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Abstract: The inductive debris sensor has been studied because of its wide application prospects
in mechanical health monitoring. In order to ensure a high-precision detection performance,
a comprehensive method to improve the detection sensitivity and detection ability of the inductive
sensor for non-ferromagnetic metal debris is proposed. Based on the characteristics of the eddy
current inside the metal, the change of the coil impedance caused by the metal debris is increased by
enhancing the magnetic field strength and selecting the optimal excitation frequency. The impedance
detection method involving inductance and resistance parameters is used to improve the detection
limit of non-ferromagnetic metal debris. The experimental results verify that the magnetic field in
the detection region can be enhanced by adding a silicon steel strip (paramagnetic material) in the
central hole of the coil, thereby greatly improving the detection sensitivity of the inductive sensor,
and the concentrated distribution of the magnetic field avoids the double-peak signals generated by a
single particle. The characteristics of the signal amplitude of non-ferromagnetic debris with excitation
frequency are studied. Higher inductance, resistance amplitudes, and signal-to-noise ratio (SNR) can
be obtained by using a high-frequency alternating current. Compared with inductance parameter
detection, resistance parameter detection can detect smaller non-ferromagnetic debris. Combining
the detection results of the inductance and resistance parameters can effectively improve the sensor’s
ability to detect non-ferromagnetic debris.

Keywords: non-ferromagnetic debris; detection ability; inductance parameter; resistance parameter;
excitation frequency

1. Introduction

Oil wear debris monitoring is an effective method of mechanical condition monitoring.
According to the characteristics of wear debris in oil, the wear degree, type, and position of equipment
parts can be analyzed and judged. This technology has been used in the condition monitoring of rotating
and reciprocating equipment such as aircraft engine bearings [1], marine hydraulic equipment [2],
wind turbine gearboxes [3], etc., to achieve system fault diagnosis and life prediction. Based on
the real-time oil monitoring results, the operators can repair and replace the oil to ensure the safe
operation of the equipment and prolong remaining useful life. Over the past decades, oil condition
monitoring technology with different detection principles is studied, mainly including ferrographic
analysis [4,5], spectroscopy analysis [6,7], acoustic detection [8,9], imaging method [10,11], capacitance
detection [12,13], and inductance detection [14,15]. Among the above methods, inductance detection
is a non-destructive method based on the principle of electromagnetic induction. It can not only
distinguish the properties of wear debris, but also, the results are not affected by the light transmittance,
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pH, temperature, and other impurities (air bubbles, water, and so on) in oil [16–18]. Therefore, most oil
condition monitoring devices use inductance sensors as the core sensing element.

Recently, researchers have designed inductance sensors with various structures based on the
3D-solenoid coil and planar coil. The detection accuracy of the sensors is improved by optimizing
the measurement circuit, enhancing the magnetic field of the detection region, and using the signal
processing. Du et al. [19] attempted a parallel LC resonance circuit with unique resonant frequency
to improve the SNR and sensitivity of the inductive sensor. Ren et al. [20] designed an effective
unbalance compensation circuit to prevent the asymmetry of the excitation coils from limiting the
sensor’s sensitivity, so as to enhance the useful signal and its stability for better detection results.
Zhang et al. [21] presented a debris sensor with the structure of two planar coils in parallel, and a
detection region with a high-gradient magnetic field is established by the two excitation silicon steel
strips and a built-in silicon steel strip; this sensor can detect and distinguish 25 µm iron particles and
85 µm copper particles. Feng et al. [22] introduced an inductive sensor consisting of a cylindrical core,
two L-shaped magnetic poles, an excitation coil, and an induction coil, and experiments indicated that
the sensor can identify 25 µm ferromagnetic particles by the direct current driving. Hong et al. [23]
proposed a hybrid method that combined a band pass filter and correlation algorithm to detect smaller
debris with the same SNR. Based on a modified lock-in amplifier and empirical mode decomposition
and reverse reconstruction, Zheng et al. [24] extracted the particle signals from the raw signal with an
extremely low SNR, which significantly improves the sensor’s sensitivity. Of course, the inductive
debris sensor can also be integrated with other debris detection technologies to enhance the detection
ability [25,26].

Inductance detection can distinguish between ferromagnetic debris and non-ferromagnetic debris
through the magnetization effect and eddy current effect generated by the metal debris in the magnetic
field. However, the inductive sensor’s ability to detect non-ferromagnetic debris is relatively weak,
which affects the sensor’s comprehensive detection performance. For the same volume of particles,
the weakening of a magnetic field by the non-ferromagnetic debris dominated by the eddy current
effect is far less than the enhancing of the magnetic field by the ferromagnetic debris dominated by the
magnetization effect, so the inductive sensor can not identify the non-ferromagnetic debris with small
size. This paper proposed a comprehensive method to improve the detection sensitivity of an inductive
sensor for non-ferromagnetic debris. Based on the inductance and resistance parameters, the sensor’s
detection limit for non-ferromagnetic debris has been enhanced. In addition, the magnetic field in
the detection region is enhanced and focused by adding paramagnetic materials (a silicon steel strip
was selected in this paper) in the coil inner hole so as to improve the detection accuracy. To further
obtain better detection results, the frequency characteristics of the inductive sensor are studied, and the
optimal frequency is selected.

2. Sensor Design and Detection Principle

2.1. Sensor Design

The inductive debris sensor is shown in Figure 1. The designed sensor consists of a sensing unit, a
detection channel, and a sensor substrate, and it is made using the mold-casting method. The sensing
unit is composed of the planar coil inserted with a silicon steel strip in the inner hole, and the detection
channel is close to the coil surface. This sensor structure could be used to enhance the magnetic field in
the detection region and reduce the distance between the coil and the wear debris, so that the sensor is
more sensitive. First, the copper wire (60 µm in diameter, with a thin insulation) is wound into a planar
coil (4 layers, 20 turns per layer, inner diameter is 900 µm) by a winding machine (Shili SRDZ23-1B,
Zhongshan ShiLi Wire Winder Equipment Co., Ltd., Zhongshan, China). Then, the channel inlet mold,
channel mold (the 300 µm diameter steel wire), channel outlet mold, planar coil, and silicon steel strip
(0.3 mm in thickness, 800 µm in width, 3 mm in length) were fixed using acrylic block and metallic
glue, which form a basic mold. Next, polydimethylsiloxane (PDMS) was poured into the basic mold
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and cured in a heating oven (DZF-6020A, Bangxi Instrument Technology Co., Ltd., Shanghai, China).
Lastly, the channel inlet mold, the channel mold, and the channel outlet mold were removed from the
PDMS substrate. After the above steps, the fabrication of the sensor was completed.
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BC
(
rp

)
is the magnetizing field generated by the planar coil, and BS

(
rp

)
is the magnetizing field

generated by the silicon steel strip.
The equivalent resistance change is the real component of impedance change.

∆R = Re
[
Z
(
rp

)]
(6)

The equivalent inductance change is the imaginary component of impedance change.

∆L = Im

Z
(
rp

)
ω

 (7)

In the alternating magnetic field, the eddy current effect in non-ferromagnetic particles reduces the
magnetic field, and the metal particles change the skin effect and proximity effect of the coil. Therefore,
non-ferromagnetic metal wear debris will generate negative inductive pulses and positive resistance
pulses. As shown in Figure 2, the magnetic field change was simulated using COMSOL software.
The average magnetic field intensity of a single planar coil in the detection region is 0.8 × 103 µT,
and the strongest magnetic field is distributed at the inner hole edge of the coil. After adding
paramagnetic materials, the average magnetic field intensity in the detection region is 1.2 × 103 µT,
and the strongest magnetic field is located at the end of the silicon steel strip. This indicates that the
addition of paramagnetic materials can enhance and aggregate the detection magnetic field.
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3. Experiments and Discussions

3.1. Experimental Procedure

The detection system is as shown in the Figure 3; it mainly includes a micro-injection pump
(Harvard Apparatus B-85259, Harvard Apparatus, Holliston, MA, USA), an inductive sensor,
a microscope (Nikon AZ100, Nikon, Tokyo, Japan), the an inductance (L), capacitance (C), and resistance
(R) meter (Agilent E4980 A, Agilent Technologies Inc., Bayan Lepas, Malaysia), and a computer.

The oil sample mixed with the spherical non-ferromagnetic metal particles is driven
by the micro-injection pump to flow through the detection channel of the inductive sensor.
The non-ferromagnetic metal particles that are measured by the microscope reciprocate through
the inductive sensing unit by changing the injection direction of the micro-injection pump. Therefore,
the same non-ferromagnetic metal particle can be detected multiple times and used in comparative
experiments, so that the error caused by the shape characteristic of particles can be ignored.
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The inductance sensor is excited by the LCR meter with alternating current, and the LCR meter
can collect the impedance data of the coil in real time and transmit it to the computer. The LabVIEW
program and MATLAB program in the computer can process and analyze the data. In the experiment,
the voltage of the LCR meter is set to 2.0 V, and the frequency is set to 0.2–2.0 MHz. The flow rate of
the micro-injection pump is set to 300 µL/min.Micromachines 2020, 11, x 5 of 11 
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3.2. Results and Discussion

In the Detection Principle section, simulation studies show that the magnetic field strength and
magnetic field distribution in the detection region are significantly enhanced and changed by the
silicon steel strip. To explore the enhancement effect of the signal pulse amplitude, the coil without a
silicon steel strip is selected as the reference unit to carry out the comparative experiment with the
sensing unit designed in this paper. The 124 µm copper particles were selected under the microscope,
and the particles were driven through the sensing unit and reference unit. As shown in Figure 4,
the results of inductance detection and resistance detection are significantly improved after adding
a silicon steel strip. The inductance and resistance signal noise are unchanged; the amplitude and
SNR of the inductance signal are increased by 4.42 times; the amplitude and SNR of the resistance
signal are increased by 1.89 times. In addition, when there is no silicon steel strip, a single particle
will pass through the two strongest magnetic fields (the inner hole edge of the coil) and produce a
double-peak signal. The double-peak signal is not conducive to analyzing and judging the particle
size when multiple particles pass the detection region. The silicon steel strip in the coil focuses and
enhances the magnetic field in the detection region, which prevents the appearance of a double-peak
signal generated by a single particle.

Equation (1) shows that the detection results are affected by the excitation frequency. Therefore,
we studied the characteristics of the inductance and resistance detection result with the excitation
frequency. Under the microscope, a 120 µm copper particle was selected for the detection experiment;
the frequency range of the LCR meter was set between 0.2 and 2.0 MHz (the step size is 0.2 MHz); and the
copper particles were repeatedly passed through by controlling the direction of the micro-injection
pump. As shown in Figure 5, the statistics of the experimental data are given. The amplitude
and SNR of the inductance signal increase steadily with the frequency in the range of 0.4–2.0 MHz;
although the inductance signal amplitude at 0.2 MHz is bigger than that at 0.4 MHz, the noise is
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higher (the inductance noise is 3.0 × 10−10 H at 0.2 MHz, the inductance noise is 2.0 × 10−10 H at
other excitation frequencies); therefore, the inductance SNR increases with frequency. The resistance
amplitude increases steadily with the frequency; the resistance SNR increases greatly in the range of
0.2–1.0 MHz; the increase of resistance SNR tends to be flat in the range of 1.0–2.0 MHz; the reason
is that the increase rate of resistance noise is relatively slow at 0.2–1.0 MHz, but the rate is faster at
1.0–2.0 MHz (the skin effect and proximity effect of the coil will increase with excitation frequency,
which change the resistance noise). As shown in the Figure 6, we compare the inductance and resistance
signals obtained at 0.2, 1.0, and 2.0 MHz. At 2.0 MHz, it has the largest inductance and resistance
signal amplitude (the average inductance amplitude is 1.61 × 10−9 H, the average resistance amplitude
is 2.46 × 10−2 Ω), and the SNR is also the biggest. According to the analysis of the detection results,
high-frequency alternating current excitation is beneficial to improve the SNR of inductance and
resistance signals. The main reason is that in the alternating magnetic field, the eddy current effect
generated inside the metal particles will increase with the frequency [28]. Therefore, the magnetic
susceptibility of non-ferromagnetic particles increases with the frequency, and the change of coil
impedance also increases. The selection of high-frequency excitation can further improve the detection
ability of the inductive sensor for non-ferromagnetic metal debris.

The magnetic susceptibility and magnetic vector potential distribution induced by the particle are
affected by the particle size. In order to obtain the corresponding relationship between the particle size
and the average pulse amplitude, copper particles with different sizes were detected. As shown in
the Figure 7, we calculated the average pulse amplitude generated by the different copper particles.
Experimental results indicate that both inductance and resistance pulse amplitudes show a non-linear
increase trend with particle size. Inductance and resistance pulses generated by debris with small size
will be submerged in the signal noise, so that the SNR is too low to be identified. As shown in Figure 8,
the smallest particle detected by the inductance parameter is 78 µm. The average inductance amplitude
of the 78 µm copper particle is 2.0 × 10−10 H, while the average resistance pulse amplitude of the 78 µm
copper particle is 3.88 × 10−3 Ω. As shown in Figure 9, the smallest particle detected by the resistance
parameter is 65 µm. The inductance pulse of the 65 µm copper particle is submerged in inductance
noise, while the average resistance amplitude of the 65 µm copper particle is 2.96 × 10−3 Ω. Compared
with the inductance parameter, the resistance parameter can detect smaller non-ferromagnetic metal
debris. Therefore, this impedance detection method involving inductance and resistance parameters is
more conducive to improving the detection ability of the inductive sensor for non-ferromagnetic metal
wear debris, so as to obtain more debris information. In addition, ferromagnetic and non-ferromagnetic
wear debris can also be distinguished according to the characteristics of inductance and resistance
signals [29].
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4. Conclusions

The inductive debris sensor can effectively distinguish ferromagnetic and non-ferromagnetic
metal particles, so it has wide application prospects in various fields. However, the insufficient
detection ability of non-ferromagnetic debris restricts the comprehensive detection performance of
the inductive sensor. Therefore, this paper proposes the methods of enhancing the magnetic field
strength in the detection region, selecting the optimal excitation frequency, and using inductance and
resistance parameters to improve the sensitivity and detection ability. Based on the theoretical research
and experimental verification, the following conclusions are obtained.
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(1) By adding paramagnetic materials in the coil inner hole to enhance the magnetic field strength
of the detection region, the eddy current effect inside the non-ferromagnetic metal debris is more
severe. Thereby, the detection sensitivity of the inductive debris sensor is significantly improved.

(2) The magnetic core makes the magnetic field distribution more concentrated, effectively
preventing the generation of the double-peak pulse signal. It provides support for judging the particle
sizes when multiple particles pass through the detection region at the same time.

(3) The eddy current effect generated inside the metal particles will increase with the excitation
frequency. The inductive sensor that excited a high-frequency alternating current can not only obtain
larger inductance and resistance amplitudes but also higher SNR.

(4) Compared with inductance parameter detection, resistance parameter detection has a better
detection limit for non-ferromagnetic metal debris. This impedance detection method, which combines
inductance and resistance parameters, can further improve the detection ability of the inductive
debris sensor.
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23. Hong, W.; Wang, S.; Liu, H.; Tomovć, M.M.; Zhang, C. A hybrid method based on Band Pass Filter and
Correlation Algorithm to improve debris sensor capacity. Mech. Syst. Signal Process. 2017, 82, 1–12.
[CrossRef]

24. Jia, R.; Ma, B.; Zheng, C.; Ba, X.; Wang, L.; Du, Q.; Wang, K. Comprehensive Improvement of the Sensitivity
and Detectability of a Large-Aperture Electromagnetic Wear Particle Detector. Sensors 2019, 19, 3162.
[CrossRef] [PubMed]

25. Shi, H.; Zhang, H.; Wang, W.; Zeng, L.; Sun, G.; Chen, H. An Integrated Inductive-Capacitive Microfluidic
Sensor for Detection of Wear Debris in Hydraulic Oil. IEEE Sens. J. 2019, 19, 11583–11590. [CrossRef]

26. Zhu, X.; Du, L.; Zhe, J. An integrated lubricant oil conditioning sensor using signal multiplexing.
J. Micromech. Microeng. 2014, 25, 015006. [CrossRef]

27. Zhang, X.; Zeng, L.; Zhang, H.; Huang, S. Magnetization Model and Detection Mechanism of a Microparticle
in a Harmonic Magnetic Field. IEEE/ASME Trans. Mechatron. 2019, 24, 1882–1892. [CrossRef]

28. Dziczkowski, L. Effect of eddy current frequency on measuring properties of devices used in non-destructive
measurements of non-ferromagnetic metal plates. Arch. Comput. Mater. Sci. Surf. Eng. 2008, 32, 77–84.

29. Shi, H.; Zhang, H.; Ma, L.; Zeng, L. A multi-function sensor for online detection of contaminants in hydraulic
oil. Tribol. Int. 2019, 138, 196–203. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/JSEN.2019.2958872
http://dx.doi.org/10.1109/TIM.2019.2962851
http://dx.doi.org/10.1016/j.triboint.2017.01.015
http://dx.doi.org/10.1109/JSEN.2020.2992110
http://dx.doi.org/10.3390/mi10040246
http://dx.doi.org/10.1088/0957-0233/24/7/075106
http://dx.doi.org/10.1088/1361-6501/aaf119
http://dx.doi.org/10.1109/TIE.2020.2988237
http://dx.doi.org/10.1109/JSEN.2018.2890687
http://dx.doi.org/10.1016/j.ymssp.2015.10.002
http://dx.doi.org/10.3390/s19143162
http://www.ncbi.nlm.nih.gov/pubmed/31323846
http://dx.doi.org/10.1109/JSEN.2019.2936328
http://dx.doi.org/10.1088/0960-1317/25/1/015006
http://dx.doi.org/10.1109/TMECH.2019.2928704
http://dx.doi.org/10.1016/j.triboint.2019.05.025
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Sensor Design and Detection Principle 
	Sensor Design 
	Detection Principle 

	Experiments and Discussions 
	Experimental Procedure 
	Results and Discussion 

	Conclusions 
	References

