaction.

Many questions still remain about CTC clusters. For instance, is the direct derivation
of CTC clusters from primary tumors or single CTCs in the peripheral blood? Likewise,
the relationship and interaction between CTC clusters and single CTCs remain unclear.
How do CTC clusters metastasize? How are CTC clusters related to stem cells? In this
context, these topics have been reviewed with an emphasis on the relationship between
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CTC clusters and PCa metastasis, as well as the prospective application of CTC clusters in
clinical settings.

2. CTC Clusters and Single CTCs

To date, despite there being no solid evidence that CTC clusters and single CTCs are
two totally different and independent cells, the contrast between CTC clusters and single
CTCs based on physical properties and biological features is reported in many tumors. In
patients with tumors, single CTCs are more prevalent than CTC clusters, and CTC clusters
consisting of several tumor cells are larger than single CTCs. This lessens the potential for
extravasation. However, CTC clusters have been observed reversibly unfolding into single
chains when they go through vessels [34]. Non-malignant cells in CTC clusters are involved
in extravasation and stabilize CTC clusters in peripheral blood [35]. In addition, single
CTCs are unable to form polyclonal metastatic foci in distant organs, but CTC clusters have
a greater ability to metastasize and also have the potential to form polyclonal metastatic
foci [36]. In conclusion, the composition, survival advantage, and metastatic potential are
the main differences between CTC clusters and single CTCs.

3. CTC Clusters and EMT
3.1. Locations of Cells with Different E/M States in CTC Clusters and Invasion

EMT is a complex cellular pathway in which epithelial cells lose epithelial charac-
teristics (e.g., cell-to-cell adhesion) and gain mesenchymal characteristics (e.g., increased
migratory capabilities) [37]. Experimental evidence that has accumulated over decades
has indicated that tumor cells in CTC clusters undergo EMT, as demonstrated by EMT
biomarker detection [30,38,39]. The evidence also reveals that EMT has potential rele-
vance to mechanisms underlying tumor metastasis, cancer stem cell (CSC) generation and
maintenance, as well as drug resistance [40]. At the molecular level, the loss of adherens
junction protein E-cadherin is considered a hallmark of EMT [41]. It results in the gain of
mesenchymal markers such as vimentin, N-cadherin, α-smooth muscle actin (α-SMA), and
fibronectin [42]. Satelli et al. reported that FOXC2, an EMT-specific marker, was detectable
in CTCs from 10 metastatic PCa patients. However, the epithelial markers EpCAM and
E-cadherin were absent in these cells, indicating a mesenchymal phenotype [32]. Surpris-
ingly, Yu et al. found an association between the expression of mesenchymal markers and
CTC clusters in human breast cancer specimens, rather than single migratory cells [43].
This has focused following researches on CTC clusters and EMT. In PCa-based PDX models,
CTC clusters have been observed to contain a mix of cell phenotypes, and the location
patterns of different cell phenotypes are worthy of inquiry. For instance, epithelial-like cells
have been located on the periphery of the cluster, surrounding hybrid or mesenchymal-like
cells in PCa-based PDX models [30]. The epithelial phenotype has been implicated in
metastatic colonization [40]. Lori E. et al. demonstrated that PCa with an increasingly
mesenchymal phenotype shed greater numbers of CTCs more quickly and with greater
metastatic capacity than PCa with an epithelial phenotype in 4 PCa models with progressive
epithelial (LNCaP, LNCaP-C42B) to mesenchymal (PC-3, PC-3M) phenotypes [44]. Thus,
epithelial-like cells on the periphery of CTC clusters might be essential to understanding
mechanisms underlying distant metastasis. However, tumor cells with an EMT phenotype
have exhibited a reverse location pattern in solid tumors. In primary and secondary PCa,
the expression of the EMT phenotype at the invasive tumor front is higher than that at
the center [45]. A similar phenomenon has also been observed in other solid tumors such
as breast cancer [46]. Thus, it is the different environments that might result in some
variation in cell phenotypes in CTC clusters or solid tumors. Additionally, it is unclear
whether the distribution of CSC-like cells might have differential effects on cell pheno-
type dedifferentiation or conversion within CTC clusters or solid tumors. Collective cell
migration has been observed not only in tumors but also in wound healing and tissue
renewal. Cells in collective migration can perceive the microenvironmental chemotaxis
and initiate the cellular migration by dividing into “leader” cells and “follower” cells [47].
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Single-cell RNA-sequencing analysis of leader-like and follower-like cells has revealed
differentially expressed gene profiling pertaining to cellular locations within the migrating
collective [48]. For example, genes associated with Wnt/planar cell polarity (PCP) signaling
were overexpressed in cells at the invasive front. This indicates that Wnt/PCP signaling
is involved in tumor invasion [48,49]. Luo et al. demonstrated that the crosstalk between
androgen receptor (AR) and Wnt signaling promotes the androgen-independent growth
of PCa by maintaining LNCaP cells under androgen-depleted conditions. WNT5A and
LEF1 are reported to be downregulated in low-grade PCa while upregulated in metastatic
PCa [50]. In addition, a retrospective analysis suggested that non-canonical Wnt signaling
was activated in CTCs of 13 PCa patients with AR inhibitor, resulting in antiandrogen resis-
tance [51]. In PCa, ectopic expression of Wnt5a suppresses the anti-proliferative effect of the
inhibition of AR, whereas this suppression restores partial sensitivity in drug-resistant cells.
Wnt5a, a vertebrate Wnt ligand, triggers the Wnt/PCP signaling pathway. Ultimately, it
regulates cytoskeletal remodeling, such as cell polarity, migration, and subsequently, tissue
re-arrangement and organ formation [52]. The assessment of noncanonical Wnt signaling
pathway components seems to be a promising way to identify patients with metastatic
castration-resistant prostate cancer (mCRPC). These patients are likely to have poor prog-
noses after treatment with androgen deprivation therapy (ADT). Therefore, the interaction
between the Wnt signaling pathway and the AR signaling pathway might be relevant to
the ADT resistance. In patients’ CTC clusters, the distribution of tumor cells in different
E/M states might imply that tumor cells perform various roles in the migration process.

3.2. Stem-Like State of Hybrid E/M Phenotype Cells and Metastasis

It has been assumed that many intermediates between epithelial and mesenchymal
phenotypes co-exist in the migrating CTC cluster. The hybrid E/M phenotype cells form
heterogeneous CTC clusters with cells in various EMT states and maintain cell–cell junctions
on the basis of E-cadherin [53,54]. However, the function of each phenotype remains
controversial. Several recent studies have suggested that it is hybrid E/M cells that act
as pluripotent CSCs and promote invasiveness [42]. To date, there have been consistent
observations in hybrid E/M cells isolated from mouse PDX models of PCa [55], as well as
in the co-culturing of epithelial PCa cells with post-EMT PCa cells in vitro [56]. Further, this
hypothesis has received the support of clinical evidence [57], which suggests that hybrid
phenotypes “gain” features of both epithelial and mesenchymal phenotypes in carcinoma
specimens [58,59]. Ruscetti et al. demonstrated that mesenchymal and epithelial states in
PCa cells of Cre+/−; PtenL/L; KrasG/+; Vim-GFP mouse models contribute differentially to
their capacities for tumor initiation and metastatic seeding, respectively [55]. Mesenchymal
tumor cells display an enriched tumor-initiating capacity, and epithelial tumor cells can
exist with the capacity to form macro-metastases. A hybrid phenotype that possesses both
properties of mesenchymal and epithelial tumor cells has an enhanced ability to migrate
and form distant foci in a complex environment (Figure 1). However, some researchers
have held opposing views. Tsuji et al. demonstrated that only appropriate cooperation
between EMT cells and non-EMT cells of HCPC-1 cells can promote successful metastasis;
each kind of cell alone is unable to metastasize [60]. In this study, the researchers did not
consider the hybrid E/M state. Furthermore, several findings have indicated that EMT is
dispensable for cancer cell-mediated migration. For instance, Fischer et al. demonstrated
that inhibiting EMT by targeting ZEB1 and ZEB2 overexpression via miR-200 does not
impair breast tumor cells’ ability to form distant lung metastases [61]. Likewise, Zheng
et al. suggested that EMT inhibition by deleting Snail or Twist is critical to neither robust
invasion nor the metastasis of pancreatic cancer [62]. Together, CTC clusters undergoing
EMT are pivotal for migration, but hybrid E/M phenotype cells’ exact role in metastasis is
worth pursuing further.
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Figure 1. Cells that make up circulating tumor cell (CTC) clusters. CTC clusters include tumor cells
and non-malignant cells that consist primarily of tumor-associated macrophages (TAMs), cancer-
associated fibroblasts (CAFs), and platelets. Tumor cells undergo the epithelial–mesenchymal tran-
sition (EMT), and they exhibit three phenotypes: epithelial phenotype, mesenchymal phenotype,
and hybrid E/M phenotype. The epithelial phenotype has the capacity for tumor initiation, and
the mesenchymal phenotype has the capacity to form metastasis. The hybrid E/M phenotype is
equipped with both capacities. TAMs, CAFs, and platelets each play roles in metastasis and prostate
cancer invasion.

The hybrid EMT cell state, with both epithelial and mesenchymal features, is recon-
cilable with the state of highly plastic stem-like cells. Similarly, in the process of blood
dissemination, CTCs undergoing EMT possess features of CSC-like tumor cells that are
responsible for generating most of the metastatic foci, as well as capabilities of resistance
to radio- and chemotherapy-based treatment [11,63]. Likewise, CTC clusters have been
observed expressing more mesenchymal transcripts in patients receiving cancer treat-
ment [64]. A study suggested that 35/46 (76%) CTCs were CD133-positive, a putative
prostate cancer stem cell marker, in 35 patients with high-risk, localized prostate cancer;
the researchers demonstrated that the CD133 and E-cadherin-positive CTC fragments were
associated with biochemical recurrence at 1 year [65]. Compared to single CTCs in the
DNA methylation landscape of 43 breast cancer patients and 3 mouse models, CTC clusters
resulted in hypomethylation in the binding sites of OCT4, NANOG, SOX2, and SIN3A.
However, single CTCs featured hypomethylation of other TFBSs, including those that are
occupied by MEF2C, JUN, MIXL1, and SHOX2 [19]. Additionally, most of these binding
sites were occupied by master stemness and associated with proliferation regulators. The
patterns were similar to those of embryonic stem cells. Of note, NANOG is essential to the
establishment of pluripotency, self-renewal, and reprogramming [66], which regulate the
gene expressions involved in the mitochondrial metabolic pathways required to maintain
tumor-initiating stem-like cells in PCa and breast cancer [67]. Tumor heterogeneity, which is
generated evolutionarily not only as a result of genetic alterations but also by the presence
of cancer stem cells, is a driving factor behind the failure of cancer treatment modalities.
Therefore, elucidating the molecular underpinnings of CSCs’ biological features is crucial
to the development of novel cancer therapies for PCa.

4. CTC Clusters and Metastasis
4.1. Sources of CTC Cluster

It has been demonstrated that CTC clusters can reduce CTC apoptosis, elevate cell
viability, and promote the ability to re-form clusters [12,68]. Furthermore, CTC clusters
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have been found to exhibit stronger resistance to anti-tumor drugs than single CTCs [69,70].
However, how CTC clusters form remains controversial. To date, there are two main
hypotheses explaining how CTC clusters form (Figure 2). The first is that as tumor pieces,
CTC clusters fall off the primary tumors and then travel through the vessels. The other is
that CTC clusters are aggregated from single CTCs in the blood. Alone, CTC clusters are
considered to be a part of the primary tumor, shedding into the blood spontaneously or pas-
sively. However, recent findings have challenged this hypothesis. Liu et al. have observed
that individual CTCs derived from patient-derived breast cancer models aggregate into
CTC clusters in the blood vessels, suggesting the potential resource of CTC clusters. Most of
the clusters contain two types of tumor cells as labeled by fluorescent indicators, resulting
in a high ratio of polyclonal CTC aggregation within 2 h in the lungs. However, the ratios of
dual-color aggregates in the lungs gradually decrease over time [71]. This study provides
evidence that CTC clusters are directly formed by individual CTCs in the peripheral blood.
Then, what is the relationship between metastatic foci and CTC clusters? Maddipati et al.
reported that most metastatic foci in the distant organs were polyclonal populations in a
mouse model of pancreatic cancer; whereas metastatic foci became increasingly dominated
by a single clonal population as they increased in size (Figure 2) [36]. In addition, genes
that are highly expressed in primary tumors compared to CTCs are consistent with genes
expressed in primary tumors compared to metastases. Furthermore, it has been reported
that single CTC genomic profiling displays high concordance with metastatic biopsies from
the same patients [72]. These studies imply that CTCs might be an origin of metastatic
foci, and there is a differentiation between primary tumors and CTCs [51]. Cheung et al.
determined that polyclonal lung metastases arise via colonization by a multicellular cluster
of tumor cells instead of the serial seeding of single tumor cells. Additionally, CTC clusters
were reported to exist in five different stages of metastasis: collective invasion, locally
disseminated clusters in the adjacent stroma, intravasation tumor emboli, CTC clusters,
and distant metastases [68]. Taken together, these observations suggest CTC clusters might
form when there are a variety of heterogeneous tumor cells in the vasculature, and then
gradually convert from polyclonal to oligoclonal foci after colonizing distant tissues. If
CTC clusters are gathered by single CTCs, then how do individual CTCs recognize each
other and maintain a state of aggregation?
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Figure 2. Illustrations of circulating tumor cell (CTC) cluster formation, extravasation, and colo-
nization. CTC clusters originate from pieces of primary tumors or are assembled by single CTCs in
peripheral blood. Then, CTC clusters reversibly unfold into single chains when they go through ves-
sels, and they invade other parts of the body. Metastatic foci formed by CTC clusters are increasingly
dominated by a single clonal population.
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4.2. Role of CTC Cluster Components

CTC clusters consist of not only tumor cells, but also non-malignant cells, including
TAMs, CAFs, immune cells, epithelial cells, and platelets. In CTC clusters, non-malignant
cells act as protectors and supporters for cancer cells in the blood and increase cancer
cells’ ability to migrate and invade (Figure 1). In solid tumors, CAFs promote tumor
invasion by multiple tumor types with multiple mechanisms, ranging from typical cell–
cell signaling to dynamic alteration of ECM, which is the result of fibroblast remodeling
activity. Likewise, PCa patients’ CTC clusters go through a high magnitude of fluid shear
stress (FSS) in the peripheral blood, during which process reactive CAFs can conserve
tumor cells’ proliferative capability by cell–cell contact and secreting paracrine factors [24].
The reactive CAF phenotype emerges from normal fibroblasts (NFs), which are activated
by cytokines secreted by tumors. Additionally, reactive CAFs can be identified by the
overexpression of α-SMA, fibroblast specific protein 1, and fibroblast activation protein [73].
Further, Duda et al. demonstrated that CAFs spontaneously spread to the lung tissue
along with metastatic cancer cells and accelerate the growth of secondary tumors [74]. This
evidence indicates that CAFs are particularly relevant in CTC clusters with metastasis
as well as invasion. CAFs are one of the abundant stromal cell populations in the tumor
microenvironments. In primary tumors, CAFs facilitate a breach of the basement membrane
(BM) by altering the cellular organization and the physical properties of BM, making
it less compact for tumor cell invasion [75]. Tumor protrusion and processes can be
inhibited when tumor cells are exposed to healthy extracellular matrixes, indicating CAFs’
critical role in promoting metastasis [76]. Recently, it has been reported that a heterophilic
adhesion among CAFs and tumor cells via N-cadherin or E-cadherin guides tumor cell
migration within connective tissue [77]. That is in line with a previous report demonstrating
N-cadherin- and E-cadherin-mediated cancer cell migration by cell–cell junction [78]. In
sum, CAFs appear to be involved in cancer cell migration and invasion, especially in
intercellular adhesion. In PCa, TAMs uniquely co-isolated with CTCs have been shown to
promote conversion from epithelial–mesenchymal plasticity, resulting in the adaptation of
cancer cells to mechanical stress. Thus, CTC clusters are conferred with adaptive resistance
to shear stress and maintain integrity [20]. Additionally, platelets can act as a coating of
CTCs to protect them from violent FSS, and their adhesive proteins (fibronectin and von
Willebrand factor) have been found to interact with CTCs through integrins, supporting
CTC cluster formation [78]. In addition, platelets have been shown to protect CTCs from
apoptosis, promote EMT and extravasation, and facilitate escape from immune system
surveillance such as by inhibiting natural killer (NK)-cell-induced lysis in PCa [79,80].
For instance, Labelle et al. demonstrated that platelet-derived TGFβ and the contact
between platelets and tumor cells synergistically activate the TGFβ/Smad and NF-kB
pathways in colon carcinoma and breast carcinoma cells. This results in the transition
to an invasive mesenchymal-like phenotype [81]. Moreover, various immune cells also
protect CTC clusters from anti-tumor immune attacks, promoting tumor cell migration.
Szczerba et al. observed CTC–white blood cell clusters in breast cancer by staining EpCAM,
human epidermal growth factor receptor 2 (HER2), epidermal growth factor receptor
(EGFR), and CD45 [82]. Furthermore, neutrophils have also exhibited promotive effects
on CTC migration. In conclusion, non-malignant cells within CTC clusters play a critical
role in promoting extravasation by altering cell–cell junctions and offering protection from
anti-cancer immune attacks and FSS in the process of cancer cell migration and colonization.

4.3. Distant Metastatic Foci and CTC Clusters

Considering that CTCs can grow into emboli, researchers previously assumed that
CTC clusters were unable to transit through capillaries 5–10 µm in diameter in view of
cluster size. However, Au et al. recently presented evidence that over 90% of CTC clusters
containing up to 20 cells successfully traverse 5- to 10-µm porous constrictions during
detection by means of microfluidic devices. It has been noted that CTC clusters can rapidly
and reversibly unfold into single chains by selective cleavage of intercellular adhesions



Cancers 2022, 14, 3985 8 of 19

when CTC clusters transit through narrow blood vessels (Figure 2) [34]. Similarly, Green
et al. utilized a microfluidic device (a Pillar device and an X-magnetic device) to isolate
single CTCs and clusters from whole blood in mouse models and patients with metastatic
breast cancer. Surprisingly, they observed that some of the clusters could maintain weak
intercellular adhesion. These clusters re-arranged their shape to travel through the pil-
lars, and then clusters re-formed in the X-magnetic device [83]. This process provided
direct evidence that CTC cluster cohesion can be regulated by the dynamic expression of
E-cadherin, as reflected by the adaptive alteration of cluster shapes. Additional evidence
revealing the metastatic potential of CTC clusters has been based on Na+/K+ ATPase
inhibitors, which lead to DNA methylation remodeling at critical sites and metastasis
suppression by dissociating CTC clusters into single cells [19]. These studies provide
novel ideas on how CTC clusters transit to distant metastatic foci. CTC clusters exhibit
much higher intercellular adhesion levels than single CTCs, as evidenced by a report
that CTC clusters in breast cancer overexpress plakoglobin (by 219-fold), an important
component of desmosomes and adherence junctions, in comparison to single CTCs [12].
In a CHD1-normal cohort of PCa patients, high junction plakoglobin expression, which
was linked to strong androgen receptor expression, high cell proliferation, and PTEN and
FOXP1 deletion, was an independent predictor of poor prognosis and early biochemical
recurrence [84]. Now, the precise role of intercellular adhesion in CTC cluster migration is
still not well understood. Thus, identifying intercellular adhesion is crucial for elucidating
the mechanism underlying PCa metastasis.

5. Separation Techniques and Devices

Despite the growing number of methods associating biological attributes and physical
properties, particularly EpCAM and size, with the isolation and detection of CTC clusters,
it is still a major challenge to isolate CTC clusters. The current CTC cluster enrichment
technologies mainly use biological or physical properties of the CTC clusters for isolation.
The CellSearch® system was the first and only US Food and Drug Administration (FDA)-
authorized system for the enumeration of CTCs in 7.5 mL of blood to rely on the expression
of EpCAM only [34], resulting in overlooking the more invasive EpCAM-negative CTCs
that are in the process of epithelial–mesenchymal transition (EMT) [20]. Of note, some stud-
ies have suggested that non-blood-derived aneuploid circulating tumor-derived endothelial
cells (CTECs) have properties in common with CTCs, such as the expression of EpCAM.
Thus, CTECs’ influence on CTC detection is deserving of much attention [15]. Recently,
to purify CTC clusters out of individual CTCs, researchers have utilized the physical and
biological properties in combination, including the size, deformability, and expression of
cellular markers [35,36]. This is a great opportunity to understand CTC clusters.

Microfluidic devices, which reduce cluster separation, accelerate processing time, and
collect live CTC clusters for downstream analysis, display the potential to be the most
favorable platform for isolating CTC clusters [85]. A number of intrinsic biomarkers have
been used to identify and isolate CTC clusters: for example, size, electrical polarizability,
and hydrodynamics in microfluidic systems [86]. For instance, due to the strong size-
dependence of inertial migration, CTC clusters and single CTCs can be selected by precisely
controlling the channel length in untreated whole blood [87]. Additionally, deterministic
lateral displacement has been used to continuously separate CTC clusters by size. CTC
clusters, having greater sizes than individual CTCs, are removed from whole blood by
deterministic lateral displacement of the microfluidic device. CTC clusters are collected
through successful deflection, while the remaining parts are sorted by discriminating
asymmetric clusters from symmetric single cells. Au et al. [88] demonstrated that the
recovery of cultured breast cancer CTC clusters from whole blood using this integrated
two-stage device results in minimal cluster separation, 99% recovery of large clusters, and
cell survival rates exceeding 87%. Moreover, the ability of electric fields to exert forces
on particles has been used as a means of manipulation in stand-alone separation devices.
Chiu et al. [89] reported that optically induced dielectrophoresis-based cell manipulation
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in a microfluidic system was able to isolate H209 small cell lung cancer cell clusters with
a cell purity and recovery rate of 91.5 ± 5.6%, and 70.5 ± 5.2%, respectively, without
compromising integrity. However, electrochemical reactions can result in free radicals,
leading to significant cellular damage. Microstructural protrusions have been shown to
be useful for entrapping cells and performing cell separation based on size, deformability,
and density. Herringbone grooves form a flow pattern suitable for separating particles
of similar size based on density. The Herringbone-Chip with low shear flow properties
revealed the presence of CTC clusters in patients with metastatic prostate cancer [90]. In
sum, microfluidic chips exhibit the ability of efficient cell sorting without purification, high
system throughputs, and low sample volume.

6. CTCs in Clinical Application

Liquid biopsy is the process of collecting information relevant to disease in body fluid
(e.g., blood), including CTCs, cfDNA, cfRNA, and EVPs. In PCa, liquid biopsy has the
advantages of easy acquisition, high replicability, and superior reflection of cellular proper-
ties, treatment efficacy, and cancer prognosis. Regarding PCa patients with bone metastasis,
liquid biopsy is superior to tissue biopsy, since the latter is technically challenging. In
addition, in bone metastasis, disseminated tumor cells (DTCs) are a special kind of CTC
that can home to the bone marrow. The amount of DTCs isolated from bone marrow is
larger than that of CTCs isolated from blood [91,92]. During this process, DTCs are also a
candidate for tumor sampling. From another perspective, cfDNA, also called circulating
tumor DNA, is a DNA fragment released into the blood circulation from apoptotic, necrotic
or secreted tumor cells. The genetic variation and epigenetic features of tumor cells can be
well preserved in cfDNA, making it a potential biomarker [93–95]. However, the amount
of cfDNA is hard to quantify due to the high degree of fragmentation and low circulating
concentration. Moreover, cfDNA measurement can be complicated by heart dysfunction
associated with heavy smoking or physical exercise. Alternatively, EVPs can also serve as
an indicator of cancer treatment efficacy, and even for early diagnosis and prognosis estima-
tion [96–98]. Hoshino et al. investigated EVP proteomic profiles in 120 human samples and
demonstrated that plasma-derived EVPs can be utilized to detect early oncogenesis with
95% sensitivity and 90% specificity [99]. In conclusion, liquid biopsy (especially CTCs), as
an emerging non-invasive testing method, plays a vital role in aiding diagnosis, assessing
efficacy and prognosis, and monitoring early recurrence and drug resistance. As such, it
may become an important component of future cancer management.

6.1. CTC Enumeration

For PCa, extensive findings have suggested that CTCs play a pivotal role in guiding
chemotherapeutics [100,101], predicting prognosis [102–107], and reflecting treatment
effects [108–110] (Table 2). With regard to the limited technological methods for purifying
single CTCs and CTC clusters, most studies involving CTCs do not distinguish CTC
clusters from single CTCs when they explore the role of CTC counting. For instance,
several studies have established the prognostic role of CTC enumeration in both localized
and metastatic PCa patients, demonstrating a higher prognostic performance. Choi et al.
demonstrated that localized PCa patients who were CTC-positive were at a higher risk
of up-staging and up-grading [111]. However, Meyer et al. suggested that there is no
significant correlation between CTC detection and PSA, disease characteristics, or the
development of biochemical recurrence in patients with localized PCa [112]. Zapatero
et al. also did not observe any association between CTC count and OS in 65 patients with
advanced high-risk localized PCa [113]. In sum, the effect of CTC counts on localized PCa
has been controversial. Therefore, larger-scale trials with more sensitive techniques are
needed to confirm it, and in metastatic PCa patients, the prognostic role of CTC enumeration
has more practical applicability. Lozano et al. demonstrated that baseline CTC enumeration
of 80 mCRPC patients treated with docetaxel had greater significance than PSA quantitation
in predicting overall survival [114]. Kruijff et al. summarized 114 mCRPC patients treated
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with cabazitaxel in the second round of chemotherapy. They determined that the CTC count
has a strong prognostic value, for both progression-free survival (PFS) and overall survival
(OS) [115]. In addition, Goldkorn et al. conducted a phase 3 prospective randomized trial in
metastatic castrate-sensitive prostate cancer (mCSPC) patients treated with ADT combined
with orteronel or bicalutamide. After adjusting for disease extent and distinguishing
between patients likely to experience poorer survival outcomes, they found that baseline
CTC counts in mCSPC had a high predictive value for 7-month PSA and 2-year PFS
(N = 264 and N = 336, respectively) [116]. In sum, the CTC count is a promising predictor
of outcomes in patients with mCRPC. Researchers have further differentiated PCa patients
by CTC cutpoints of 0, 1–4, and ≥5, hoping for a more reasonable prognostic prediction. A
pilot study suggested that CTC-positive (≥1 CTC/7.5 mL blood) patients with recurrent
PCa have worse pathological and short-term oncological outcomes [117]. In addition, Yang
et al. demonstrated that total CTC count ≥5/5 mL blood was an independent predictor
of early progression to mCRPC and shorter cancer-specific survival after cytoreductive
radical prostatectomy for 54 oligometastatic hormone-sensitive PCa patients [118]. These
findings indicate that CTC enumeration, as an early treatment response biomarker, is
helpful in supporting the utilization of CTC quantification to identify patient cases with
early progression. It is also useful in selecting intensive treatments to prevent unnecessary
exposure to ineffective therapy with undesirable toxicities [114]. Taken together, there
is extensive evidence of an association between CTC count, prognostic prediction, and
therapeutic efficacy in PCa patients, especially those with metastatic PCa.

To date, increasing CTC-involved experiments have provided insight regarding both
single CTCs and clusters. Recently, Zhu et al. observed that CTCs exhibited random bursts
during cancer progression in an orthotopic mouse model of human PCa. The bursting
activity was more intense in early stages and declined in late stages in PCa. CTC counts
have been found to peak during night time, suggesting that the release of single CTCs
might be regulated by circadian rhythms [119]. Thus, for the purposes of CTC detection,
blood sampling from patients at appropriate timepoints should be considered.

Table 2. CTC enumeration.

Cancer Type Results (from Published Trials)

Localized prostate cancer
CTC in patients with localized prostate cancer had a larger number than in healthy
volunteers. In patients with stage T2 tumors, the presence of Gleason pattern 5 was

positively correlated with CTC positivity (rho = 0.59, p < 0.001) [111].

Localized prostate cancer CTCs were detected in 17 patients (range: 1–clusters with >100 epithelial cells)
without significant correlations to PSA levels or Gleason scores [112].

Localized prostate cancer with ≥1 high-risk factors
(PSA > 20 ng/mL, Gleason 8–10, stage T3–4),

CTCs were detected in 5/65 patients at diagnosis, 8/62 following neoadjuvant
androgen deprivation, and 11/59 at the end of radiotherapy. Positive CTC status

was not significantly associated with any clinical or pathologic factor. Detection of
CTCs was not significantly associated with OS (p > 0.40) [113].

Oligometastatic hormone-sensitive prostate cancer
CTCs were detected in 51/54 patients, and M-CTCs detection rates were 67%. A
positive correlation was found between the M-CTC count and number of bone

metastases [118].

Metastatic castration-resistant prostate cancer Higher baseline CTC count was significantly associated with worse OS, PFS and
time to PSA progression [114].

Metastatic castration-resistant prostate cancer In 114 metastatic castration-resistant prostate cancer patients treated with
cabazitaxel, CTC counts were independently associated with PFS and OS [115].

Metastatic castrate sensitive prostate cancer
Patients with undetectable CTCs had nearly 9 times the odds of attaining 7-month

PSA ≤ 0.2 vs. >4.0 (N = 264) and 4 times the odds of achieving > 2 years PFS
(N = 336) compared to men with baseline CTCs ≥ 5 [116].

Abbreviations: CTC—circulating tumor cell; PSA—prostate-specific antigen; OS—overall survival; PFS—
progression-free survival; M-CTC—mesenchymal-circulating tumor cell.

6.2. Androgen Receptor V7

Androgen receptor V7 (AR-V7) in CTCs has been studied widely for PCa as well (Table 3),
and it has been found that the expression of AR-V7 is associated with cancer prognosis and
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drug resistance (Figure 3). AR-V7 is a truncated isoform of the canonical AR-FL protein, and
it lacks the ligand-binding domain, which is the target of enzalutamide and retains both the
DNA-binding domain and the amino-terminal domain [120]. Areti et al. suggested that AR-V7
detected in 34/69 (49.3%) CTCs is superior to that detected in 4/52 (7.7%) plasma-derived
EVP as an indicator of cancer treatment efficacy in metastatic PCa patients [121]. Moreover,
Sepe et al. confirmed that AR-V7 expression had a significant negative effect on radiological
OS in 37 mCRPC patients treated with enzalutamide or abiraterone [122]. The detection
of AR-V7 in CTCs is associated with shorter PFS and OS in mCRPC patients treated with
abiraterone or enzalutamide, but such AR-V7-positive patients still derive similar benefits from
subsequent taxane chemotherapy [101]. In a cross-sectional cohort study, Scher et al. found
that 161 mCRPC patients who had pretherapy AR-V7-positive CTCs treated with taxanes
had a more favorable survival time with taxanes relative to AR signaling (ARS) inhibitor.
Additionally, it was demonstrated that cabazitaxel improves overall OS in mCRPC patients
after docetaxel [123]. Gurioli et al. suggested that the initial reduced dose of cabazitaxel
(20 mg/sqm) had a correlation between AR-V7 expressions and worse outcomes in eight
mCRPC patients [102]. In sum, the detection of AR-V7 in CTCs is associated with poor
outcomes in abiraterone-treated patients and enzalutamide-treated patients, but the presence
of AR-V7 can be a treatment-specific biomarker that is associated with superior survival with
taxane therapy over ARS-directed therapy in the clinical setting. As for 193 mCRPC patients
whose CTCs were determined to be AR-V7-negative, Graf et al. observed that AR-V7-negative
patients had superior survival on ARS inhibitors over taxanes [106]. In addition, Gupta et al.
suggested that PTEN loss and BRCA2 gain were associated with significantly worse outcomes
in 40 AR-V7 negative mCRPC patients treated with abiraterone/enzalutamide [124]. Thus,
AR-V7-negative patients are more likely to have better survival time among metastatic PCa
patients treated with enzalutamide or abiraterone. Intriguingly, Hench et al. observed that
the expression of AR-V7 mRNA underwent a dynamic change in the progression of mCRPC,
including recovery of AR-V7 expression in six patients’ CTCs and the reversion from AR-V7-
positive CTCs to either AR-V7-negtiveCTCs or “no CTCs” [125]. This conversion may be due
to the inactivation of the AR signaling axis, resulting in reduced selective pressure for AR-V7
expression. Nevertheless, Belderbos et al. suggested that AR-V7 expression in CTCs had no
additional prognostic value in 127 mCRPC patients who progressed after administration of
docetaxel and/or enzalutamide or abiraterone [126]. Further prospective validation is needed
to explore the exact role of AR-V7 as a useful predictive biomarker in PCa patients treated
with different chemotherapeutic drugs. In view of the different treatment modalities for PCa
patients in the aforementioned studies, AR-V7 remains a prospective predictor of PCa.

Table 3. AR-V7 in metastatic castration-resistant prostate cancer.

Ref. Results (from Published Trials)

[121] AR-V7 was detected in CTCs of 34/69 metastatic castration-resistant prostate cancer patients. AR splice variants were expressed in
higher levels in CTCs than in paired extracellular vesicles.

[122] 21/37 patients CTC-positive before starting treatment with enzalutamide or abiraterone: 24% of CTC-positive patients were defined as
AR-V7-positive. Positivity for each variable was significantly associated with poorer rPFS and OS.

[123] Patients with AR-V7–positive CTCs before ARS inhibition had resistant posttherapy PSA changes, shorter rPFS, and shorter OS than
those without AR-V7–positive CTCs.

[124] Consistent PTEN loss and inconsistent BRCA2 gain were associated with significantly worse outcomes in AR-V7-negative CTC
patients treated with abiraterone/enzalutamide.

[125] 26/95 patients had ARFL+ARV7+, 22/95 patients had ARFL+ARV7−,
22/95 patients had ARFL−ARV7−, and 1/95 patient had ARFL−ARV7+ CTCs at baseline.

[126] AR-V7 expression in CTCs was not associated with OS.

[102]
CTC expression of AR-V7 was

significantly associated with OS. In patients treated with cabazitaxel 20 mg/sqm, median OS was shorter in AR-V7-positive than
-negative patients (6.6 vs. 14 months).

Abbreviations: AR-V7—androgen-receptor splice variant 7; CTC—circulating tumor cell; AR—androgen re-
ceptor; PFS—progression-free survival; PSA—prostate-specific antigen; OS—overall survival; ARS—; rPFS—
radiographical progression-free survival.
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raterone over taxanes. However, mCRPC patients who have pretherapy AR-V7-negative CTCs are 
associated with better outcomes on enzalutamide/abiraterone; subsequently, the alterations of 
PTEN loss and BRCA2 gain in CTCs indicate worse outcomes. In addition, cabazitaxel at a lower 
dose is associated with poorer outcomes after docetaxel in AR-V7-positive patients, compared to 
AR-V7-negative patients. Note that this figure should not be used for clinical decision-making. 
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Figure 3. AR-V7 (androgen receptor V7) as an indicator of chemotherapy in patients with metastatic
castration-resistant prostate cancer (mCRPC). mCRPC patients who have pretherapy AR-V7-positive
circulating tumor cells (CTCs) are associated with poorer outcomes for enzalutamide/abiraterone
over taxanes. However, mCRPC patients who have pretherapy AR-V7-negative CTCs are associated
with better outcomes on enzalutamide/abiraterone; subsequently, the alterations of PTEN loss and
BRCA2 gain in CTCs indicate worse outcomes. In addition, cabazitaxel at a lower dose is associated
with poorer outcomes after docetaxel in AR-V7-positive patients, compared to AR-V7-negative
patients. Note that this figure should not be used for clinical decision-making.

6.3. CTC Clusters

To date, only a few studies have reported the experimental acquisition and application
of CTC clusters in clinical settings. These studies have shown that these clusters reflect the
innate properties of primary tumors. Ortiz-Otero et al. demonstrated that CTC clusters
can serve as predictive biomarkers for cancer recurrence in primary PCa. They observed
that 2/15 patients experienced cancer recurrence within 2 months after primary tumor
resection, and levels of individual CTCs and CTC clusters were increased in these patients
at the time of surgery or after surgery. Moreover, the levels did not normalize after
2 weeks, suggesting levels of individual CTCs and CTC clusters vary considerably in
PCa progression [22]. Additionally, combining CTC clusters with routine single CTC
detection exhibited independent predictive value in improving prognostic stratification
in mCRPC patients [127]. Furthermore, the detected CTC clusters, especially AR-V7-
positive CTC clusters, are essential for the response to abiraterone and enzalutamide
therapy and for predicting disease outcomes. Okegawa et al. found that 26/98 CTC
cluster-positive/AR-V7-positive patients treated with abiraterone or enzalutamide had
more severe bone metastasis at diagnosis, pain, higher alkaline phosphatase levels, and
visceral metastases [27]. Consistently in breast cancer, larger CTC clusters have been
indicative of a higher risk of patient death [14]. Therefore, CTC clusters display the ability
to further stratify death risk for patients with a high level of single CTCs.

With the development of technologies such as single-cell sequencing, the understand-
ing of CTC has become more comprehensive on a micro-level scale. However, these
advanced technologies face mounting issues when they are utilized in clinical practice.
For instance, single-cell sequencing, a promising method for studying PCa properties and
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molecular mechanisms, has revealed CTC heterogeneity on a single-cell scale. In PCa
patients, the biomarkers and RNA profiling of single CTCs from each display considerable
heterogeneity, including expressions of AR gene mutations and AR-V7. Moreover, tumor
cells in CTC clusters also exhibit various expressions of biomarkers and genes. Therefore,
research on more relevant CTCs is crucial to acquiring specific and sensitive outcomes for
PCa patients. Using epithelial biomarkers (e.g., EpCAM) to identify CTCs, researchers
established single-cell sequencing profiling of single CTCs that exhibit immense hetero-
geneity [51]. This indicates that more specific and effective selection criteria for CTCs are
needed to obtain more accurate results. Thus, the CTC cluster, possessing greater metastatic
potential and CSC-like characteristics, is a competitive candidate for analysis by single-cell
sequencing. Research on PCa on a micro-level scale means any tiny mistake can contribute
to drastically different conclusions. Researchers must stay alert for this.

7. Conclusions

Technical difficulty remains a challenge for the purification of CTC clusters. Recently,
a variety of “label-free” enrichment technologies for CTC clusters have emerged with
improved harvest efficacy [128]. However, they remain marginally satisfactory in view of
weak specificity and inadequate harvesting. Therefore, the development of enrichment and
isolation techniques with high acquisition efficiency and convenient downstream cellular
analysis is in urgent demand.

The metastatic and pluripotent characteristics of CTC clusters are of great significance
to cancer research. The formation of CTC clusters is pivotal to understanding how and
why CTC clusters are heterogeneous. CTC clusters undergo EMT and contain a mix of cell
phenotypes, especially the hybrid E/M phenotype, which plays various roles in metastasis.
This might provide clues to a better understanding of tumor cell migration and colonization.

The CTC cluster is a promising biomarker of tumor management, yet research on its
application has been insufficient. In the future, researchers will be able to study CTC clusters
from the perspectives of enumeration, genome profiling, protein, and telomere. Future
work on the origin, formation, and migration of CTC clusters will provide researchers with
further insight into cancer biology and liquid biopsy.
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