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A Review of Publicly Available Automatic  
Brain Segmentation Methodologies, Machine 
Learning Models, Recent Advancements, and  
Their Comparison

Mahender Kumar Singh1  and Krishna Kumar Singh2

Abstract
Background: The noninvasive study of the structure and functions of the brain using neuroimaging techniques is increasingly 
being used for its clinical and research perspective. The morphological and volumetric changes in several regions and 
structures of brains are associated with the prognosis of neurological disorders such as Alzheimer’s disease, epilepsy, 
schizophrenia, etc. and the early identification of such changes can have huge clinical significance. The accurate segmentation 
of three-dimensional brain magnetic resonance images into tissue types (i.e., grey matter, white matter, cerebrospinal fluid) 
and brain structures, thus, has huge importance as they can act as early biomarkers. The manual segmentation though 
considered the “gold standard” is time-consuming, subjective, and not suitable for bigger neuroimaging studies. Several 
automatic segmentation tools and algorithms have been developed over the years; the machine learning models particularly 
those using deep convolutional neural network (CNN) architecture are increasingly being applied to improve the accuracy 
of automatic methods.
Purpose: The purpose of the study is to understand the current and emerging state of automatic segmentation tools, their 
comparison, machine learning models, their reliability, and shortcomings with an intent to focus on the development of 
improved methods and algorithms.
Methods: The study focuses on the review of publicly available neuroimaging tools, their comparison, and emerging machine 
learning models particularly those based on CNN architecture developed and published during the last five years.
Conclusion: Several software tools developed by various research groups and made publicly available for automatic 
segmentation of the brain show variability in their results in several comparison studies and have not attained the level 
of reliability required for clinical studies. The machine learning models particularly three dimensional fully convolutional 
network models can provide a robust and efficient alternative with relation to publicly available tools but perform poorly on 
unseen datasets. The challenges related to training, computation cost, reproducibility, and validation across distinct scanning 
modalities for machine learning models need to be addressed.
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Introduction

The advancements in the field of neuroimaging particularly 
structural magnetic resonance imaging (MRI) had resulted in 
the availability of high-resolution three-dimensional (3D) 
imaging data of the human brain. Several large-population 
studies using MRI datasets have found different morphometric 
and volumetric changes in normal vs. various neurological 
conditions such as Alzheimer’s disease, mild cognitive 
impairment, etc.1,2

The study of different areas of the brain, cortical and 
subcortical regions and structures, changes in grey matter 

(GM), white matter (WM), hippocampus, thalamus, 
amygdala, etc., has found greater interest in neuroscience 
studies for research and clinical intervention. Medical image 
segmentation is used for addressing a wide range of such 
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biomedical research problems.3 The accurate segmentation of 
MRI images thus becomes a necessary prerequisite for the 
quantitative analysis of the study of neurological diseases 
including their diagnosis, progression, and treatment 
monitoring in a wide variety of neurological disorders such as 
Alzheimer’s, dementia, focal epilepsy, multiple sclerosis, etc.4

Apart from whole-brain segmentation into GM, WM, 
cerebrospinal fluid (CSF), etc. and parcellation of brain 
structures, several regions, and structures have received 
added focus on the account of their association with important 
cognitive functions. The hippocampus which is a part of the 
limbic system that is involved in learning and memory is one 
such important structure. The MRI can be used to monitor 
morphological changes that occur in the hippocampus in 
diseases such as Alzheimer’s, schizophrenia, epilepsy, 
depression, etc. and can act as biomarkers for several brain 
disorders such as Alzheimer’s disease, schizophrenia, 
epilepsy, etc.5-8 The amygdala is another brain structure of the 
limbic system that is involved in emotion, learning, memory, 
attention, etc. It is also associated with negative emotions and 
fear.9 The caudate nucleus and putamen also have importance 
in several neurological disorders and diseases such as 
Parkinson’s disease, Huntington’s disease, Alzheimer’s 
disease, depression, schizophrenia, etc.10-13

The manual segmentation is considered the “gold standard” 
for anatomical segmentation. It involves the demarcation of 
structure, grey and white matter along the anatomical boundaries 
for each layer of the region of interest (ROI) by experienced 
anatomic tracers14 utilizing specific software tools. A single 
MRI scan can have up to hundreds of layers depending upon the 
scan resolution, and thus manual segmentation is a time-
consuming, subjective, laborious process and is not suitable for 
large-scale neuroimaging studies.15,16

The automatic segmentation techniques attempt to address 
the above-discussed limitations associated with manual 
segmentation. The advancement in the algorithms and 
computation resources over the years has further helped the 
development of various segmentation techniques. Some of the 
hugely used publicly available software tools for neuroimaging 
studies that are used for the automatic segmentation of brain 
regions and structure are (a) FreeSurfer, (b) FMRIB Software 
Library (FSL), and (c) Statistical Parametric Mapping (SPM). 
The machine learning approaches based on CNN architecture 
are also being increasingly used for automated segmentation.

The remaining portion of the review will discuss the 
models for automatic segmentation techniques, publicly 
available neuroimaging tools, and emerging machine learning 
models for automatic segmentation and their comparison.

Methods

The study outlines the literature review of different publicly 
available segmentation methodologies that are extensively 
used for automatic human brain segmentation along with 

comparison studies for segmentation accuracy between 
different methods during the last five years. The recent 
machine learning models, particularly those based upon deep 
learning/CNN architectures that have been proposed by 
various research groups for efficient and accurate 
segmentation, have also been covered. The discussion covers 
the advantages and disadvantages of traditional software 
tools and deep learning machine models and emphasizes 
future challenges in the area.

The preprocessing steps which are commonly applied 
before any segmentation algorithm are detailed as follows.

Data Samples

The segmentation is performed on MRI scans of individual 
subjects which are acquired on an MRI scanner, and a single 
structural acquisition can take up to 10 to 30 min based upon 
the precision, sequence, nature of studies, scanner 
characteristics, etc. Most studies for the evaluation of the 
automatic segmentation methods, however, use datasets from 
existing available institutional neuroimaging datasets or 
publicly available neuroimaging repositories. Several huge 
neuroimaging datasets created as a part of the Human 
Connectome Project, Alzheimer’s Disease Neuroimaging 
Initiative (ADNI), Open Access Series of Imaging Studies 
(OASIS), etc. have been extensively used for standardizing 
segmentation techniques and finding the correlation between 
morphometric/anatomical and volumetric changes in different 
regions of the brain. The T1-weighted (T1w) MRI sequence 
is used for anatomical characterization; however, other 
sequences like T2w, FLAIR, etc. are also used by certain 
algorithms. The methods which are discussed and evaluated 
in this review have greatly benefitted from the availability of 
such datasets.

Preprocessing

The acquired MRI images coming from a magnetic resonance 
(MR) scanner require a series of steps to improve the quality 
of brain scans for the application of segmentation algorithms. 
These preprocessing steps are also implemented in several 
publicly available neuroimaging tools which are often utilized 
for carrying out the preprocessing. Some of the preprocessing 
steps are discussed as follows.

Bias-Field Correction

The bias-field or illumination artifact arises on account of a 
lack of radio-frequency (RF) homogeneity.17 Although this is 
not significantly noticeable on visual examination, but it can 
seriously degrade the volumetric quantification of MR volume 
upon applying the automatic segmentation algorithms that use 
intensity levels.17 Several methods for bias-field correction 
during and after acquisition are in use. The phantom-based 
calibration, multi-coil imaging, and special sequences tend to 
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improve the acquisition process and can be referred to as 
prospective methods, whereas retrospective methods and 
algorithms such as filtering, masking, intensity, gradient, etc. 
are used postacquisition for bias-field correction.18

Brain Extraction

The brain extraction or “removal of nonbrain tissue” such as 
skull, neck, muscles, bones, fat, etc. having overlapping 
intensities is employed before the segmentation processing. 
The extraction process classifies the image voxels into the 
brain or nonbrain; the brain regions can then be extracted or a 
binary mask can be created for the brain region.19 The 
commonly used methods make use of probabilistic atlas 
creating a deformable template registered with the image for 
the removal of nonbrain tissue using the brain mask20. The 
brain extraction tool which is a part of the FMRIB Software 
Library and which uses the center of gravity of the brain, 
inflating a sphere until the brain boundary is found, provides 
a fast and efficient alternative21-23. Pincram uses an atlas-
based label propagation method for brain extraction.24

Several software tools, however, do not require separate 
preprocessing, bias correction, brain extraction, etc. as they 
are impliedly included in their segmentation processing.

Automatic Segmentation Approaches

The MRI scan of the brain provides a 3D image of the brain 
scanned in x, y, z space at an appropriate slice of thickness 
usually ranging from 1 to 2 mm (e.g., a slice thickness of 1 
mm × 1 mm × 1 mm is considered quite good). The slice 
thickness need not be isometric and will depend upon the MR 
scanner, gradient coil, channels, scan time, scanning sequence, 
and protocol. Every point in this 3D image “I” represents a 
voxel “I (x, y, z).” A higher spatial resolution will bring 
greater precision but require a longer scan time and may not 
be convenient for the patient/subject apart from the 
possibilities of the introduction of further noise from head 
movements during the longer scan session. The 3D brain 
structure can also be represented as a sequence of 2D images 
in (x, y), (y, z), or (x, z) planes. Every voxel has an intensity 
value typically represented in grayscale from 0 to 255. The 
images may also require to be resampled to a standard space 
for applying segmentation algorithms.

Segmentation Algorithms

The segmentation problem requires classifying every voxel 
into a specific tissue class such as GM, WM, and CSF, and 

 

Figure 1. A Schematic Representation of Different Stages of Brain Segmentation as Obtained from FreeSurfer Tutorial Data and 
Visualized in FreeSurfer-Freeview.
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also to identify and describe it into a specific anatomical 
structure by assigning a label corresponding to each voxel. 
Several computational algorithms for automatic segmentation 
have been proposed and used in isolation or conjunction with 
each other. The basic methods such as thresholding, fuzzy 
c-means, etc. which are used to segment the brain among 
different tissue classes (GM, WM, CSF) are not suitable for 
fine-grain segmentation. The deformation models, multi-atlas 
segmentation, model-based segmentation, and machine learning 
models, particularly those based upon CNN, are increasingly 
being used for fine-grain segmentation of the whole brain or 
ROIs such as the hippocampus, cerebellum, amygdala, etc.

The theoretical concepts behind various segmentation 
methodologies have already been detailed in the literature.19,25,26 
The present work focuses on developed models, machine 
learning methods, and tools which have been applied to 
address the automatic segmentation problem.

Major Software Tools and Their 
Methodology

Several software tools have been developed over the years by 
different scientific groups applying various algorithms for 
automatic segmentation. A list of several publicly available 
neuroimaging software and tools is available in Table 1 with 
their brief descriptions. The list is not exhaustive. The 
important ones are discussed as follows.

FreeSurfer

FreeSurfer27 is an open-source software suite developed by the 
Laboratory of Computational Neuroimaging at the Athinoula 
A. Martinos Center for Biomedical Imaging. The software 
package is freely available from its website https://surfer.nmr.

Table 1. Important Publicly Available Software and Tools for Neuroimaging Studies

Software Tools Features

FreeSurfer
27

•	 Free and open source.
•	 Linux and Mac platform.
•	 Analysis and visualization of structural and functional neuroimaging data.
•	 Segmentation uses image intensity and probabilistic atlas with local spatial relationships (atlas-

based segmentation).
•	 The current version of FreeSurfer is version 7.0 (May 2020).

Statistical Parametric Mapping 
(SPM)
34

•	 Free and open source but requires MATLAB or to use the compiled version.
•	 Linux/Unix, Mac, and Windows platform.
•	 The current version of SPM is SPM-12 released in January 2020.
•	 Uses tissue probability maps, segmentation, and labeling functionality further enhanced with 

toolboxes such as VBM8, CAT12, and AAL3.36

FMRIB Software Library (FSL)
23

•	 Free and open source.
•	 Linux and Mac platform.
•	 Analysis tools for FMRI, MRI, and DTI neuroimaging data.
•	 Segmentation is done using FSL-FAST for tissue segmentation and FSL-FIRST for subcortical 

segmentation (model-based).
•	 The current version of FSL is version 6.0.

volBrain
37

•	 Online MRI brain volumetry system.
•	 Provides volumes of GM, WM, CSF as well as macroscopic areas, also provides subcortical 

structure segmentation and related volumes.
•	 volBrain web platform also provides additional pipelines like
	 •	� CERES (CEREbellum Segmentation) uses multi-atlas nonlocal patch-based label fusion38

	 •	 HIPS (HIPpocampus subfield Segmentation)39

	 •	 pBrain (Parkinson related deep nucleus segmentation)40

Multi-atlas propagation with 
enhanced registration (MAPER)
41

•	 Code is available through GitHub.
•	 Uses databases of multiple atlases as the knowledge base.
•	 Requires pincram and FSL for brain extraction and tissue class segmentation.

Multi-atlas-based multi-image 
segmentation (MABMIS)
42

•	 Uses multi-atlas-based segmentation algorithm.
•	 Uses tree-based group-wise registration of atlas and target images.
•	 Performs the simultaneous segmentation of all available images.
•	 Available at https://www.nitrc.org/projects/mabmis
•	 Last version was released in 2011.

Automatic segmentation of hip-
pocampus subfield (ASHS)
43

•	 Segmentation of the hippocampus subfield using the included atlas.
•	 It also allows building own atlas and training it to be used for segmentation.
•	 Can be re-trained and extended to other segmentation.
•	 Free and open source, available for Linux and Mac OS.
•	 Available at https://www.nitrc.org/projects/ashs and last version was released in 2017.



86	 Annals of Neurosciences 28(1-2)

mgh.harvard.edu and is used for a complete range of analysis 
of structural and functional imaging data and its visualization. 
The latest version of the software is version 7.1.0 (released in 
May 2020). The segmentation pipeline of FreeSurfer can be 
run in a fully automatic manner using the “recon-all all” script. 
It uses image intensity and probabilistic atlas with local spatial 
relationships between subcortical structures for carrying out 
the segmentation.28 The default pipeline can segment and 
assign 40 different labels to corresponding voxels in an 
automated manner. The segmentation has been extended to 
further segment 9 amygdala nuclei29 and 13 hippocampus 
subfields30 that have been incorporated in the new statistical 
atlas based on Bayesian inference build using a postmortem 
specimen at high resolution and has been added in FreeSurfer 
version 6.0 onward. This allows the automatic simultaneous 
segmentation of amygdala nuclei and hippocampus subfields 
using standard resolution structural MR images. The software 
is freely available for Linux and Mac platforms, and it provides 
graphic as well as command line options.

FMRIB Software Library (FSL)

FSL23,31 is a comprehensive library of neuroimaging tools for 
structural, functional, and diffusion tensor imaging (DTI) 
studies. The software has been created and maintained by 
FMRIB Analysis Group at the University of Oxford and is 
available at https://fsl.fmrib.ox.ac.uk/fsl; the current version 
of the software is version 6.0. The tissue segmentation is done 
using FMRIB Automated Segmentation Tool (FAST),32 
which uses Markov random field model along with the 
expectation-maximization algorithm. FAST can be invoked 
through the command line or GUI in the brain-extracted 
image volumes. The segmentation pipeline of FSL can also 
correct RF inhomogeneity and classify the brain among GM, 
WM, and CSF tissue types. The probabilistic and partial 
volume tissue segmentation used for tissue volume calculation 
can also be calculated. The subcortical segmentation is 
performed using FMRIB Integrated Registration and 
Segmentation Tool (FIRST).33 FIRST provides model-based 
segmentation using deformation models. The construction of 
the model was based upon a manually labeled dataset; the 
labels were parameterized as surface meshes modeled as a 
point distribution model. It first registers the images to 
MNI152 space by performing affine registration. The “run_
first_all” script does the automatic segmentation of subcortical 
structures into 15 different labels.

Statistical Parametric Mapping (SPM)

SPM34 is a package developed for the analysis of neuroimaging 
data coming from several imaging modalities like functional-
MRI, positron emission tomography, magnetoencephalography, 
electroencephalography, etc. This is also a freely available 
software tool from its website https://www.fil.ion.ucl.ac.uk/spm/ 
at Wellcome Centre for Human Neuroimaging but requires 
MATLAB platform, even though a compiled version of SPM also 

exists. The tissue classification methodology in SPM considers the 
brightness information of voxels along with tissue probability 
maps and the position of voxel during classification. The latest 
version is SPM12 and is last updated in January 2020. The 
segmentation process of SPM can be further extended using SPM 
toolboxes; the VBM is a toolbox which has been used in several 
studies and has now been replaced with the CAT12 toolbox. In a 
recent study, it was noticed that CAT12 can contribute better in 
volumetric analysis than VBM8; this is also on account of 
normalization and segmentation improvements in SPM12.35 The 
automated anatomical labeling atlas 3 (AAL3) is another toolbox 
of SPM which is a refinement of its previous versions and can 
parcellate the brain among 166 labels.36

volBrain (Online Web Platform)

volBrain37 is a web-based pipeline for MRI brain volumetry. 
The pipeline can be accessed from the https://volbrain.upv.es/. 
The webserver platform allows researchers to submit their 
MRI scans in NIFTI format and the online pipeline generates 
the volumetric measurements which are sent on the registered 
email id after the completion of the job; the same can also be 
downloaded from the volBrain system. The user is required to 
register with the volBrain online system and there is a limit on 
the number of simultaneous jobs that can be submitted. The 
entire processing remains a black box from the user’s point of 
view; the theoretical aspects have been described in published 
papers. The volBrain system is primarily based on a multi-
atlas, patch-based segmentation method and utilizes training 
libraries as implemented in the volBrain online platform. The 
volBrain web platform has also added several brain structure 
segmentation methods such as CERES (CEREbellum 
Segmentation),38 HIPS (HIPpocampus Segmentation),39 and 
pBrain (Parkinson related deep nucleus segmentation),40 
which are all available from the volBrain platform.

Multi-Atlas Propagation With Enhanced 
Registration (MAPER)

The multi-atlas propagation with enhanced registration 
(MAPER) is an automatic segmentation tool for structural 
MRI images into corresponding anatomical sub regions by 
using a database of multiple atlases as knowledge base.41 The 
standard MAPER pipeline requires brain extraction and tissue 
class segmentation using pincram and FSL-FAST, respectively.

Comparison of Segmentation Accuracy in 
Automatic Methods

Several studies have been made to judge the relative 
comparison of various publicly available software tools and 
algorithms. The FreeSurfer, SPM, and FSL are among the most 
used tools for neuroimaging studies and are not limited to 
segmentation alone. The other software tools are built for 
specific applications. The comparison studies are generally 
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performed on specific datasets with default options and provide 
mixed results which cannot be generalized for all situations. 

Table 2 summarizes the recent comparison of several publicly 
available tools for their accuracy in automatic segmentation.

Table 2. Comparison of Some Publicly Available Methods for Automatic Segmentation

Research 
Citation

Automatic Seg-
mentation Tools Dataset Utilized Conclusion/Findings

Yaakub et 
al.44

•	 MAPER
•	 FreeSurfer  

(5.3)

•	 Hammers_mith brain 
atlas

•	 Mindboggle-101 da-
tabase (DKT40 atlas 
database)

•	 Atlas created from 
OASIS database for 
MICCAI 2012 grand 
challenge

•	 Methods applied to the three atlas databases of T1-weighted images.
•	 Leave-one-out-cross-comparison was done for estimating the seg-

mentation accuracy of methods.
•	 Both identified known abnormalities in the patient groups.
•	 FreeSurfer performed superiorly in AD and Left-HS, whereas MAPER 

in the Right-HS dataset.
•	 MAPER performed better in healthy controls.

Palumbo 
et al.45

•	 SPM-12
•	 FreeSurfer 

(6.0)

•	 Kirby-21  
•	 OASIS datasets

•	 GM, WM, subcortical structure segmentation in test-retest MRI data 
of healthy volunteers.

•	 SPM was found more consistent in the evaluation of ROI volume for 
intra-method repeatability and inter method reproducibility.

Bartel et 
al.46

•	 FASTSURF
•	 FSL-FIRST
•	 FreeSurfer

•	 Multicentre phase-III 
trial dataset of SCLC 
patients

•	 ADNI database

•	 FASTSURF is a semi-automatic contouring-based segmentation 
model for the hippocampus and uses a mesh processing technique.

•	 Comparison of hippocampal atrophy rates was made with manual, 
FreeSurfer, and FSL.

•	 Semi-automatic FASTSURF model was found superior to compared 
automatic models.

Velasco-
Annis et 
al.47

•	 FreeSurfer
•	 FSL-First
•	 PSTAPLE 

(Local MAP 
PSTAPLE)

OASIS dataset
n = 20 (scanned twice), 
1.5T

•	 The comparison was made in terms of reproducibility and accuracy 
for hippocampus, putamen, thalamus, caudate, pallidum, amygdala, ac-
cumbens, and brainstem.

•	 PSTAPLE was found to have superior reproducibility.

Zandifar 
et al.48

•	 FreeSurfer 
5.3

•	 ANIMAL 
•	 Patch-based 

methods

ADNI database •	 Applied on hippocampus volumes.
•	 All methods show acceptable conformity with manual segmentation.
•	 Patch-based strategies have a good correlation with manual segmen-

tation.

Perlaki et 
al.49

•	 FSL-FIRST
•	 FreeSurfer 

(v4, 5, and 
5.3)

30 healthy young Caucasian 
subjects
n = 30, 3T 

•	 Study to compare the segmentation accuracy of the caudate nucleus 
and putamen.

•	 FSL was found to be superior for putamen segmentation.

Naess-
Schmidt 
et al.50

•	 FreeSurfer 
(5.3)

•	 FSL-FIRST 
(4.1.9)

•	 SPM-12
•	 volBrain

•	 22 healthy subjects  
(age 19–40)      n = 
22, 3T 

•	 MP2RAGE, for DTI 
n = 10

•	 Thalamus and hippocampus automatic segmentation.
•	 volBrain (patch-based) provided more accuracy in MP2RAGE images 

than conventional ones.

Grimm et 
al.51

•	 FreeSurfer
•	 VBM

92 participants in the 
age range of (18–34, 
mean:21.64)
n = 92, 1.5T

•	 Automatic methods are compared with manual segmentation for 
amygdalar and hippocampus volume.

•	 Both methods were found comparable to manual segmentation.

Fellhauer 
et al.52

•	 FreeSurfer 
(5.1)

•	 FSL-FAST 
(4.1.9)

•	 SPM 8 and 
12 (with 
VBM8)

n = 115, 1.5T, MPRAGE
(60 MCI, 34 AD, 32 healthy)

•	 All three detected increase in brain atrophy in AD/MCI group.
•	 FSL was good with good quality images.
•	 SPM was recommended for patient data in difficult measurement 

situations.

Abbreviations: MCI, mild cognitive impairment
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Evolving Machine Learning Models for 
Automatic Segmentation

Several machine learning models have been developed over 
the years for the automatic segmentation of brain tissue and 
anatomical structures of specific structures like the cerebellum 
and hippocampus. Fine-grain segmentation of the whole 
brain has also been implemented in several methods. A 
summary of some recent machine learning models applied for 
automatic brain segmentation is given in Table 3.

The regular machine learning models do not generalize 
well and are not suitable for complex imaging modalities; the 
deep learning models having multiple layers are increasingly 
being used to address neuroimaging challenges which have 
benefitted from the advancements in graphical processing 
unit (GPU) processing power. The deep learning models like 
CNN are preferred owing to their application in medical 
imaging problems. A typical CNN architecture contains 
several layers and components such as (a) input layers 
receiving raw image data, (b) convolutional layers applying 
filter (kernel) and producing feature maps, (c) activation 
function layer applying the activation function to the output 
coming from the convolution layer like rectified linear unit, 
(d) pooling layers for downsampling the output of the 
preceding layer, and (e) fully connected layer for applying 
weights to feature analysis to predict the label. The typical 
CNN models are extended in various CNN architectures such 
as U-Nets.53 3D U-Nets54 is an extension of traditional U-Net 
architecture for application in 3D biomedical imaging.

The recent methods of automatic machine learning models 
of segmentation are discussed as follows.

AssemblyNet55

This model uses a large assembly of CNNs, each processing 
different overlapping regions. The framework is arranged in 
the form of two assemblies of U-Nets, each having 125 3D 
U-Nets (i.e., a total of 250 compact 3D U-Nets). The method 
showed competitive performance in respect of U-Net, patch-
based joint label fusion, and SLANT-27 methods. The 
segmentation accuracy was improved with the use of 
nonlinearly registered “Atlas prior” for expected classification, 
transfer learning to initialize spatially nearest U-Net and 
multi-scale cascade to communicate between the two 
assemblies for refinement. The training time was shown to be 
7 days in the case of AssemblyNet but the classification time 
is just 10 min.

SLANT56

The SLANT pipeline first registers the target image to the 
MNI305 template using affine registration, and this is 
followed by bias-field correction and normalization. Since 
the whole volume cannot fit into the GPU memory using the 
FCN network, the entire MNI space is divided into k 
independent 3D U-Nets. The SLANT-8 divides the volume 
into eight nonoverlapped subspaces with each subspace of 
size 86 × 110 × 78 voxels, whereas SLANT-27 divides the 

 

Figure 2. An Illustration of AssemblyNet Model Using U-Net55. 

Source: Reprinted with permission from Elsevier.
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Figure 3. An Illustration of SLANT-27 (27-Network Tiles) Model Using U-Net56. (Reprinted with permission from Elsevier).

Source: Reprinted with permission from Elsevier.

volume into 27 overlapped network tiles with each subspace 
of 96 × 128 × 88 voxels. The overlapped SLANT-27 thus 
requires majority voting for label fusion. The entire pipeline 
is available as a docker image. It provides fine-grain 
segmentation of the whole brain in more than 100 ROIs. The 
training time could be as high as 109 h for SLANT-27 on 
5,111 training scans using a single GPU (NVIDIA Titan 12 
GB), which can be reduced to 4 h with 27 GPUs, and the 
testing time is roughly 15 min.

3DQ57

This is a generalizable method that can be applied to various 
3D F-CNN architecture such as 3D U-Nets, MALC, and 
“V-Net on MALC” for providing model compression of 16 
times to address the memory issues, and it incorporates 
quantization mechanism for integrating the trainable scaling 
factor and the normalization parameter, which not only 
maintains compression but also increases the learning 

capacity of the model. The model was successfully applied 
for 3D whole-brain segmentation and achieved comparable 
performance with up to 16 times model compression.

QuickNAT58

QuickNAT tries to address the limitation of limited manually 
curated data for training by first utilizing the existing publicly 
available software tools such as FreeSurfer to segment the 
data which is then used to train the network; this pretrained 
network is then further improved by training with limited 
manually annotated data to achieve high segmentation 
accuracy. The model does not utilize 3D F-CNN but instead 
uses three two-dimensional F-CNN, each operating in 
separate planes (i.e., coronal, axial, and sagittal), followed by 
aggregation resulting in final segmentation and labels 
corresponding to 27 brain structures.

The details of other recent methods and architecture have 
been given in Table 3.
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Table 3. Summary of Recent Brain Segmentation Methods Utilizing Machine Learning Models

Method
Model/Segmentation 
Area Principle Remarks

A. Whole-Brain Segmentation Models for Classifying Among Different Anatomical Labels

AssemblyNet55 CNN/
Brain automatic segmentation

Utilizes two assemblies of 125 
3D U-Nets processing different 
overlapping brain areas of the 
whole brain.

Competitive performance in compari-
son with U-Net, joint label fusion, and 
SLANT.

SLANT56 CNN/
Fine-grain segmentation >100 
structures

3D–FCN, addresses memory 
issues using multiple spatially dis-
tributed overlapping network tiles 
of U-Nets.

Training and testing can be optimized by 
providing 27 GPUs for SLANT-27 and 8 
for SLANT-8.

QuickNAT58 CNN/
Brain segmentation
(segments 27 structures)

Fully convolutional and densely 
connected,
pretraining using existing segmen-
tation software (FreeSurfer),
fine-tuning to rectify errors using 
manual labels.

Posttraining, the model achieves su-
perior computational performance in 
comparison with patch-based CNN and 
atlas-based approaches. Also compared 
well with FSL and FreeSurfer.

Bayesian QuickNAT59 CNN/
Brain segmentation
(segments 33 structures)

F-CNN approach (of QuickNAT) 
with Bayesian inference for seg-
mentation quality.

The model has been compared with 
QuickNAT and FreeSurfer with manual 
annotations.

3DQ57 CNN/
Brain segmentation
(segment 28 structures)

3D F-CNN with model compres-
sion up to 16 times without affect-
ing performance. Useful for storage 
critical applications.

Integrates training scalable factors  and 
normalization parameter.
Increases learning while maintaining 
compression.

DeepNAT60 CNN/
Brain segmentation of 25 
structures

3D-CNN patch-based model, 
the first network removes the 
background, second classifies brain 
structure.

Uses three CNN layers for pooling, 
normalization, and nonlinearities.
Comparable with other state-of-the-art 
models.

BrainSegNet61 CNN/
Whole-brain segmentation

2D/3D CNN patches Does not require registration, saving on 
computational cost.

B. Whole-Brain Segmentation Models for Classification Among GM, WM, and CSF Only

HyperDense-Net62 CNN /
Brain segmentation

Fully connected 3D-CNN using 
multiple modalities.

Successfully participated in iSEG-2017 
and MRbrainS-2013 challenge.

VoxResNet63 CNN/
Brain segmentation

Voxel-wise residual network with 
25 layers utilizing CNN.

Successfully competed in 
MRbrainS-2015 challenge.

C. Brain Segmentation Models for Specific Brain Structures (Hippocampus, Cerebellum)

HippMapp3r64 CNN/
Hippocampus segmentation

CNN architecture based upon 
U-Net. 
Initial training on the whole brain, 
the output was trained again with 
reduced FOV on the same net-
work architecture.

Validation is done against FreeSurfer, 
FSL-First, volBrain, SBHV, and Hip-
poDeep. Algorithm and trained model 
are made publicly available.

CAST65 CNN/Hippocampus subfield 
segmentation

Multi-scale 3D CNN with T1w and 
T2w imaging modalities as input.

Hippocampus subfield segmentation.

ACA-PULCO66 CNN/
Cerebellum segmentation

Alternative CNN design using 
U-Net with locally constrained 
optimization.

Applied on MPRAGE images.

HippoDeep67 CNN/
Hippocampus automatic 
segmentation

Deep learned appearance model 
based on CNN.

The training utilizes multiple cohorts 
and label derived from FreeSurfer out-
put along with synthetic data.
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Reliability and Reusability of Automated 
Segmentation Methods

The automated fine-grain segmentation of the whole brain 
including specific ROIs has profound usage in neuroscience 
research. This, however, depends on the quality of MRI 
acquisitions, preprocessing, choice of analysis pipelines, and 
many other factors. A retrospective longitudinal study has 
shown a lack of reproducibility arising at the level of 
acquisition in the MRI scanner and the amount of variability 
being different for different scanners,68 and this is a cause of 
concern having a direct bearing on subsequent analysis 
pipelines. The effects of automated pipelines which are often 
poorly documented and lack standardization have also been 
analyzed in a recent study in the context of functional 
neuroimaging analysis where the same data were provided to 
70 different research groups, but none of the teams chose 
identical pipelines, and the results were also variable across 
groups, thus emphasizing the need of validation and sharing 
of complex workflows.69

Discussion and Conclusion

The automatic segmentation methods have been quite 
successful in morphometric and volumetric measurements of 
brain tissue and structures in finer details. The publicly 
available methods such as FreeSurfer, FSL, SPM, etc. are 
sufficiently resilient with respect to noise and artifacts 
introduced at the acquisition stage and have performed 
consistently across different datasets and are being extensively 
used by the neuroimaging community; however, they are still 
far from being accepted at par with manual segmentation. 
Several studies have compared the relative performance of 
various publicly available methods which have provided 
mixed results and have been discussed in Table 2.

The machine learning methods particularly those based on 
CNN have been shown to perform better than the publicly 
available software tools, but their performance directly 
depends on the amount and type of training data and thus may 
not be reproducible across different unseen datasets whose 
acquisition and protocols vary significantly from the training 
data. The insufficient amount of manually labeled training 
data also affects the performance of such machine learning 
models. QuickNAT attempts to improve upon this limitation 
by first pretraining the network using auxiliary labels 
generated using FreeSurfer and then refining the pretrained 
network with the limited manually labeled data.

The 2D F-CNN methods which train the network by using 
images slice by slice have an inherent disadvantage of failure 
to fully utilize the contextual information from neighboring 
slices. The 3D F-CNN, on the other hand, faces the memory 
limitation of the available GPUs in handling millions of 
parameters associated with high-resolution clinical MRI 

imaging volumes. Several techniques have been developed to 
address the computational cost and memory limitations; for 
example, SLANT-27 breaks the original image volume into 
27 overlapping network tiles which can be executed in 
parallel on 27 GPUs or can run sequentially in the available 
lesser resources; AssemblyNet goes a step further and uses 
two assemblies of 125 3D U-Nets processing different 
overlapping regions; 3DQ method attempts to provide around 
16 times compression without affecting performance; other 
methods such as ACA-PULCO and CAST focus on specific 
regions such as cerebellum and hippocampus, respectively, 
rather than whole-brain segmentation.

Other issues with the machine learning models are with 
regard to insufficient documentation in the literature; only 
some such methods are publicly made available, even then 
the training modalities of some of them especially those 
relying on 3D-FCN have a huge computational and memory 
bottleneck associated with them and cannot be easily 
reproduced. There is a need to implement such machine 
learning models through computational webservers in a 
standardized manner as was the case with volBrain for their 
effective use and validation.
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