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Background. Respiratory mechanics models have the potential to guide mechanical ventilation. Airway branching models (ABMs)
were developed from classical fluid mechanics models but do not provide accurate models of in vivo behaviour. Hence, the ABM
was improved to include patient-specific parameters and better model observed behaviour (ABMps).Methods.The airway pressure
drop of the ABMps was compared with the well-accepted dynostatic algorithm (DSA) in patients diagnosed with acute respiratory
distress syndrome (ARDS). A scaling factor (𝛼) was used to equate the area under the pressure curve (AUC) from the ABMps to
the AUC of the DSA and was linked to patient state. Results. The ABMps recorded a median 𝛼 value of 0.58 (IQR: 0.54–0.63; range:
0.45–0.66) for these ARDS patients. Significantly lower 𝛼 values were found for individuals with chronic obstructive pulmonary
disease (𝑃 < 0.001). Conclusion. The ABMps model allows the estimation of airway pressure drop at each bronchial generation
with patient-specific physiological measurements and can be generated from data measured at the bedside. The distribution of
patient-specific 𝛼 values indicates that the overall ABM can be readily improved to better match observed data and capture patient
condition.

1. Introduction

Application of respiratory mechanics metrics and modelling
is emerging as ameans to guide and improvemechanical ven-
tilation in critical care [1–6]. Patient-specific models enable
understanding of individual lung physiology in critically ill
patients and are especially important in ARDS. Patient data
can be interpreted to generate an in silico patient model.
Various therapies can be tested on this model and the
optimum treatment can be found.

One physiologically relevant model of lung morphology
is the airway branching model (ABM) [7, 8]. The ABM
defines the human lung as a bifurcating tree with 23 gener-
ations and the alveoli are present in all generations beyond
approximately generation 17 where gas exchange occurs [9].
TheABM is an idealizedmodel of observed anatomy towhich

fluid mechanics can be applied. In the ABM, a pressure drop
occurs after each branch due to the resistive components
of the airway wall and the head loss [10, 11]. By estimating
the pressure drop for each of these airway branches, the
alveoli pressures can be estimated.This outcome provides the
opportunity to monitor “regional” specific alveoli pressures
that could be used to prevent overdistension of the lung that
could lead to lung injury.

In practice, the ABM has been used to estimate respi-
ratory pressure-flow responses in noncritically ill subjects
[7, 8, 12, 13]. However, ABM models are very general,
using a set of global airway dimensions that do not reflect
patient-specific conditions and have not been validated in
critically ill patientswith respiratory failure.These issues limit
bedside application of this model in monitoring or titrating
mechanical ventilation.
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The dynostatic algorithm (DSA) is currently the most
well-knownmethod to estimate alveoli pressure by producing
the dynostatic curve during breathing condition [14, 15].
The estimated alveoli pressure is based on the assumption
that airway resistance is always the same during inspiration
and expiration at isovolume. However, the ability of this
method to guide therapy is limited because it does not provide
or include information about airway resistance. It thus
cannot offer further insight into patient-specific condition
[16, 17]. Furthermore, the DSA is analysed at an assumed
quasistatic state, which does not exist in normal ventilation.
Therefore, the proposed patient-specific airway branching
model (ABMps) seeks to bridge this gap and merge the DSA
and ABM models to estimate the pressure drop using the
physiological dimensions of human airways.

In particular, this study develops the ABMps to capture
patient-specific airway pressure changes and unique patient-
specific clinical information that is not available from the
general ABM or DSA. Three models are presented: (1)
the general ABM; (2) the dynostatic algorithm; and (3)
the patient-specific ABMps. These models seek to add the
specificity that the DSA lacks while retaining the ability
to capture alveolar pressures and thus introduce a mixture
of novel elements to the overall modelling approach. The
models are compared in a retrospective analysis using clinical
data from critically ill mechanical ventilation patients to
validate the overall approach. Weibel’s model [8] includes
alveolar volume. However, this work seeks to capture alveolar
pressures and thus does not include alveolar volume, which
is a difference in the two analyses.

2. Methods

2.1. Patient Data and Analysis. In this study, retrospective
data from Sundaresan et al. [18] was used to compare the
three models.This data was from 10 acute respiratory distress
syndrome (ARDS) patients in the Christchurch Hospital
Intensive Care Unit (ICU). The patients underwent a mod-
ified protocol-based recruitment manoeuvre and mechani-
cally ventilated at different positive end-expiratory pressures
(PEEP) of 5, 10, and 15 cmH

2
O using a decreasing inspira-

tory flow profile [19]. All patients were fully sedated and
ventilated using Puritan Bennett PB840 ventilators (Covedib,
Boulder, CO,USA)with volume control (tidal volume= 400–
600ml), synchronized intermittent mandatory ventilation
(SIMV) mode, throughout the trial. The clinical trials and
the use of the data were approved by the New Zealand South
Island Regional Ethics Committee. Further details on clinical
protocols are reported in work of Chiew et al. [6].The clinical
diagnoses of the patients are shown in Table 1 alongwith their
observed auto-PEEP.

To assess model performance, the area under the pres-
sure drop curve (AUC) for inspiration breathing cycle was
measured and compared across the models. AUC was used
instead of the sum square error due to its unique ability to also
capture the pressure drop trend shape as well as its maximum
magnitude. Significance tests were carried out using paired
Wilcoxon rank-sum test.

Table 1: Summary of patient auto-PEEP settings [19].

Patient Sex Age
[years] Clinical diagnostic Auto-PEEP

[cmH2O]
S1 Female 61 Peritonitis, COPD 10
S2 Male 22 Trauma 12
S3 Male 55 Aspiration 10
S4 Male 88 Pneumonia, COPD 10
S5 Male 59 Pneumonia, COPD 12
S6 Male 69 Trauma 11
S7 Male 56 Legionnaires 7.5
S8 Female 45 Aspiration 12
S9 Male 37 H1N1, COPD 12
S10 Male 56 Legionnaires, COPD 3

Table 2: Physical measurements of bronchial paths [12].

Branch
generations

Diameter
(mm) Length (mm) Reynolds

number
−1 (ETT) 9 330 390

0 (tracheal) 18 120 775

1 12.20 48 573

2 8.30 19 427

3 5.60 8 307

4 4.50 13 198

5–16 3.50–0.60 10.70–1.70 123–0.60

17–22 0.57–0.43 1.50–0.63 0.56–0.41

23 0.40 0.50 0.02

2.2. General Airway Branching Model. The general ABM
is a symmetrical branching tree with physiological airway
branching dimensions [20]. Most of the general ABMs
assume that the airway generations go up to 23 generations
[11, 12]. In this study, the general ABM models the trachea
at generation 0 and the alveoli at generations 17–23. Figure 1
shows the schematic ABM structure and the physical dimen-
sions at every branch generation are shown in Table 2 [12].
It is assumed that the airway dimensions are kept constant
during inspiration.

This modelling approach captures head loss as part of
Poiseuille model used. Poiseuille flow is defined as

Δ𝑃
𝑛
=

128𝜇𝐿𝑄

𝜋𝐷
4
, (1)
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Figure 1: The airway tree structure in which airways are specified
by generation number, beginning with trachea [27].
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Figure 2:The Poiseuille pressure drop,Δ𝑃
𝑛
, andminor loss pressure

drop, Δ𝑃minor, at each of the branching respiratory systems for
ABMps.

where 𝜇 is the dynamic viscosity of air (1.9 × 10−5 Pa⋅s /1.9
× 10−7 cmH

2
O⋅s), L is the length of the particular airway

branch,D is the diameter of the particular airway branch, and
Q is the flow rate of airway branch.

Head loss is defined as a pressure drop along the branch-
ing system which consists of major and minor losses [13].
The major loss is defined as the pressure drop in the straight
section of the airway branching system [13]:

Δ𝑃major = 𝑓
𝐿𝑉
2

2𝐷

. (2)

The model thus assumes that laminar flow exists in the
branches since the diameter for all branches is less than
30mmwithReynolds number being less than 2000 [10, 11, 21].
Thus, the laminar flow friction factor (𝑓) is defined as

𝑓 =

64

Re
, (3)

where Re is the Reynolds number based on the branch
diameter:

Re =
𝜌𝑉𝐷

𝜇

, (4)

where 𝑉 is the velocity of the flow of the airway branch. The
velocity of the flow can be defined in terms of flow rate:

𝑉 =

4𝑄

𝜋𝐷
2
. (5)

Hence, substituting (3), (4), and (5) into (2), the major head
loss can be derived:

𝑃major =
128𝜇𝐿𝑄

𝜋𝐷
4
. (6)

Equations (1) and (6) show that Poiseuille flow andmajor loss
are the same.

In this specific model, estimates from [20] incorporate
minor loss information due to the bifurcation of each branch
starting from generation 1, as shown in Figure 2.

Every time the branch bifurcates to the next generation,
there is a change in the velocity distribution.Thus, this airway
resistance andminor loss will contribute to the pressure drop
over the bronchial paths.

In addition to the resistance component of the bronchial
part, there is an additional resistance in the endotracheal
tube (ETT). All of these patients had ETT with the same
dimensions. The length of the ETT was 330mm and the
diameter was 9mm [22, 23]. The resistance induced by the
ETT is added to the overall model results. The ETT is
at generation −1 and trachea is at generation 0 and then
continues to the remaining generations up to generation 23.
With the added ETT in the ABM model, the total pressure
drop due to the resistance component, minor loss, and the
artificial conducting airway can be modelled as follows:

Δ𝑃ABM = Δ𝑃𝑛 + Δ𝑃minor, (7)

where

Δ𝑃
𝑛
=

128𝜇

𝜋

23

∑

𝑛=−1

𝐿
𝑛
𝑄
𝑛

2
𝑛
𝐷
𝑛

4
, (8)

Δ𝑃minor =
8𝐾
𝐿
𝜌

𝜋
2

23

∑

𝑛=−1

𝑄
𝑛

2

𝐷
𝑛

4
, (9)

where𝐾
𝐿
is the minor loss coefficient (=2) [24], 𝜌 is the den-

sity (1.25 kg/m3), 𝑛 represents the airway branch generation,
𝐿
𝑛
is the length of the particular airway branch, and 𝐷

𝑛
is

the diameter of the particular airway branch. The flow rate
of airway branch (𝑄

𝑛
) is assumed to be half of the previous

generation flow rate.
This combined model is unique for this clinical applica-

tion [20]. However, it is entirely general based on the data in
Table 2 and fixed structure.
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2.3. Dynostatic Algorithm Model (DSA). Another pressure
drop estimation is the dynostatic algorithm [15, 25]. Proposed
by Kárason et al. [14], it assumes inspiration and expiration
airway resistances are the same at isovolume (𝑅insp = 𝑅exp
at isovolume). This assumption allows a surrogate of alveolar
pressure, known as dynostatic pressure (𝑃dyn), to be estimated
as follows:

𝑅insp =
𝑃insp − 𝑃dyn

𝑄insp
= 𝑅exp =

𝑃exp − 𝑃dyn

𝑄exp
, (10)

where 𝑄exp is the expiration flow, 𝑄insp is the inspiration
flow, 𝑃insp is the pressure during inspiration, and 𝑃exp is the
pressure during expiration.Thepressure drop (Δ𝑃DSA) during
inspiration is estimated as

Δ𝑃DSA = 𝑃insp − 𝑃dyn, (11)

where

𝑃dyn =
𝑃insp × 𝑄exp − 𝑃exp × 𝑄insp

𝑄exp − 𝑄insp
. (12)

Figure 3 shows the DSA curve relative to dynamic pressure
volume data based on these assumptions. However, this
model is strictly static and thus cannot capture any dynamic
elements of the observed data, as also seen in Figure 3, and
instead approximates the possible underlying static curve.
The DSA curve would be obtained if every small increment
of pressure was held long enough to achieve a static plateau
pressure at each volume increment. While it is useful to esti-
mate the static alveolar pressures, it is not feasible clinically.

2.4. Patient-Specific Airway Branching Model (ABMps). This
general ABM presented is extended to account for patient-
specific physiological conditions observed in measured pres-
sure and volume data. The ABMps airway pressure drop is
defined as

Δ𝑃ABMPS
= Δ𝑃
𝑛PS
+ Δ𝑃minorPS . (13)

A patient-specific multiplier (𝛼) can be used to uniformly
alter the bronchial diameter defined inTable 2 to bettermatch
the observed data. Incorporating this factor into (8) and (9)
yields the following, respectively:

Δ𝑃
𝑛PS
=

128𝜇

𝜋

24

∑

𝑛=0

𝐿
𝑛
𝑄
𝑛

2
𝑛
𝛼
4
𝐷
𝑛

4
, (14)

Δ𝑃minorPS =
8𝐾
𝐿
𝜌

𝜋
2

24

∑

𝑛=0

𝑄
𝑛

2

𝛼
4
𝐷
𝑛

4
, (15)

where 𝛼 is defined as patient-specific relative of airway
diameter and is limited to 𝛼 = [0.45, 1.50]. If 𝛼 = 1.0, the
patient will follow the general airway dimensions proposed
by [7]. If 𝛼 is <1.0, the patient-specific airway is relatively
smaller than the Horsfield model [7], perhaps indicating that
airway constriction. Finally, if 𝛼 > 1.0, the patient has a
larger airway. Larger and smaller airways in this context imply
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Figure 3: The DSA diagram and resulting quasistatic, single line
pressure volume curve.
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Figure 4: Airway resistance for each branch for every patient of the
ABMps model.

differences in resistance in the observed data. Hence, they
may also capture relative overdistension with pressure as well
as patient-specific state.

To estimate a patient-specific 𝛼, Δ𝑃ABMPS
is assumed to

be the same as Δ𝑃DSA, where Δ𝑃DSA is the most currently
well-accepted method to estimate alveoli pressures. Hence,
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Figure 5: Comparison of all 𝛼 values for all patients versus PEEP for
ABMps.

substituting (14) and (15) into (13), a patient-specific 𝛼 can be
derived as follows:

𝛼 =
4
√
128𝜇

𝜋Δ𝑃DSA

24

∑

𝑛=0

𝐿
𝑛
𝑄
𝑛

2
𝑛
𝐷
𝑛

4
+

8𝐾
𝐿
𝜌

𝜋
2
Δ𝑃DSA

24

∑

𝑛=0

𝑄
𝑛

2

𝐷
𝑛

4
. (16)

The value for 𝛼 for each patient and PEEP value were
calculated using measurements of Δ𝑃DSA and 𝑄

𝑛
and values

of 𝐿
𝑛
and 𝐷

𝑛
, from Table 2 in (16). Thus, a different 𝛼 value

is obtained for each PEEP level and for each patient.The area
under the curve (AUC) is the area under the pressure drop
curve for all the threemodels.TheAUCof pressure dropwith
respect to time for a single inspiration cycle shown in Figure 6
provides a good single value measure of the pressure drop
when identifying the patient-specific 𝛼. The AUC of Δ𝑃ABMPS
is compared with AUC of Δ𝑃DSA for all patients at each PEEP
level by calculating the minimum average of the absolute
percentage error (APE). This comparison ensures that the
model is not overfit to the data but that patient-specific
aspects are used to capture and represent the fundamental
trend.

3. Results

The estimated airway resistance for each branch generation
is presented in Figure 4. The AUC for all 10 ARDS patients
and all 3 models are shown in Table 3. It is clear that the
general ABM has a very large difference compared to the
DSA (𝑃 < 0.05). Table 4 shows patient-specific 𝛼 that relates
to the patient disease state. The 𝛼 values for COPD patients
were significantly lower than the other patients in the cohort
(ranksum 𝑃 < 0.0001, Kolmogorov-Smirnov 𝑃 = 0.001),
thus indicating a more resistive airway.

Figure 5 shows the trend of 𝛼 values for all patients
at PEEP = 5 cmH

2
O, 10 cmH

2
O, and 15 cmH

2
O. Figure 6

compares the pressure drop curve for one breathing cycle

for patient S1, as an example, for all three models at PEEP =
5 cmH

2
O, 10 cmH

2
O, and 15 cmH

2
O, with 𝛼 = 0.57. Figure 7

shows the pressure and volume curve for all the three models
for the same patient and 𝛼 value in Figure 6.

4. Discussion

It can be observed in Figure 4 that the airway resistance
is higher at the trachea (generation 0) and 5th generation
branch for all patients. Initially, the resistance starts to drop
from generation 0, which is the trachea, up to generation
4. The resistance starts to rise at generation 5 as the length
of the bronchial tube is higher at this generation compared
to the previous branches [12]. Airway obstructions increased
the airway resistance, as seen in Figure 4, where, for COPD
patients, S1, S4, S5, S9, and S10, the airway resistance was
higher compared to the healthy human and other patients.
With the increased airway resistance in COPD patients, these
results clearly show that a higher resistance results in the
higher airway pressure drop observed and thus the conse-
quent reduced volume. This estimation of airway resistance
by the ABMps cannot be done by using the DSA model and
highlights a useful feature of this approach.

With the patient-specific 𝛼 value, the airway resistance
can be estimated, which leads to estimating the pressure
drop. Furthermore, the airway resistance for each patient
is different and shows that airway resistance is higher for
COPD patients. Thus, this ABMps can be used to detect the
disease state independently or automatically, which could not
be done by the DSA.

The estimated airway pressure drop using the patient-
specific ABMps with 𝛼 value was significantly different from
the pressure drop estimated using the general ABM (𝑃 <
0.05). Table 3 shows that AUC pressure drop in the general
ABM typically exhibited very large differences for all patients
at all PEEP levels compared to the DSA with 𝑃 < 0.05. In
contrast, a good comparison is observed between the AUC of
pressure drops in ABMps and DSA in Table 3 and Figure 6.
This result clearly shows that the general ABM does not
capture the observed mechanics of critically ill mechanical
ventilation patients despite it being amix of classicalmechan-
ics and measured behaviour [20]. However, if it is extended
with patient-specific 𝛼, it is a far better representation of
the patient-specific airway dimension. In addition, these
patient-specific aspects dominate the differences from the
general ABM modeling approach to matching the patient-
specific DSA results. This last result matches the interpatient
variability noted in MV patients as a whole and shows the
need for a patient-specific approach to estimated model-
based alveolar pressures in this cohort.

Figure 6 illustrates an example of estimated pressure
drops for patient S1 between general ABM, ABMps, and DSA
models. With 𝛼 = 0.57 at PEEP = 15 cmH

2
O, the AUC of

pressure drop for patient S1 in ABMps and DSA yields the
same result of 3.33 cmH

2
O⋅s, where the general ABM yields

a far lower 0.36 cmH
2
O⋅s. This difference indicates that the

ABMps was able to predict the same airway pressure drop as
DSA by incorporating the 𝛼 term that was unique for each
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Figure 6: Comparison of airway pressure drop for one breathing cycle for patient S1 with COPD for general ABM, ABMps, and DSA with 𝛼
= 0.57. Plot of general ABM, ABMps, and DSA at (a) PEEP = 5 cmH

2
O, (b) PEEP = 10 cmH

2
O, and (c) PEEP = 15 cmH

2
O.

specific patient’s branching system. Equally, the general ABM,
as defined in Table 2, is not capable of accurately capturing
the observed mechanics in mechanical ventilation patients.
This difference and small error 𝛼 < 1.0 value are due to the
respiratory failure status of these patients.

From Tables 3 and 4, it is also noted that all 𝛼 values
for all patients are less than 1.0. Therefore, all pulmonary
paths have a smaller diameter than the expected diameters
from Table 2. This finding reflects the clinical condition of
these patients. In particular, patients with restrictive airway
conditions, such as chronic obstructive pulmonary disease
(COPD), have constricted airways and respiratory failure by
definition. Thus, 𝛼 is smaller comparatively (𝛼 = 0.45–0.62)
than what would be assumed for a healthy individual, as per
Table 2. Smaller 𝛼 value also occurred in aspiration patients
(𝛼 = 0.56–0.63) where the restrictive airway condition of the
lung is developed due to the entrance of foreignmaterials into

the bronchial generations. Thus, with the use of 𝛼, ABMps
is not only able to capture similar alveolar pressure as DSA
but it is also able to track patient disease state over time as
shown in Table 4 and Figure 5. The greater airway resistance
modelled with 𝛼 < 1.0 results in higher pressure drops at the
alveoli, as expected, and is thus a better match with the DSA.
In addition, ARDS patients are often associated with regional
airway collapse [26] at higher branch generations, which
will also greatly alter the airway resistance [12] and supports
the overall interpretation presented for these patient-specific
results.

Equally, the inspiration pressure volume curve for the
general ABM and the ABMps can bemodelled and compared
with the DSA and the actual dynamic inspiration pressure
volume curve, as shown in Figure 7. The general ABM
does not capture alveoli pressure like the DSA in criti-
cally ill patients. The general ABM would look a lot like
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Figure 7: Comparison of pressure volume curve for patient S1 with COPD for general ABM, ABMps, DSA, and actual inspiration with 𝛼 =
0.57.

the inspiration curve in Figure 7 and shifted slightly to lower
pressure. This outcome occurs because the Δ𝑃 drops are 10
times smaller than the Δ𝑃 drops in the ABMps in Table 3.
Thus, the general ABM was not effective at capturing the
estimated alveoli pressure volume curve in this cohort.

Both the ABMps and DSA take into account the airway
resistance that occur in the lung and lead to the airway
pressure drop. Furthermore, the ABMps is designed with
minor loss and the patient-specific airway dimension, 𝛼, that
is unique for each patient. Hence, in Figure 6 the pressure
volume curve for the ABMps is very similar to the DSA as
PEEP increases from 5 cmH

2
O to 15 cmH

2
Owith the patient-

specific 𝛼 = 0.57. Although the ABMps had smaller error
in comparison to the DSA at lower PEEP, this inspiration
pressure volume curve could still be applied as a guidance tool

for clinicians to provide a better solution for mechanically
ventilated patients.

5. Limitations

Although the ABMps estimates pressure drops at every phys-
iological airway branch, there are limitations to its predictive
capability. This ABMps assumes that the bifurcations run
throughout the entire generations from the 1st generation up
to the 23rd generation based on physiological measurements
and assumption by referring toWeibel et al. model which has
been used widely in deterministic studies [8, 11, 12]. However,
this assumptionmay not be applied in the real scenario if one
or more of the bronchial paths are blocked. Nevertheless, the
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Table 3: AUC of airway pressure drops for Sundaresan’s patients [18], with PEEP = 5, 10, and 15 cmH2O for general ABM, ABM specific, and
DSA.

Patient Auto-PEEP
(cmH2O)

PEEP
(cmH2O)

Optimal
𝛼

ABMps AUC (cmH2O⋅s) General
ABM AUC
(cmH2O⋅s)

DSA AUC
(cmH2O⋅s)

Error = AUC
(ABMps-DSA)

(%)
PEEP 5
cmH2O

PEEP 10
cmH2O

PEEP 15
cmH2O

S1 10
5 0.51 5.35 5.10 5.18 0.37 5.35 0.14
10 0.54 4.22 4.02 4.09 0.35 4.02 0.09
15 0.57 3.44 3.28 3.33 0.36 3.33 0.06

S2 12
5 0.63 3.11 3.03 2.79 0.50 3.11 0.13
10 0.64 2.99 2.91 2.68 0.49 2.91 0.10
15 0.63 3.18 3.10 2.86 0.45 2.86 0.19

S3 10
5 0.62 2.89 2.84 2.62 0.42 2.89 0.11
10 0.63 2.63 2.58 2.38 0.41 2.58 0.08
15 0.63 2.73 2.68 2.47 0.38 2.47 0.15

S4 10
5 0.45 10.0 9.66 10.30 0.40 10.00 0.21
10 0.47 8.20 8.05 8.36 0.40 8.05 0.16
15 0.50 6.59 6.52 6.77 0.41 6.77 0.15

S5 12
5 0.46 8.82 8.45 7.92 0.41 8.82 0.42
10 0.50 6.76 6.48 6.07 0.39 6.48 0.23
15 0.54 4.79 4.59 4.30 0.37 4.30 0.26

S6 11
5 0.63 3.03 2.92 2.92 0.46 3.03 0.07
10 0.64 2.82 2.72 2.72 0.44 2.72 0.04
15 0.64 2.80 2.70 2.70 0.44 2.70 0.03

S7 7.5
5 0.66 1.80 1.84 1.83 0.34 1.80 0.03
10 0.64 1.98 2.03 2.02 0.35 2.03 0.02
15 0.59 2.81 2.88 2.86 0.34 2.86 0.03

S8 12
5 0.56 3.76 3.69 3.71 0.37 3.76 0.04
10 0.58 3.27 3.20 3.22 0.36 3.20 0.03
15 0.58 3.09 3.15 3.11 0.36 3.11 0.02

S9 12
5 0.53 5.96 6.02 6.01 0.48 5.96 0.04
10 0.58 4.42 4.46 4.45 0.49 4.46 0.02
15 0.60 3.74 3.78 3.77 0.49 3.77 0.01

S10 3
5 0.59 3.76 3.62 3.70 0.47 3.76 0.07
10 0.61 3.32 3.20 3.27 0.45 3.20 0.06
15 0.62 3.15 3.04 3.10 0.46 3.10 0.04

Mean 0.58 0.41 4.12 0.07
[IQR] [0.54–0.63] [0.37–0.46] [3.20–4.42] [0.03–0.15]

Table 4: Patient-specific 𝛼 versus disease state.

Number of patients Clinical diagnostic Range of 𝛼
5 COPD 0.45–0.62
2 Aspiration 0.56–0.63
2 Trauma 0.63–0.64
1 Legionnaires 0.59–0.66

ABMps with the patient specific 𝛼 value is capable of show-
ing that every patient has 𝛼 < 1.0, which reflects that patient’s
pulmonary paths have a reduced equivalent diameter that

results in a different resistance as compared to the healthy
human physiological measurements.This reduced equivalent
diameter thus is a surrogate that captures the (variable) clin-
ical condition of each patient. For example, COPD patients
have a blockage of bronchial portions of the lungs that reduce
volume. In contrast, respiratory failure or ARDS patientsmay
experience a similar total loss of lung volume due to collapsed
alveoli distributed throughout the lung. However, in both
cases, adjustment to MV settings may be needed to try to
recruit this lost volume, and, equally, in both cases, additional
pressure is the typical mechanism used for this recruitment.

In this research, the ETT dimensions were the same
across all patients. However, while ETT dimensionsmay vary
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between patients, the ABMps remains capable of estimating
this pressure drop so that an accurate estimation of the
pressure drop in the deep bronchial paths can be used for
predicting the alveolar pressure drop. The ETT dimensions
are typically known and were consistent in this research, thus
maintaining the ability to estimate this alveolar pressure drop,
which is important if used to avoid and prevent further lung
injury due to the provision of excessive pressure.

Although an average value of minor loss coefficient is
used in this model, the ABMps was able to capture the
pressure drop in the airway branching system. In addition, at
the very low flows at the later generations, the contributions
to pressure drop of these minor loss coefficient constants
are almost negligible [13]. Thus, the use of this average
value of minor loss coefficient and an ETT specific loss
capture much of the loss seen. Equally, while a distribution of
loss coefficients based on anatomical studies could be used,
it cannot be validated given the limited measurements of
pressure and flow available in pulmonary medicine. Thus,
given these points, an average value is used because it captures
the overall losses and pressure drops, even if intermediate
pressures may not be fully accurate, and thus provides a good
estimate of alveolar pressure, which is the main goal of this
model.

With the use of 𝛼, ABMps was able to capture similar
alveolar pressure as the DSA with further insight of patient-
specific airway dimensions during mechanical ventilation.
However, due to limited patient data, the application of 𝛼
as a surrogate of patient-specific condition was not fully
validated. In particular, as a patient recovers from ARDS,
the regional collapsed alveoli may be recruited, resulting in
a change in patient airway condition that would be seen in
a change in the effective value of 𝛼. Thus, the clinical utility
of patient-specific 𝛼 in tracking patient disease state warrants
further investigation over larger cohorts given this initial set
of results.

6. Conclusions

A patient-specific airway branching model was derived from
a general ABM model and was capable of assessing the
pressure drop of the airway using clinically available airway
pressure and flow measurements. Using this model, the
airway condition of a patient can be characterised and thus
could provide clinically useful information to clinicians to
guide patient-specific therapy. This result shows that even
though the ABMps model is based on simple Poiseuille
flow and minor loss equations, the extension to a patient-
specific airway dimension, 𝛼, produced consistent trends and
compared well with the DSA model as the current standard
for estimating alveolar pressures. This 𝛼 value could be
calculated at the bedside in a similar fashion to offer addi-
tional insight beyond the DSA with respect to potential to
recruit volume (increase 𝛼) and tomonitor patient condition.
Overall, these results provide a generalmodel framework that
can be customised to each patient at the bedside to help guide
care. The results justify further prospective trials to assess

the clinical utility of patient-specific value of 𝛼 in assessing
patient condition.

Conflict of Interests

The authors declare that there is no conflict of interests.

Acknowledgments

Ministry ofHigher Education,Malaysia, Universiti Teknologi
MARA (UiTM), and EU FP7 Marie Curie Actions IRSES are
acknowledged for providing research funding.

References

[1] A. R. S. Carvalho, F. C. Jandre, A. V. Pino et al., “Positive end-
expiratory pressure at minimal respiratory elastance represents
the best compromise between mechanical stress and lung
aeration in oleic acid induced lung injury,” Critical Care, vol. 11,
article R86, 2007.

[2] L. Gattinoni, C. Eleonora, and P. Caironi, “Monitoring of
pulmonarymechanics in acute respiratory distress syndrome to
titrate therapy,” Current Opinion in Critical Care, vol. 11, no. 3,
pp. 252–258, 2005.

[3] Z. Zhao, J. Guttmann, and K. Moller, “Adaptive Slice Method: a
new method to determine volume dependent dynamic respira-
tory system mechanics,” Physiological Measurement, vol. 33, pp.
51–64, 2012.

[4] A. Sundaresan and J.G.Chase, “Positive end expiratory pressure
in patients with acute respiratory distress syndrome—the past,
present and future,” Biomedical Signal Processing and Control,
vol. 7, no. 2, pp. 93–103, 2012.

[5] O. Stenqvist, H. Odenstedt, and S. Lundin, “Dynamic respira-
tory mechanics in acute lung injury/acute respiratory distress
syndrome: research or clinical tool?”Current Opinion in Critical
Care, vol. 14, no. 1, pp. 87–93, 2008.

[6] Y. S. Chiew, J. G. Chase, G. M. Shaw, A. Sundaresan, and
T. Desaive, “Model-based PEEP optimisation in mechanical
ventilation,” BioMedical Engineering Online, vol. 10, article 111,
2011.

[7] K.Horsfield, G. Dart, D. E. Olson, G. F. Filley, andG. Cumming,
“Models of the human bronchial tree,” Journal of Applied
Physiology, vol. 31, no. 2, pp. 207–217, 1971.

[8] E. R. Weibel, “Morphometry of the human lung,” 1963.
[9] T. T. Soong, P. Nicolaides, C. P. Yu, and S. C. Soong, “A statistical

description of the human tracheobronchial tree geometry,”
Respiration Physiology, vol. 37, no. 2, pp. 161–172, 1979.

[10] K. S. Burrowes, P. J. Hunter, and M. H. Tawhai, “Anatomically
based finite element models of the human pulmonary arterial
and venous trees including supernumerary vessels,” Journal of
Applied Physiology, vol. 99, no. 2, pp. 731–738, 2005.

[11] I. M. Katz, A. R. Martin, C. Feng et al., “Airway pressure
distribution during xenon anesthesia: the insufflation phase at
constant flow (volume controlled mode),” Applied Cardiopul-
monary Pathophysiology, vol. 16, no. 1, pp. 5–16, 2012.

[12] T. J. Pedley, R. C. Schroter, and M. F. Sudlow, “The prediction
of pressure drop and variation of resistance within the human
bronchial airways,” Respiration Physiology, vol. 9, no. 3, pp. 387–
405, 1970.



10 Computational and Mathematical Methods in Medicine

[13] I. M. Katz, A. R. Martin, P. Muller et al., “The ventilation
distribution of helium-oxygen mixtures and the role of inertial
losses in the presence of heterogeneous airway obstructions,”
Journal of Biomechanics, vol. 44, no. 6, pp. 1137–1143, 2011.

[14] S. Kárason, S. SØndergaard, S. Lundin, J. Wlklund, and
O. Stenqvist, “A new method for non-invasive, manoeuvre-
free determination of “static” pressure-volume curves during
dynamic/therapeutic mechanical ventilation,” Acta Anaesthesi-
ologica Scandinavica, vol. 44, no. 5, pp. 578–585, 2000.

[15] S. Sondergaard, S. Kárason, J. Wiklund, S. Lundin, and O.
Stenqvist, “Alveolar pressure monitoring: an evaluation in a
lung model and in patients with acute lung injury,” Intensive
Care Medicine, vol. 29, no. 6, pp. 955–962, 2003.

[16] G. Mols, H.-J. Priebe, and J. Guttmann, “Alveolar recruitment
in acute lung injury,” British Journal of Anaesthesia, vol. 96, no.
2, pp. 156–166, 2006.

[17] S. Kárason, S. Søndergaard, S. Lundin, J. Wiklund, and O.
Stenqvist, “Direct tracheal airway pressure measurements are
essential for safe and accurate dynamic monitoring of respi-
ratory mechanics. A laboratory study,” Acta Anaesthesiologica
Scandinavica, vol. 45, no. 2, pp. 173–179, 2001.

[18] A. Sundaresan, J. G. Chase, G. M. Shaw, Y. S. Chiew, and T.
Desaive, “Model-based optimal PEEP in mechanically venti-
lated ARDS patients in the Intensive Care Unit,” BioMedical
Engineering Online, vol. 10, article 64, 2011.

[19] A. Sundaresan, J. G. Chase, G. M. Shaw, Y. S. Chiew, and T.
Desaive, “Model-based optimal PEEP in mechanically venti-
lated ARDS patients in the intensive care unit,” BioMedical
Engineering Online, vol. 10, article 64, 2011.

[20] N. S. Damanhuri, Y. S. Chiew, P. Docherty, P. Geoghegan,
and G. Chase, “Respiratory airway resistance monitoring in
mechanically ventilated patients,” in Proceedings of the 2nd
IEEE-EMBS Conference on Biomedical Engineering and Sciences
(IECBES ’12), pp. 311–315, December 2012.

[21] K. Horsfield and M. J. Woldenberg, “Diameters and cross-
sectional areas of branches in the human pulmonary arterial
tree,” Anatomical Record, vol. 223, no. 3, pp. 245–251, 1989.

[22] A. Sundaresan, Applications of model-based lung mechanics in
the intensive care unit [Ph.D. thesis], Mechanical Engineering,
University of Canterbury, Christchurch, New Zealand, 2010.

[23] C. Straus, B. Louis, D. Isabey, F. Lemaire, A. Harf, and L.
Brochard, “Contribution of the endotracheal tube and the upper
airway to breathing workload,” American Journal of Respiratory
and Critical Care Medicine, vol. 157, no. 1, pp. 23–30, 1998.

[24] B. R. Munson, D. F. Young, and T. H. Okiishi, Fundamentals of
Fluid Mechanics, JohnWiley & Sons, New York, NY, USA, 1990.

[25] S. Sondergaard, S. Kárason, A. Hanson et al., “The dynostatic
algorithm accurately calculates alveolar pressure on-line during
ventilator treatment in children,” Paediatric Anaesthesia, vol. 13,
no. 4, pp. 294–303, 2003.

[26] J. M. Halter, J. M. Steinberg, L. A. Gatto et al., “Effect of pos-
itive end-expiratory pressure and tidal volume on lung injury
induced by alveolar instability,”Critical Care, vol. 11, no. 1, article
R20, 2007.

[27] J. H. T. Bates, Lung Mechanics an Inverse Modelling Approach,
vol. 1, Cambridge University Press, New York, NY, USA, 2009.


