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Abstract: Cancer constitutes a severe threat to human health and quality of life and is one of the
most significant causes of morbidity and mortality worldwide. Natural dietary products have drawn
substantial attention in cancer treatment and prevention due to their availability and absence of
toxicity. Rosmarinic acid (RA) is known for its excellent antioxidant properties and is safe and
effective in preventing and inhibiting tumors. This review summarizes recent publications on culture
techniques, extraction processes, and anti-tumor applications of RA-enriched dietary supplements.
We discuss techniques to improve RA bioavailability and provide a mechanistic discussion of RA
regarding tumor prevention, treatment, and adjuvant therapy. RA exhibits anticancer activity by
regulating oxidative stress, chronic inflammation, cell cycle, apoptosis, and metastasis. These data
suggest that daily use of RA-enriched dietary supplements can contribute to tumor prevention and
treatment. RA has the potential for application in anti-tumor drug development.

Keywords: rosmarinic acid; cancer; tumorigenesis; adjuvant therapy; molecular mechanism

1. Introduction

Cancer is a significant public health problem worldwide. Diagnostic technologies
and treatments, including surgery, targeted therapies, and immunotherapies, have made
significant advancements in the past 30 years. The risk of cancer death has dropped by
32%; however, the progression of advanced tumors, post-treatment drug resistance, and
recurrence remain the most critical aspects of clinical oncology [1]. Potential challenges,
long-term treatment, and repeated hospitalizations severely impact the quality of life, sub-
stantial financial burden, and psychological stress [2]. Studies showed that some dietary
supplements, ethnic herbs, and teas are used for tumor prevention and treatment [3–5].
Some natural products from diets or plants are potential anti-tumor drugs and chemother-
apy sensitizers [6].

Rosmarinic acid (RA) is a flavonoid commonly found in plants in the Lamiaceae family.
RA-rich plants such as Perilla frutescens (L.) Britton, Rosmarinus officinalis L., and Melissa
officinalis L. are popular worldwide and used in tea, herbs, cooking condiments, spices,
and fruits. RA is used to improve health because of its nutritional properties and has been
noted to have potent antioxidant activity [7,8]. In the past ten years, it has been noted that
these plants might prevent and treat tumors. Isolation of the anti-tumor components of
the plant revealed that the active components include polyphenols. Studies found that

Biomolecules 2022, 12, 1410. https://doi.org/10.3390/biom12101410 https://www.mdpi.com/journal/biomolecules

https://doi.org/10.3390/biom12101410
https://doi.org/10.3390/biom12101410
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com
https://orcid.org/0000-0001-9150-7760
https://doi.org/10.3390/biom12101410
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com/article/10.3390/biom12101410?type=check_update&version=1


Biomolecules 2022, 12, 1410 2 of 27

RA can prevent tumorigenesis, inhibit tumor growth, and sensitize chemo-radiotherapy
agents as adjuvant therapy [9–11]. The preparation of RA depends on the purification
after biosynthesis of plants, and the recent research proposes synthesizing RA in vitro by
engineering bacteria [12]. The bioavailability of RA is low; therefore, the improvements of
the dosage form and the development of chemical delivery systems are necessary for anti-
tumor applications [13]. This review summarizes the anti-tumor applications, extraction
processes of RA-rich plants, and anti-tumor mechanisms to provide in-depth mechanistic
insights. This review aims to provide the latest evidence on the biological properties and
anti-tumor applications of RA and RA-enriched plants (Figure 1).
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2. Methodology

A literature search was performed in PubMed and Google scholar from January 1998 to
May 2022, and the last search date was 30 April 2022. The search term was “rosmarinic acid”.
A secondary search was conducted by screening the list of articles that met the inclusion
criteria. The keywords were “cancer” OR “tumor” OR “carcinoma” OR “malignancy”.
The obtained 306 articles were screened, 31 review articles and 3 articles not published
in English were removed. A further 175 relevant studies were excluded by reading the
abstract, an additional 21 records identified as eligible articles. In total, 118 articles were
sorted and classified. Finally, we organized the tables, wrote the text, and made figures to
summarize the application of RA anticancer effects according to the SANRA and previously
literature review [14,15].

3. Culture Techniques, Extraction Processes, and Anti-Tumor Applications of
RA-Rich Plants

RA-rich plant extracts are functional ingredients and supplements that have become
popular products in the health industry. Studies on the extraction processes and anti-tumor
applications of RA-rich plants are summarized in Table 1.

Rosmarinus officinalis L. (rosemary) is a popular culinary herb worldwide and in
European folk medicine. Aqueous extract of leaves inhibited the proliferation of cervical
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cancer, breast cancer, and T-cell leukemia cells [16]. Ethyl acetate extracts were enriched
in RA, and they displayed antioxidant activity and promoted the apoptosis of colorectal
cancer (CRC) cells [17]. The ethanol extract of rosemary dried leaves promoted apoptosis
to enhance sensitivity to cisplatin (DDP) in ovarian carcinoma cells [18].

Perilla frutescens (L.) Britton is used as a medicinal plant in China, Japan, and Thailand.
The aqueous extract of P. frutescens leaves are rich in RA and promote hepatocellular
carcinoma (HCC) apoptosis by regulating apoptosis-related genes detected by cDNA
microarrays [19]. Osakabe et al. optimized the extraction process of RA from leaves
of P. frutescens with a concentration of 68% w/w. The extractive fraction and RA reduced
inflammation and oxidative stress and reduced tumor size in skin cancers induced with 7,12-
dimethylbenz[a]anthracene (DMBA) and 12-tetradecanoylphorbol 13-acetate (TPA) [20].
The seeds of P. frutescens are rich in omega-3 fatty acids and RA. After extracting oil from the
seeds, RA can be enriched by 70% ethanol and ethyl acetate extraction. The RA-enriched
fraction reduced reactive oxygen species (ROS) and inhibited invasion through the NF-κB
pathway in A549 cells [21,22].

Melissa officinalis L. is a traditional herbal tea from the Mediterranean. Studies found
that M. officinalis L. with ethanol extraction enriched RA [8,23]. These extracts had anti-
tumor effects on HCT116 and H460 cells. The polyphenolic extract is a candidate for an
antioxidant to protect human keratinocytes from UVB-induced skin damage [24]. Hydrox-
yphenylpyruvate reductase (HPPR) from M. officinalis L. was isolated and characterized
as RA biosynthesis-related gene. Several terpenoid synthesis genes were identified and
classified in this study [25].

Ocimum basilicum L. (i.e., basil) is consumed as a seasoning worldwide. Hosam et al.
compared six cultivars of basils and found that basil leaf extracted from methanol had
anti-tumor effects and was rich in RA [26]. Ethanol extract from basil leaves prevented
metastasis in head and neck squamous cell carcinoma (HNSCC) [27]. In addition to the
leaves, the callus of basil has high RA content. Saher et al. improved tissue culture
technologies to increase RA production. They explored several plant growth regulators and
found that 5 mg/L 6-benzylaminopurine (BAP) combined with 1 mg/L naphthalene acetic
acid (NAA) yielded the best phenolic yield (346.08 mg/L), including 7.4 mg/g RA [28].
Subsequently, callus of basil grown on a medium supplemented with 10 mg/L CuO-NPs
yielded the highest RA accumulation (11.4 mg/g) [29]. Light-emitting diode irradiation
increased the RA content of callus 96.0 mg/g, 2.46-fold higher than control [30].

Extracts and processed products from Origanum vulgare L. are condiments in cook-
ing, essential oils, and wine. It is a medicinal plant used to treat asthma, indigestion,
headaches, and rheumatism in Turkey. Water-soluble ethyl acetate extract had antioxidant
and anti-proliferative activities against C6 (rat glioma), and HeLa cells; RA, hesperetin,
and hydroquinone were the active ingredients [31]. Juste et al. evaluated antioxidant
and anticancer activities in various strains of O. vulgare and found that RA content was
positively correlated with antioxidant activity [32].

Thyme is a perennial Lamiaceae herb native to temperate regions of Europe, North
Africa, and Asia. It is used as a culinary seasoning and a medicinal plant in ethnomedicine.
Thymus vulgaris L. callus crude extract (RA content 5.67 mg/g) inhibited human breast
cancer cells [33]. Antioxidant and cytotoxic properties of Thymus longicaulis C. Presl were
analyzed during various life cycle phases. Oct12 extract was rich in RA and showed a
marked biological activity and cytotoxicity against several tumor cells [34].

The genus Salvia, also belonging to the Lamiaceae family, possesses anticancer medic-
inal properties. Salvia officinalis L. and Salvia fruticosa Mill. (Mediterranean medicinal
plants) contain RA in aqueous extracts from 50 to 70 µg/mL. These extracts inhibited
proliferation in breast cancer and colon cancer cell lines via the mitogen-activated pro-
tein kinase (MAPK)/ extracellular signal-regulated kinases 1 and 2 (ERK1/2) and the
phosphatidylinositide-3-kinase (PI3K)/AKT pathways [35,36]. Research has shown that
foliar spraying with NO and Si and under Cu stress in S. officinalis elevated total RA content
by 2-fold above control leaves. The seedlings were irrigated with sodium silicate (1 mM Si),
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sodium nitroprusside (200 µM as a NO donor), and 200 µM CuSO4 [37]. Salvia miltiorrhiza
Bunge is a popular Chinese medicinal herb. Methyl jasmonate (MeJA) enhanced the synthe-
sis of RA in S. miltiorrhiza through regulation of the transcription factor gene SmMYB2 and
secondary metabolism-related genes [tyrosine aminotransferase (TAT) and HPPR] [38,39].
Equal amounts of cellulase A and protamex mixture exhibited maximum effectiveness
in extracting RA at 28.23 mg/g [40]. The callus culture of stem and leaf explants of S.
miltiorrhiza promoted RA biosynthesis. RA and salvianolic acid B were cytotoxic primary
phenolic compounds for acute lymphoblastic leukemia (ALL) cells [35]. Sage tea made
from Salvia helps prevent colon cancer by inhibiting oxidation and DNA damage [41].

Prunella laciniata (L.) L. is a plant of the Labiaceae family that has been used as food and
medicine in China for thousands of years. A tyrosine aminotransferase of Prunella vulgaris
(PvTAT) is an RA biosynthesis enzyme applicable to engineering natural products [42].
Studies showed that 60% ethanol extract of P. laciniata showed high antioxidant activity
in vitro and in vivo and inhibited tumor load in tumor-bearing C57BL/6 mice [43,44].

In addition, RA is the primary active ingredient in several plants. In Gastrocotyle
hispida (Forssk.) Bunge, grown in Saudi Arabia, RA was a potent anti-breast cancer and
anti-HCC active component [45]. The ethyl acetate fraction extract of Glechoma hederacea
L. promoted mitochondrial membrane potential destruction and apoptosis in HCC cells.
Substant polyphenols, including RA, caffeic acid, and ferulic acid, were separated using
high-performance liquid chromatography [46]. RA is the principal polyphenol in Ehretia
tinifolia L. and showed cytotoxicity and potent antioxidant activity against several cancer
cell lines [47].

Plant culture techniques include the addition of nanoparticles, and the co-culture of
plants and bacteria were used to increase RA yield. Young seedlings of Leonotis nepetifolia (L.)
R.Br. were infected with Rhizobium rhizogenes strain A4. The dominant compounds in the
extracts contained 2643 µg/g RA, which was 43% higher than in untransformed roots. The
transformed roots extract showed better cytotoxic effects against breast cancer [HCC1937
cells the half-maximal inhibitory concentration (IC50) = 750 µg/mL] and leukemia (NALM-
6 cells IC50 = 550 µg/mL), meanwhile, HUVEC normal cells had no change in cell viability
at the same concentration [12].

Transformed roots of Dracocephalum kotschyi Boiss. were treated with 50 mg/L titanium
dioxide nanoparticles (TiO2 NPs) for 24 h; this treatment raised RA levels to 530.5 µg/g
by increasing the expression of PAL and RAS genes [48]. D. kotschyi was co-cultivated
with Agrobacterium rhizogenes to mediate hairy root growth. Hairy roots were exposed to
75 mg/L Fe NP for 24 h, yielding RA content of 1194µg/g [49].

The endangered plant species Satureja khuzistanica Jamzad (from Iran) yielded RA in
methanol extracts ranging from 0.59% to 1.81%. Abbas et al. developed cell suspension
cultures of S. khuzistanica supplemented with 100 µM MeJA as an elicitor to improve RA
production to 3.9 g/L [50]. Subsequently, the authors found that suspension cultures treated
with pre-optimized coronatine (1 µM) obtained 2.67 g/L RA production, and the crude
extract induced apoptosis of MCF-7 cells [51]. These findings demonstrate the considerable
potential of in vitro cell culture of plants to induce the biosynthesis of compounds for
RA production.

Based on co-culture fermentation technology, RA is synthesized by fermenting plant
pericarp and bacteria. Fresh grape skins were vacuum-cooled, powdered, and fermented
by Lactobacillus plantarum KFY02 for 96 h. The fermentation broth was rich in RA, rutin,
and resveratrol which have antioxidant and liver cancer inhibitory activities [52].

Synthetic biology has made rapid progress and shown broad application prospects in
various fields. Engineering bacteria introduce genes into plants or other animals and uses
known biochemical reactions in nature to produce small molecular compounds, primarily
natural products. Several studies reported de novo synthesis of RA by engineered bacteria.
Enzymes including rosmarinic acid synthase (RAS), 4-hydroxyphenlacetate 3-hydroxylase,
D-lactate dehydrogenase, TAT, and tyrosine ammonia lyase catalyzed reactions for RA
biosynthesis [53–57]. Yan et al. achieved 320.04 mg /L*h RA productivity from caffeic acid
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and 3,4-dihydroxyphenyllactic acid using an ATP and CoA cycle regeneration system [58].
Li et al. developed a three-strain co-culture synthetic route to produce RA from glucose;
RA bioproduction reached 172 mg/L [59].

Table 1. The production process and anti-tumor effects of plants constitute a great source of RA.

Source Biotechnological Application for Production and
Extraction Process RA Content Anti-tumor Effect Ref

Rosmarinus officinalis L.

Aqueous extract of leaves 45.64 mg/g
Cervical cancer
Breast cancer

T-cell leukemia
[16]

Leaves removed the lipidic phase using hexane.
Then, extracted in ethyl acetate

Approximately 50.11% w/w
RA Colorectal cancer [17]

Dried leaves of Rosmarinus officinalis L. were
extracted with 70% (v/v) ethyl alcohol overnight at 22
◦C on a shaker. The stock solutions were collected
from the supernatant

- Ovarian carcinoma [18]

Perilla frutescens (L.) Britt.

Fresh Perilla leaves were extracted with 1% w/v citric
acid at 90 ◦C for 30 min, then mixed with n-butanol,
dried, and dissolved in water. Elution with 0.1% w/v
TFA containing 80% v/v methanol on Diaion HP2MG
column

68% w/w RA of freeze-dried
powder Skin carcinogenesis [20]

The dried leaves were chopped, boiled in 1 L of
distilled water for 1 h, and filtered. The supernatant
was lyophilized.

- HCC [19]

The seed meal was extracted in 70% ethanol and
dried, then dissolved in ethyl acetate 600.32–647.68 mg/g Lung cancer [21,22]

Melissa officinalis L.

50% ethanolic extracts of leaves N.A. Colorectal cancer [23]

Ethanolic extracts of dry leaves 184.4 ± 0.3 mg/g Lung cancer [8]

Ethanolic extract Approximately 18% Photoaging and skin cancer [24]

Ocimum tenuiflorum L. Leaves were soaked in 95% ethanol for two weeks,
then filtered and dried Approximately 7.86 mg/g HNSCC [27]

Ocimum basilicum L.

99% methanol extracts of dry leaves contained RA
3.01 mg/g 3.01 mg/g

Cervical cancer
Breast cancer

T-cell leukemia
[26]

Callus of basil supplemented with 5 mg/L BAP and 1
mg/L NAA and extracted using 100% ethanol 7.4 mg/g - [28]

Callus of basil grown on medium supplemented with
10 mg/L CuO-NPs, then extracted using 99.9%
methanol

11.4 mg/g - [29]

Callus of basil grown on with LED irradiation (24 h,
660 nm), then extracted using methanol 96.0 mg/g - [30]

Origanum vulgare L.

The aqueous part of the plant was chromatographed
on silica gel and eluted with hexane 0.15 mg/g RA/dry plant Glioma

Cervical cancer [31]

Herb was ground and sieved using a 125-µm sieve.
The powder was extracted with hot reflux in 90%
(v/v) ethanol at 95 ◦C for 4 h

Approximately 36 mg/g Glioma
Breast cancer [32]

Thymus vulgaris L. Dried callus was extracted by Soxhlet continuous
extraction device 5.67 mg/g Breast cancer [33]

Thymus longicaulis C.Presl The leaves were collected in October using 50%
methanol for ultrasonic extraction 3.03 mg/mL

Leukemia
Glioma

Breast cancer
Colorectal cancer

[34]

Salvia officinalis L. and Salvia
fruticosa Mill. Aqueous extracts

52.0 and 71.5 µg/mL RA of
water
extract

Colorectal cancer [35]

Salvia officinalis L.
The seedlings were irrigated with 1 mM sodium
silicate, 200 µM sodium nitroprusside, and 200 µM
CuSO4

0.62 mg/g - [37]

Salvia miltiorrhiza Bunge
Ground powder was enzymatically incubated and
extracted with Cellulase A, Protamex (1:1), and
distilled water at 30 ◦C for 2 h with stirring.

28.23 mg/g - [40]

Prunella laciniata (L.) L. 60% ethanol extract of leaves 2.31 mg/g Lung cancer [43,44]

Gastrocotyle hispida (Forssk.)
Bunge 80% methanol extracts from leaves - HCC

Breast cancer [45]
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Table 1. Cont.

Source Biotechnological Application for Production and
Extraction Process RA Content Anti-tumor Effect Ref

Glechoma hederacea L.
The whole plants were extracted in distilled water (3
hr at 100 ◦C) at a dilution of 1:50 (w/v), then extracted
with ethyl acetate

174.10 ± 5.80 mg/g HCC [46]

Ehretia tinifolia L. The juice in the fruit was applied onto an Amberlite
XAD-7 column and eluted with methanol -

Cervical cancer
Breast cancer

Colorectal cancer
[47]

Dracocephalum kotschyi Boiss.

Transformed roots were influenced by 50 mg/L
tTiO2 NPs for 24 h exposure time and incubated for
one week. The transformed roots were harvested and
extracted under 80% methanol ultrasound

530.5 µg/g - [48]

In vitro grown leaves were co-cultivated with
Agrobacterium rhizogenes strain to mediate hairy root.
Hairy roots were exposed to 75 mg/L Fe NP for 24h,
then harvested and extracted under 80% methanol
ultrasound

1194µg/g - [49]

Leonotis nepetifolia (L.) R.Br.
Young seedlings were infected with Rhizobium
rhizogenes strain A4, then harvested and extracted
under 80% methanol ultrasound

2643 µg/g
Lung cancer
Breast cancer

T-cell leukemia
[12]

Satureja khuzistanica Jamzad

Cell suspension cultures of plants supplemented
with 100 µM MeJA for 21 days
Methanol extraction

3.9 g/L RA in cell suspension
cultures - [50]

Cell suspension cultures of plants elicited with 1 µM
coronatine

2.67 g/L RA in cell
suspension cultures Breast cancer [51]

Lactobacillus plantarum
Fresh grape skins were vacuum-cooled and
powdered, fermented by Lactobacillus plantarum
KFY02 for 96 h

- HCC [52]

4. Improvement of Bioaccessibility and Bioavailability—Novel Technologies

The pharmacokinetic profile of RA was summarized by Nunes et al.; the benefits
of RA as a supplement are limited due to formulation challenges, bioaccessibility, and
bioavailability [7]. Therefore, it is essential to improve the bioavailability of RA, includ-
ing the improvement of pharmaceutical technology and developments of drug delivery
systems. For toxicology, a dose of 169.6 ± 32.4 mg/kg in Kunming mice (6 weeks old)
was shown to be lethal, indicating that RA was slightly toxic [60]. Meanwhile, clinical
studies should be considered for further investigation. There are several clinical studies
using RA-enriched dietary supplements. Among them, there were no reports of adverse
reactions [61,62]; however, these cannot explain the anti-tumor effects and potential toxicity
of RA for humans.

A study evaluating the bioavailability and nutrient kinetics of Rosmarinus officinalis
L. phenolic compounds in healthy humans found that phase II derivatives of RA were
RA-glucuronide, methyl-RA-glucuronide, dimethyl-RA-glucuronide, and dimethyl-RA,
suggesting absorption in the small intestine [13]. The absolute oral bioavailability of RA
butyl ester was 10.52%, compared to only 1.57% in its original form [63]. The absolute
bioavailability of RA was improved to 89.63 % after pulmonary administration [64].

Veras et al. tested excipients for RA. Microcrystalline cellulose and polyvinylpyrroli-
done have compatibility against physical interactions, chemical incompatibilities, high
temperatures, and water [65]. Encapsulation techniques involved oligosaccharides (e.g.,
cyclodextrins), increasing solubility in aqueous environments. Complexation of RA with
cyclodextrin improved antioxidant activity [65]. Several delivery systems of nanoparticles,
solid lipid nanoparticles (SLN), and phospholipid complexes have been applied to improve
the bioavailability and absorption of RA in the gastrointestinal environment. RA-loaded
silk fibroin nanoparticles had better bioavailability and induced apoptosis of breast and
cervical cancer cells in vitro [66]. A study reported RA’s dose safety and toxicity loaded into
SLN composed of Witepsol and Carnauba waxes [67]. RA is encapsulated in a hydrophobic
bilayer that enhances bioavailability when exposed to the gastrointestinal tract. Xue et al.
developed iron-crosslinked RA–lipid conjugates with high contents of RA and doxorubicin
(DOX), which had better stability, bioavailability, and synergistic anti-breast cancer effi-
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cacy [68]. RA–phospholipid complexes increased oral bioavailability through enhanced
intestinal permeability; an in vitro assessment determined that it had better permeation
and antioxidant activity [69].

5. Biological Processes and Mechanism of Action of RA in Tumor Prevention
and Treatment
5.1. Antioxidation and Anti-Inflammatory Effect

Oxidative stress is caused by the excessive accumulation of free radicals and involves
the development of aging, cancer, heart failure, brain damage, and immune disorders.
Therefore, the daily consumption of vitamin-rich foods as non-enzymatic antioxidant
supplements, or superoxide dismutase (SOD), catalase (CAT), and other health products
as the supplements of antioxidant enzymes can effectively remove free radicals. Studies
have shown that phenolic antioxidant RA had the function of scavenging free radicals,
including ROS and H2O2, and enhanced antioxidant enzymes and non-enzymic antioxi-
dants [70,71]. The antioxidant effect of RA is mainly related to preventing tumorigenesis
and chemosensitization.

Long-term exposure to ionizing radiation and chemical carcinogens induces tumori-
genesis. Ultraviolet (UV) exposure and administration of chemical carcinogens including
DMBA, TPA, 1,2-dimethylhydrazine (DMH), and azoxymethane (AOM) were used as
models of tumorigenesis. Increased metabolic activity in cancerous tissues generates high
concentrations of ROS leading to pro-tumorigenic events [72]. RA exhibited a potent
scavenging effect on ABTS and DPPH radicals and prevented skin and oral carcinogen-
esis [70,73]. RA enhanced SOD, CAT, and glutathione peroxidase (GPx) activities and
reduced lipid peroxidation and cytochrome P450, significantly reducing DMH-induced
intestinal polyps in vivo [74–77]. The accumulation of ROS is often accompanied by in-
flammation, and skin cancer and CRC are usually associated with long-term chronic
inflammation and oxidative stress. RA enhanced nuclear factor erythroid 2-related factor 2
(Nrf2)/heme oxygenase-1 (HO-1) antioxidant system to downregulate NOD-like receptor
family pyrin domain containing 3 (NLRP3) and interleukin-1β (IL-1β) in a skin carcinogen-
esis model caused by UVB radiation [78]. In AOM and dextran sulfate sodium-induced
colorectal carcinogenesis animal models, interleukin-6 (IL-6) levels and progression of
colitis-associated colon cancer were decreased by RA. The mechanism involved the down-
regulation of Toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) and signal transducer
and activator of transcription 3 (STAT3) [9,79]. RA prevents colorectal carcinogenesis due
to antioxidation and anti-inflammatory effects. RA is metabolized and absorbed by the
intestinal epithelium, suggesting the utility of daily dietary RA supplementation [13].

The application of the antioxidant effect of RA in tumor therapy is adjuvant therapy
and improving tumor side effects. The combination of blue light and RA for HNSCC
decreased H2O2 production and inhibited epithelial growth factor receptor (EGFR) ac-
tivation in vitro [80]. Free radical scavenging increased RA synergism with cytarabine
(Ara-C) against leukemia cells [81]. In addition, the antioxidant activity of RA can improve
the toxicity of anti-tumor therapy. The antioxidation properties of RA protected ovaries
without attenuating the anti-tumor effect of cisplatin [71]. RA improved the hepatorenal
toxicity induced by methotrexate and cardiotoxicity induced by DOX based on antioxidant
activity [82–84].

The anti-inflammatory targets of RA in tumor therapy are cyclooxygenase-2 (COX-
2) and NF-κB. RA inhibited COX-2 activity and downregulated ERK1/2 to exert anti-
inflammatory effects in lung, breast, and liver cancer cells [85,86]. The molecular simulation
predicted that Arg120 in COX-2 was the active site of RA [86]. RA induced apoptosis of
acute leukemia, liver cancer, and breast cancer by inhibiting NF-κB-mediated inflamma-
tion [87–89]. Wu et al. found that RA targeted I-kappaB kinase-β (IKK-β) to inhibit the
NF-κB signaling pathway using molecular docking [90]. Inflammatory factors, including
tumor necrosis factor-α (TNF-α), IL-1β, IL-6, and transforming growth factor-β (TGF-β),
were reduced after anti-tumor therapy with RA [86,88].
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5.2. Response to DNA Damage

ROS accumulation and chronic inflammation lead to DNA damage and carcinogen-
esis [91]. RA inhibited DNA damage due to potent antioxidant capacity, which plays
an essential role in preventing tumorigenesis. DMH-induced rat colorectal polyp model
and UV-irradiated mouse skin model have verified that it attenuated DNA damage and
inhibited tumorigenesis [24,92]. In the anti-tumor process, RA acts as a chemosensitizer in
a ROS-independent manner to inhibit DNA damage repair, thereby negatively responding
to DNA damage [90]. RA is used as adjunctive therapy to destroy DNA structure (with
alkylating agents) and inhibit RNA and DNA synthesis (DOX drugs). RA was combined
with alkylating agents in the treatment of CRC resulting in the suppression of DNA repair
proteins [41]. The efficacy of DOX in HCC was amplified by combining with RA, which
induced mitochondrial dysfunction and DNA damage [93]. Zhang et al. showed that
LncRNA MALAT-1 was regulated by RA and promoted DNA damage in ovarian cancer
cells; however, the mechanism remains unclear [94].

5.3. Regulation of Cell Cycle and Tumor Proliferation

Sustained unplanned proliferation is one of the hallmarks of cancer, characterized by
the potentially infinite proliferation of cancer cells due to the uninterrupted cell cycle and
cell division. Cell cycle-related inhibitors (cyclin-dependent kinases 4/6 inhibitors) arrest
tumors in the G1 phase, thereby preventing proliferation; this mechanism has been applied
in the treatment of several tumors [95]. RA induced cell cycle arrest in treating multiple
tumor cells, mainly through upregulation of p53 and p21 and downregulation of cyclins
D1, E, and B1 [96]. RA induced G0/G1-phase arrest in breast and pancreatic cancer [97,98].
G2/M arrest occurred in treating kidney cancer and oral cancer [99,100]. Cell cycle arrest
represents an opportunity for cancer cells to enter apoptosis. RA increased the expression of
apoptosis-related proteins, including BCL-2 associated X (BAX), caspase-3, and caspase-8,
and attenuated the expression of anti-apoptotic proteins B cell lymphoma-2 (BCL-2) and
poly (ADP-ribose) polymerase (PARP) [51,98]. The upstream mechanism of RA inducing
cell cycle arrest included histone deacetylases 2 (HDAC2) and glioma-associated oncogene
homolog 1 (Gli1). RA mitigated the restriction of HDAC2 on p53, thereby triggering cell
cycle arrest [96]. RA enhanced proteasome-mediated degradation of Gli1 and inhibited the
expression of downstream cyclin D1 and snail1 [98].

In addition to inducing cell cycle arrest to inhibit proliferation, RA can also directly
regulate cell proliferation-related targets. The anti-proliferative ability of RA was improved
at lower concentrations in combination therapy [11,101]. RA behaved the excellent anti-
proliferative activity against HeLa, HT29, A549 and MCF6 cancer cell lines with the IC50
values of 249.80, 277.85, 241.47, and 220.25 µM [102]. EGFR is a primary target of the
anti-proliferation effects of RA [80,101]. Virtual drug screening analysis revealed that RA
selectively inhibited EGFR and spleen tyrosine kinase (SYK). Kai-Cheng et al. synthesized
three RA derivatives against drug-resistant EGFR [103]. Microtubule affinity regulating
kinase 4 (MARK4) controlled the early step of cell division. Mini-chromosome maintenance
complex component 7 (MCM7) initiated eukaryotic DNA replication. RA bound to the
active pockets of cell proliferation-related proteins MARK4 and MCM7 with better potency
and inhibited protein functions in silico [104,105].

5.4. Apoptosis-Inducing Effect

RA increased the ratio of BAX/BCL-2, activated caspase family proteins, and inhibited
PARP, leading to apoptosis in several tumor cell lines [51,96,106]. RA promoted caspase
family proteins activity observed in different types of tumor cells in vitro, including CRC,
lung cancer, oral cancer, glioma, osteosarcoma, and ALL [10,60,90,100,106–108]. PI3K/AKT
is the primary pathway of RA-mediated apoptosis. In treating HCC and glioma, RA
acted as a Fyn inhibitor, promoting the expression of apoptosis-related proteins through
the PI3K/AKT and NF-κB pathways [10,109]. RA downregulated the PI3K/AKT/the
mechanistic target of rapamycin (mTOR) signaling pathway to induce apoptosis and
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inhibited epithelial-mesenchymal transition (EMT) and tumor growth in HCC and osteosar-
coma [108,110]. A study applied RNA arrays to identify apoptosis genes regulated by RA
in breast cancer cells. The TNF and TNF receptor superfamily were upregulated and were
involved in several programmed cell death signaling pathways [97].

RA promoted apoptosis in combination therapy. Aslıhan et al. showed that RA en-
hanced caspase-3 activity and synergized with siRNA to inhibit heat shock protein 27
(HSP27), which directly induced apoptosis in human glioma cells [111]. Mucin 1 (MUC1)
attenuated mitochondrial apoptotic factors and conferred resistance to cytarabine, gemc-
itabine, and cisplatin [112]. RA combined with a MUC1 inhibitor enhanced the inhibition
of protein glycosylation-related enzymes. Combination therapy induced apoptosis-related
proteins, including p53, BAX, BCL-2 associated agonist of cell death (BAD), and caspases-3,
-8, and -9 [113]. Docking studies showed that RA possesses a good binding affinity to the
p53 protein [114].

5.5. Suppression of Multidrug Resistance (MDR) Proteins

The ABCB1 gene and its functions encode MDR1/P-glycoprotein (P-gp) as an energy-
dependent drug pump [115]. P-gp-mediated tumor resistance is combined with drugs,
and the intracellular drugs are pumped extracellular through an ATP-dependent path-
way, reducing intracellular drug concentration. RA has a remarkable sensitization to
radiotherapy and chemotherapy [116] and has been observed as an inhibitory effect
on P-gp in tumor therapy combined with DOX, DDP, and gemcitabine, leading to a
sensitization effect on chemotherapy in gastric, breast, non-small-cell lung, and pan-
creatic cancers [11,117–119]. Studies indicated that MUC1 induces acquired chemoresis-
tance by upregulating P-gp [120,121]. RA reduced MUC1 to sensitize chemotherapy in
gastric cancer [113,122]; however, whether RA mediates P- gp through MUC1 requires
further study.

5.6. Suppression of Glycolytic Pathway

Differentially expressed proteins after RA intervention in HCC were detected by
proteomics analysis. Glycolysis and gluconeogenesis were significantly downregulated
after RA intervention according to KEGG pathway enrichment. Inhibition of glycolysis
reduced ATP production and inhibited the proliferation of HepG2 cells [123]. The Warburg
effect and hypoxia-inducible factor 1 (HIF-1) strengthen energy metabolism, free radical
accumulation, and chronic inflammation, promoting tumor angiogenesis and survival [124].
RA can mitigate IL-6/STAT3 and HIF-1α against the Warburg effect in gastric carcinoma
and CRC [125,126].

5.7. EMT Inhibition

Invasive tumor cells exhibit characteristics associated with EMT, including mesenchy-
mal cell morphology, loss of cell adhesion, upregulation of cell mobility, and expression of
mesenchymal cell feature proteins [127]. RA regulated EMT-related proteins and inhibited
tumor cell invasion [107]. RA promoted EMT through the upregulation of E-cadherin,
inhibition of N-cadherin, and the concomitant inhibition of matrix metalloproteinases
(MMPs), resulting in impaired invasive ability in osteosarcoma, pancreatic cancer, and
CRC [108,128,129]. Studies suggested that RA suppressed the expression of Zinc finger
E-box binding homeobox 1, snail1, and twist1, inhibited EMT, and increased chemosensi-
tivity [117].

5.8. Anti-Angiogenesis and Metastasis

Both in vivo and in vitro studies have shown that RA has the ability to inhibit invasion
and metastasis. First, RA can inhibit invasion ability through MMPs. The central role
of MMPs in cancer metastasis is the degradation and remodeling of the extracellular
matrix (ECM), which facilitates invasion and metastasis through peripheral cancer tissues.
ECM-degrading proteolytic enzymes such as MMP-1, -2, -13, and -14 are involved [130].
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Furthermore, the role of MMPs in promoting angiogenesis also promotes tumor progression
and metastasis. MMP-9 regulates vascular endothelial growth factor (VEGF) translocation
into cells to enable an angiogenic switch [131]. RA inhibited the expression of MMP-
2 and MMP-9 and cell invasive ability in several tumor cell lines and attenuated lung
metastasis of CRC in a mouse model [60,100,107]. The downregulation of MMP-2 and
MMP-9 by RA as a Fyn inhibitor in treating HCC and glioma suppressed tumor invasion
and migration [10,109]. Downregulation of AKT phosphorylation with repression by MMPs
contributed to the suppression of tumor invasion ability [101,108]. Studies found that RA
upregulated miRNAs; miR-506 and miR-1225-5p targeted the 3’ untranslated regions of
MMPs to inhibit EMT and tumor metastasis [128,129].

Second, RA inhibits tumor metastasis through VEGF and IL-8 pathways. In vivo stud-
ies reported that RA inhibited lung metastasis and bone metastasis of breast cancer [60,132].
Downregulation of VEGF is also the most frequently reported target of RA treatment for
metastasis [88,89,133]. Activation of EGFR and VEGF receptors promoted the expression of
MMPs and VEGF through intracellular signaling cascades and inhibited the formation of
metastatic lung nodule formation [60,132,134]. Huang et al. showed that ROS generation
promoted VEGF expression and IL-8 release [134]. In addition, RA inhibited breast cancer
metastasis by suppressing IL-8 through the NF-κB ligand/TNF receptor superfamily mem-
ber 11a/osteoprotegerin pathway [132]. Nevertheless, the role of RA against metastasis
requires further study.

6. Prevention of RA in Tumorigenesis

Antioxidation and free radical scavenging are the crucial functions of RA to prevent
tumorigenesis. RA upregulated activity of SOD, CAT, glutathione (GSH), and GPx and
downregulated thiobarbituric acid reactive substances and malondialdehyde (MDA) [73,74].
Sufficient evidence on the prevention of CRC is related to the potent antioxidant effect of
RA on tissues during intestinal epithelial absorption to prevent polyps and tumorigenesis.
Common inducers in animal models of colorectal cancer are DMH, AOM and dextran
sodium sulfate (DSS). AOM and DMH can become carcinogenic through DNA alkylation,
promoting the mispairing of bases. DSS is a synthetic sulfated polysaccharide, and its use
alone was shown to cause colonic inflammation in mice, while a combination of AOM
and DSS stably induced inflammatory colorectal cancer [135]. In colorectal carcinogen-
esis rat or mouse models, RA reduced the formation of aberrant crypt foci (ACF) and
eliminated the progression of colitis-associated colon cancer [9,74,76,92]. The potential
prevention of CRC by RA was mainly attributed to three aspects. First, the excellent an-
tioxidant effect of RA could enhance antioxidant enzyme activity, including SOD, CAT,
GSH, and GPx. In addition, RA attenuated DMH-induced upregulation of cytochrome
P450 (CYP450) [74,77]. Second, RA inhibited the release of TNF-α, IL-6, and COX-2 pro-
inflammatory factors [76,79]. The anti-inflammatory effect of RA has been related to the
inhibition of TLR4/NF-κB and STAT3 [9]. Third, RA can reduce DNA damage against
ACF formation [92]. A model of spontaneous CRC, C57BL/6J-ApcMin/+ mouse, was shown
to be related to familial adenomatous polyposis-derived tumorigenesis. RA decreased
the numbers of large adenomas (>3 mm) in C57BL/6J-ApcMin/+ mouse [136]. Skin car-
cinogenesis is primarily caused by exposure to UV in sunlight, which induces oxidative
stress, and the formation of photoproducts and lesions in DNA. Impaired DNA repair may
lead to mutagenesis and carcinogenesis [137,138]. RA ameliorated ROS generation, MDA
content, and DNA damage in DMBA/TPA-induced skin papilloma mouse model and UV-
irradiated keratinocytes [20,24,70,139]. RA downregulated NLRP3 and IL-1β production
via the Nrf2/HO-1 antioxidant system [78]. Overall, the occurrence of skin cancer is related
to UV exposure and oxidative stress, and the above effects of RA can effectively resist skin
carcinogenesis. RA prevents oral cancer due to its antioxidant effects [73,140], as illustrated
in Figure 2 and Table 2.
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Figure 2. Mechanisms of tumorigenesis prevention effects of RA. When cells undergo oxidative
stress or inflammatory factors (ILs), ROS and MDA are accumulated. The intracellular peroxidases
SOD dismutate superoxide anion to H2O2, then GPx and CAT catalyze the decomposition of H2O2

into H2O to maintain cellular ROS homeostasis. When cells are continuously stimulated by ROS,
accompanied by the activation of NF-κB and COX-2, the normal cells can abnormally proliferate,
differentiate, and escape apoptosis, leading to tumorigenesis. RA inhibits the secretion of IL-1β and
IL-6, the expression of NF-κB and COX-2, and downregulates the content of ROS and MDA.

Table 2. Summary of tumorigenesis prevention effects of RA.

Disease Model Treatment Outcome Ref

Colorectal
carcinogenesis

Wistar male rats given DMH
orally 20 mg/kg, once a day

RA 10mg/kg, once a
day

Inhibited the carcinogenic
effect through circulatory
antioxidant enzymes
(SOD↑, CAT↑, GSH↑, and
GPx↑)

[75]

Colorectal
carcinogenesis

Male albino wistar rat given
DMH 20 mg/kg
subcutaneously for 4 weeks

RA 2.5, 5, and
10 mg/kg

Reduced the polyp
incidence through
CYP450↓, lipid
peroxidation↓, SOD↑,
CAT↑, GPx↑, and GSH↑.

[74]

Colorectal
carcinogenesis

Wistar rats with subcutaneous
injection of 40 mg/kg DMH
for 2 weeks

RA 4, 8 and 16 mg/kg
body weight

Reduced DNA damage
and frequency of the
formation of ACF

[92]
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Table 2. Cont.

Disease Model Treatment Outcome Ref

Colorectal
carcinogenesis

Male Wistar rats with
subcutaneous injection of
DMH 20 mg/kg.

Oral RA 5 mg/kg body
weight 30 weeks in
total

Inhibited the tumor
formation and reduced
expressions of TNF-α, IL-6,
and COX-2, and increased
SOD, CAT, GPx, and
TBARS

[76]

Colorectal
carcinogenesis

Male Wistar rats with
subcutaneous injection of
DMH 20 mg/kg for 15 weeks

Daily RA 5mg/kg
orally

Protected the activity of
antioxidant enzymes
(CYP450↓ and
CYP4502E1↓) and reduced
the formation of ACF

[77]

Colorectal
carcinogenesis

Male Sprague-Dawley rats
intraperitoneally injected with
15 mg/kg AOM once a week
for 4 weeks

RA 5 mg/kg orally per
day

Increased the total
antioxidant status, and
decreased the expression of
IL-6 and total oxidant
status

[79]

Colorectal
carcinogenesis

Male BALB/c mice with oral
administration of AOM5-ASA
75 mg/kg/day
intraperitoneally for 7 days,
then supplied drinking water
containing 1–2% DSS for
49 days

RA 30 mg/kg/day
orally

Inhibited TLR4 mediated
the activation of NF-κB
and STAT3 and eliminated
the progression of
colitis-associated colon
cancer

[9]

Colorectal
carcinogenesis

APC10.1 cells;
C57BL/6J-ApcMin/+ mouse
model

RA 100 µM;
0.3% RA in the diet,
360 mg/kg per day

Decreased numbers of
large adenomas (>3 mm) [136]

Skin carcinogenesis DMBA/TPA induced skin
papilloma mouse model

Topical application RA
1.35 mg/mouse

Inhibited MDA,
chemokines and
arachidonic acid and
prevented DNA from
oxidative damage

[20]

Skin carcinogenesis HaCaT cells exposed to UVA RA 2.7–18 mg/mL

Attenuated ROS
generation and DNA
damage in UVB-irradiated
keratinocytes by LBE

[24]

Skin carcinogenesis HaCaT cells exposed to UVB RA 2.5 or 5 µM

Downregulated the
inflammasome
components (NLRP3 and
IL-1β production) via
Nrf2/HO-1 antioxidant
system and prevented skin
changes caused by UVB

[78]

Skin carcinogenesis

B16 melanoma cells;
Female albino Swiss mouses
exposed to UVA light 3 times a
week, total 100 times

2% RA in the diet to
rats;
Cell administration RA
at 1 mg/mL

RA increased the Tyr
activity in vitro.
Oral RA inhibited skin
changes caused by UVA
exposure (skin
photocarcinogenesis)

[70]



Biomolecules 2022, 12, 1410 13 of 27

Table 2. Cont.

Disease Model Treatment Outcome Ref

Oral carcinogenesis

0.5% DMBA liquid paraffin
treated on left buccal pouches
of golden Syrian hamster
model for 14 weeks

RA orally 100 mg/kg

Suppressed oral
carcinogenesis through
upregulation of SOD, CAT,
GSH, GPx and
downregulation of TBARS
and BCL-2

[73]

Oral carcinogenesis
Male Syrian hamster
intravenous injection of 0.5%
DMBA

RA 1.3 mg/15 mL Reduced the intensity and
invasiveness of the tumor [140]

Tumor angiogenesis Human umbilical vein
endothelial cells (HUVECs) RA 50, 100 and 200 mM

Suppression of ROS
generation and
downregulation the release
of VEGF and IL-8

[134]

7. The Therapeutic Effect of RA on Cancer

RA inhibited several solid and hematologic tumors by inducing cell cycle arrest and
apoptosis, and inhibiting EMT and tumor metastasis. Studies on the anti-tumor effects
of RA through in vitro and in vivo models are summarized in Figure 3 and Table 3. In
the case of glioma, RA was reported to promote apoptosis-related protein and exerted
cytotoxicity in several glioma cell lines with an IC50 value ranging between 200 and 400 µM
for 48 h [10,111]. RA induced cell apoptosis and inhibited the migration of oral cancer cells
in vitro [100]. RA regulated apoptosis-related genes and changed the methylation pattern
via DNA methyltransferases 1 (DNMT1) for breast cancer chemoprevention [97,141]. In
addition, RA inhibited breast-derived bone metastases by suppressing IL-8 [132]. RA
suppressed the viability of two gastric cancer cell lines at a lower IC50 concentration
of 240 µM; meanwhile, RA suppressed tumor growth in gastric tumor-bearing mice by
inhibiting of the Warburg effect [122,125]. RA was shown to possess a wide range of appli-
cations in the treatment of HCC, including induction of apoptosis, and inhibition of tumor
growth and metastasis. Meanwhile, RA demonstrated little effects on the proliferation
and morphology of normal human astrocytes cells [109]. Treatment of RA mediated the
upregulation of caspase-3, -8, and -9 and inhibited BCL-2 expression to induce apoptosis
in different HCC cell lines [19,106]. The downregulation of PI3K/AKT and glycolytic
pathway by RA inhibited the cell proliferation and tumor growth of HCC [109,110,123].
Furthermore, RA analogue-11 is a synthesized RA analogue, which promoted apoptosis via
the EGFR/AKT/NF-κB pathway in gastric cancer cells [142]. RA also inhibited VEGF ex-
pression and EMT to attenuate tumor invasion of HCC in vitro, but more in-depth evidence
in in vivo studies is required [88,106,110]. Pancreatic cancer is a highly lethal disease and
the fourth leading cause of cancer-related deaths worldwide [143]. RA was shown to induce
apoptosis and inhibit pancreatic cancer invasion and proliferation in vitro and suppressed
tumor growth in vivo [98,129]. CRC is the third most common cause of cancer-related
deaths worldwide, with tumor metastasis occurring in approximately 45% of patients [144].
In CRC, RA demonstrated the potential to withstand CRC metastasis. A reduction in lung
metastasis was observed in mice model after RA treatment [107]. Meanwhile, RA can
downregulate EMT and MMPs to inhibit the invasion and migration ability of several
CRC cell lines [60,107,128]. Inflammation affects cytokine receptor-mediated signaling
pathways that mediate CRC tumor progression, including the TNF, IL-1, IL-6, and NF-κB
pathways. Moreover, therapy-induced death of CRC cells can induce the production of
TNF, IL-17, and IL-6 to save the remaining cells [145]. Therefore, avoiding the inflammatory
response could help treat CRC. In this regard, RA was shown to suppress CRC inflam-
mation by impairing the IL-6/STAT3 and NF-κB pathways [60,126]. In solid tumors, RA
has also shown anti-tumor effects on ovarian cancer, cervical cancer, prostate cancer, and
osteosarcoma, and the specific mechanisms are shown in Table 3. Through transcriptome
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sequencing analysis, RA methyl ester accelerated apoptosis in DDP resistant ovarian cancer
cell line through inhibitory of Forkhead box M1 (FOXM1) [146]. And RA methyl ester also
enhanced DDP sensitivity against cervical cancer by inhibiting mTOR/ribosomal protein
S6 kinase β-1 (S6K1) pathway [147]. For hematological tumors, RA reported to induce
cytotoxicity against multiple myeloma (MM) by inhibiting mitochondrial activity [148]. RA
promoted apoptosis in leukemia cells by inhibiting NF-κB and ROS production [87,90], and
the IC50 values of RA-treated normal lymphocytes were 1.7- to 5-fold higher than that of
ALL cells [90].
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Figure 3. The key mechanisms of anti-tumor effects of RA. Extrinsic apoptosis: RA induces extrinsic
apoptosis by upregulating TNF-α and caspase-8. Endogenous apoptosis: RA inhibits BCL-2 and
promotes the expression of BAX, caspase-3, -7, and -9 to mediate endogenous apoptosis. P53
pathway and cell cycle: RA inhibits MDM2 expression and promotes p53, p21 expression mediates
apoptosis. P21 inhibits Cyclin D and Cyclin E to induce cell cycle arrest, and RA inhibits Cyclin B,
Cyclin D, and Cyclin E to mediate cell cycle arrest and promote apoptosis. PI3K/AKT and NF-κB
pathway: RA promotes the expression of tumor suppressor gene PTEN, inhibits PI3K expression,
AKT phosphorylation, NF-κB expression, and p65 phosphorylation, which induces apoptosis through
the inhibition of cell survival-related pathways.
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Table 3. Summary of anti-tumor effects of RA.

Disease Model (IC50) Treatment Outcome Ref

Glioma U251 and U343 glioma cells RA 100, 200, and 400 µM

Inhibited BCL-2 and promoted the
expression of BAX and cleaved
caspase-3 protein, and
downregulated PI3K/AKT/NF-κB
signaling pathway through
targeting Fyn.

[10]

Glioma U-87 MG cells (IC50 for
48 h:373.48 µM) RA 80 and 215 µM

Inhibited the expression of HSP27
and enhanced the activity of
caspase-3

[111]

Oral cancer SCC-15 cells RA 10, 20, and 40 µM

Increased the expression of
cleaved caspase-3 and BAX/BCL-2
ratio, induced G2/M cell cycle
arrest, and inhibited migration
through downregulation of
MMP-2 and MMP-9

[100]

Breast cancer

MDA-MB-231 (IC50 for 48 h:
321.75 ± 9.75 uM) and
MDA-MB-468 cells (IC50 for 48 h:
340.45 ± 7.57 uM)

RA 125 and 250 µM

Induced G0/G1 cell cycle arrest
and apoptosis through regulation
of apoptosis-related genes (HRK↑,
TNFRSF25↑, BNIP3↑, TNF↑,
GADD45A↑, BNIP3↑, TNFSF10↓,
BIRC5↓ and TNFRSF11B↓)

[97]

Breast cancer MCF7 cell line RA 20 and 40 µM
Regulated the methylation pattern
via DNMT1 for chemoprevention
of cancer

[141]

Breast-derived
bone metastases

MDA-MB-231BO human
bone-homing breast cancer cells
(IC50: 118.04 µg/mL)

RA 7.5, 15, 30, and 60 µg/mL

Inhibited the metastasis of breast
cancer by suppression of IL-8
through NF-κB ligand/ TNF
receptor superfamily member 11a
/osteoprotegerin pathway

[132]

Gastric cancer

MKN45 cells (IC50 for 24 h:
240.2 µM);
MKN45 cells injected into
BALB/c-nude mice

RA 60, 120.1, and 240.2 µM;
RA 2 mg/kg injected
intraperitoneally for 14 days

Inhibited Warburg effect (glucose
consumption, lactate generation,
and HIF-1α) through
downregulation of IL-6/STAT3
pathway

[125]

Gastric cancer CRL-1739 cells (IC50 for 24 h:
240 µM) RA 100 and 200 µM

Inhibited the expression of MMP-9,
TIMP-1, MUC1, Tn antigens and T
antigens, increased the expression
of collagen I

[122]

Gastric cancer

GES-1 (IC50 for 24 h:
289.425 ± 0.854 µmol/L) and
SGC-7901 cells (IC50 for 24 h:
73.299 ± 2.011 µmol/L)

RA analogue-11 10, 20, and
40µmol/L

Promoted apoptosis via the
EGFR/AKT/NF-κB pathway in
gastric cancer cells.

[142]

HCC HepG2 cells RA 5 and 10 µg/mL

Induced apoptosis through
increasing the mRNA levels of Jun,
Jun-B, Fos-B, BAX and caspase-8,
and decreased BCL-2 mRNA
expression

[19]

HCC H22 tumor-bearing mice Intraperitoneal injection of RA
75, 150, and 300 mg/kg

Inhibited inflammatory cytokines
(IL-1β, IL-6, TNF-α, TGF-β),
angiogenic factors (VEGF) and
phosphorylation of p65. The tumor
inhibition rates in different
concentrations of RA (39.03%,
42.98%, and 48.24%)

[88]

HCC HepG2 cells (IC50 for 48 h: 33
± 0.74 µg/mL)

RA 6.25, 12.5, 25, 50, and
100 µg/mL

Inhibited the expression of GLUT-1
and HK-2 to suppress the
glycolytic pathway.

[123]

HCC HepG2 cells RA 7, 14, and 28 µM

Induced apoptosis (caspase-3↑,
caspase-9↑ and BAX/BCL-2
ratio↑), inhibited migration, and
invasion

[106]
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Table 3. Cont.

Disease Model (IC50) Treatment Outcome Ref

HCC HepG2 cells RA 100, 200, and 400 µM

Reduced the expression of MMP-2,
MMP-9, and BCL-2, promoted the
expression of BAX and Caspase-3,
and downregulated
PI3K/AKT/NF-κB signaling
pathway through targeting Fyn.

[109]

HCC
SMMC 7721 cells;
Tumor bearing model of nude
mice

RA 20, 50, and 100 µmol/L;
RA 5, 10, and 20 mg/kg for
5 days

Downregulated
PI3K/AKT/mTOR signaling
pathway to induce apoptosis,
inhibited EMT in vitro and tumor
growth in vivo

[110]

Pancreatic cancer

PANC-1, PATU-8988, MIA
PaCa-2 and BxPC-3 cells;
Tumor bearing model of nude
mice (MIA PaCa-2 cells)

RA 100, 200, 300, 400, and 500
µM; Orally 50 mg/kg
RA 50 mg/kg orally for 30 days

Enhanced proteasome-mediated
degradation of Gli1 and inhibited
the expression of downstream
VEGF, Cyclin D1 and snail1.
Induced apoptosis and inhibited
invasion and proliferation in vitro;
Suppressed tumor growth in vivo

[98]

Pancreatic cancer

Panc-1 (IC50 for 24 h:
104.2 ± 4.5 µM) and SW1990
cells (IC50 for 24 h:
118.9 ± 6.7 µM);
Nude mice injected
subcutaneously into Panc-1 cells

RA 100 µM;
10 and 50 mg/kg orally for 30
days

Inhibited mRNA expression of
MMP2 and MMP16 via miR-506;
Inhibited tumor growth in the
xenograft mice model.

[129]

CRC HCT15 and CO115 cells RA 10, 50, and 100 µM
Inhibited cell proliferation through
inhibitory of phospho-ERK in
HCT15

[35]

CRC

HCT8 (IC50: 298.1 µM), HCT116
(IC50: 319.8 µM), Ls174-T (IC50:
539.4 µM), and Lovo (IC50: 576.3
µM) cells

RA 0, 75, and 150 µM Inhibited IL-1β, TNFα, IL-6, and
STAT3 against Warburg effect [126]

CRC
CT26 and HCT116;
BALB/c mice inoculated with
CT26 via the lateral tail vein

RA 50, 100, and 200 µM;
oral injection of RA
(100 mg/kg/day) for 14 days

Induced G0/G1 cell cycle arrest
and apoptosis (caspases↑, Bcl-XL↓,
and BCL-2↓), inhibited EMT and
invasion via AMPK
phosphorylation;
Reduced lung metastasis of CRC
cells

[107]

Colon carcinoma
Lung cancer

Ls174-T human colon carcinoma
cells.
Lewis lung carcinoma (LLC)
cells injected into C57BL/6 mice

RA 37.5, 75, 150, and 300 µg/mL
in vitro;
RA 1, 2, and 4 mg/kg
intraperitoneal injection for 20
days

Inhibited the activities of EGFR
and VEGFR, and then suppressed
the nuclear translocation of NF-κB
and activity of p-AKT and p-ERK
resulting in downregulation of the
mRNA and protein expression of
MMP-2, MMP-9, and VEGF
in vitro.
Inhibited the formation of
metastasis nodules.

[60]

CRC HT-29 cells RA 50, 100, and 200 µM
Inhibited EMT (E-cadherin↑,
N-cadherin↓, MMP-1, -3, and -9↓)
via the p38/AP-1 signaling

[128]

Ovarian cancer OVCAR-3 cells RA 10, 40, and 160 µM
Regulated the expression of
lncRNA MALAT-1, inhibited cell
migration and induced apoptosis.

[94]

Ovarian cancer
SKOV-3, TOV-21G and DDP
resistant daughter line
TOV/CisR

RA methyl ester 40 µM;
DDP 5µM;
combination therapy

Accelerated apoptosis in DDP
resistant ovarian cancer cell line
through inhibitory of FOXM1

[146]

Cervical cancer HeLa and SiHa cells
RA methyl ester 80 µM;
DDP 5µM;
combination therapy

Exerted apoptosis effects against
cervical cancer by inhibiting
mTOR/S6K1 pathway

[147]
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Table 3. Cont.

Disease Model (IC50) Treatment Outcome Ref

Prostate cancer PC-3, DU145 cells RA 200 µM

Induced G0/G1 cell cycle arrest
(Cyclin D1↓, Cyclin E↓, CyclinB1↓
and p21↑) and apoptosis,
enhanced transcription of p53 by
inhibition of HDAC2.

[96]

Osteosarcoma

U2OS (IC50 for 48h: 28 ± 1.14
µg/mL) and MG63 (IC50 for 48h:
25 ± 1.37 µg/mL) osteosarcoma
cells.

RA 12.5, 25, and 50 µg/mL

Induced apoptosis (caspase-3, -8,
and -9↑ and BAX/BCL-2 ratio↑),
inhibited EMT and invasion
(MMP-2↓, MMP-9↓) through DJ-1
mediated upregulation of PTEN
and downregulation of PI3K/AKT

[108]

MM ARH-77 cells RA 50, 100, and 200 µM
Exerted cytotoxic effects and
decreased the mitochondrial
activity

[148]

Leukemia U937 cells using TNF- α 10
ng/mL induced oxidative stress RA 60 µM Reduced NF- κB and ROS

production, promoted apoptosis [87]

Acute
lymphoblastic

leukemia

CCRF-CEM (IC50 for 48h: 14.6 ±
1.58 µM) and CEM/ADR5000
(IC50 for 48h: 44.5 ± 5.3 µM)
cells

RA 15, 30, and 60 µM

Targeted IKK-β to inhibit NF-κB
signaling pathway, caused
disruption of MMP and cell
adhesion and promoted
caspase-independent cell death

[90]

8. Chemosensitivity Effect of RA on Tumor Therapy

Tumor resistance to chemotherapy is a significant cause of treatment failure, and has led
to research on chemotherapeutic drug sensitizers. DDP is a platinum coordination complex,
which can inhibit the DNA replication of cancer cells and damage the cell membrane structure.
It is cytotoxic and more sensitive to fast proliferation cells, such as cancer cells. Therefore, it
is widely used in the anti-tumor treatment of solid tumors [149]. Platinum-based drugs are
used in the first-line treatment of lung, liver, and ovarian cancer. Four studies showed that
RA increased the sensitivity of malignant tumor cells to DDP. RA downregulated MDR1 to
increase the sensitivity of DDP in treating lung cancer [11]. The combination of RA and DDP
induced G2/M phase arrest and apoptosis in renal cancer cells [99]. RA inhibited melanin
synthesis and increased DDP sensitivity by inhibiting the ADAM17/EGFR/AKT/glycogen
synthase kinase-3β (GSK3β) axis in melanoma [101]. In addition, RA showed synergistic
anti-proliferation effect with DDP on ovarian cancer cells [18].

In breast cancer treatment, DOX and paclitaxel are used as sequential chemotherapy
regimen [150]. RA mediated the sensitivity of DOX and paclitaxel by regulating p53
pathway and inducting apoptosis [89,118]. The first-line chemotherapy drug for gastric
cancer treatment is 5-fluorouracil (5-FU). RA was shown to enhance chemosensitivity to
5-FU by increasing Forkhead box O4 (FOXO4) [151]. DOX is a chemotherapeutic drug used
for gastric cancer treatment and RA was shown to reverse the resistance of SGC7901/Adr
cells to DOX by inhibiting MDR1 [119]. In addition, RA cooperated with the anti-MUC1
antibody to promote apoptosis in human gastric carcinoma cells [113]. Although the
recommended treatment of HCC is surgery, radiotherapy, and interventional therapy,
chemotherapy and molecular-targeted therapy are still the main treatment options for
advanced HCC. Combination therapy using RA and DOX can enhance DNA damage and
BAX/BCL-2 ratio in HCC [93]. RA synergistically increased cytotoxicity and proteasome
inhibition induced by MG132 in HCC [152]. RA also enhanced the efficacy of gemcitabine
through the downregulation of multidrug resistance-associated protein 4 (MRP-4) and
MRP-5 in Panc-1 pancreatic cancer cells [117]. Treatment with all-trans retinoic acid (ATRA)
induced the differentiation of leukemia cells and increased the complete response rate of
acute promyelocytic leukemia (APL) [153]. More than 80–90% of APL are expected to be
cured with a therapeutic regimen based on ATRA and arsenic trioxide [154]. RA potentiated
ATRA-induced macrophage differentiation in APL cells [155]. Then, RA synergistically
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inhibited DNA synthesis to potentiated the anti-proliferative effect of Ara-C [81]. In
addition, RA can increase the sensitivity of physical therapy. Combining blue light and
RA was shown to effectively decrease the cell proliferation of HNSCC [80]. RA specifically
sensitized radiation to induce apoptosis in metastatic melanoma [156]. Using RA for
synthesizing AuNPs plays an active role on the treatment of breast cancer [157].

Some RA-rich herbs have been used in adjuvant chemotherapy in ethnomedicine to
sensitize cancer cells to conventional drugs and enhance their effects at minimal doses.
Subsequent studies confirmed that RA indeed increased the sensitivity of commonly used
chemotherapeutic drugs, including DDP, paclitaxel, 5-Fu, DOX, and Ara-C. The molecular
targets involved in chemosensitization are displayed in Table 4.

Table 4. Summary of RA as chemosensitizers in tumor therapy.

Disease Model Treatment Outcome Ref

Lung cancer A549 and A549/DDP
(DDP resistance) cells

RA 10, 15, 20, and 40 µg/mL;
DDP 1 µg/mL;
combination therapy

Inhibited proliferation
and invasion, and
enhanced
chemosensitivity to
DDP based on
downregulation of
MDR1 mRNA
expression

[11]

Renal cancer 786-O cells
RA 25, 50, and 100 µM;
DDP 5µM;
combination therapy

Induced G2/M phase
arrest and apoptosis in
renal cancer cells.

[99]

Ovarian
cancer

A2780 and DDP
resistant daughter line
A2780CP70

RA 2.5, 5, and 10 g/mL

Showed synergistic
anti-proliferation effect
with DDP on A2780
cells

[18]

Melanoma A375 cells
RA 50, 100, and 200 µg/mL;
DDP 8 µM;
combination therapy

Inhibited cell
proliferation, invasion,
and melanin synthesis,
and increased
apoptosis and DDP
sensitivity via
inhibitory of
ADAM17/EGFR/AKT/GSK3β
axis

[101]

Breast cancer

Female Swiss albino
mice with intradermal
injection of 0.1 mL
Ehrlich ascites
carcinoma

Oral RA 50 mg/kg;
Paclitaxel 10 mg/kg/three times
weekly intraperitoneally;
combination therapy

Exerted
chemo-preventive in
combination with
paclitaxel, suppressed
NF-κB, TNF-α, and
VEGF, increased in
apoptotic markers p53,
caspase-3, and
BAX/BCL-2 ratio

[89]

Breast cancer MCF-7 cells
RA 1.5, 15, or 50 µM;
DOX 0.2 µM;
combination therapy

Decreased the MDM2
gene expression and
potentiated the effect of
DOX

[118]
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Table 4. Cont.

Disease Model Treatment Outcome Ref

Gastric cancer AGS cells
RA 100 and 200 µM;
Anti-MUC1 antibody 5 µg/mL
combination therapy

Inhibited the
expression of MUC1,
BCL-2, Tn antigens and
T antigens, increased
the expression of
caspase-9, BAX, and
BAD

[113]

Gastric cancer SGC7901/Adr cells
(DOX resistance) RA 2.4 and 12 µM

Reversed the MDR of
SGC7901/Adr cells,
increased sensitivity to
DOX and Rh123
through
downregulating the
expression of MDR1
transcript levels

[119]

Gastric cancer
SGC7901 and
SGC7901/5-Fu (5-Fu
resistance) cells

RA 15 µg/mL;
5-Fu 50 µg/mL;
combination therapy

Enhanced
chemosensitivity to
5-Fu, increased FOXO4
by downregulating
miR-6785-5p and
miR-642a-3p

[151]

HCC HepG2 and Bel-7402
Cells

RA 25, 50, and 100 µg/mL;
DOX 0.4 µg/mL;
combination therapy

Enhanced DNA
damage and apoptosis
(BAX/BCL-2 ratio↑)

[93]

HCC HepG2 cells
RA 10, 100, and 1000 mM;
MG132 1 µM;
combination therapy

Synergistically
increased cytotoxicity,
proteasome inhibition,
autophagy, and
apoptosis

[152]

Pancreatic cancer Panc-1 cells
RA 10 and 20 µM;
Gemcitabine 12.5 nM;
combination therapy

Exerted anti-migration,
pro-apoptosis effects
and enhanced the
efficacy of gemcitabine
through
downregulation of
MRP-4, MRP-5, and
Notch1 intracellular
domain

[117]

APL NB4 cells
RA 40 mM;
ATRA 10 nM;
combination therapy

RA potentiated
ATRA-induced
macrophage
differentiation in APL
cells and increased
CCR-1, CCR-2, and
ICAM-1 expression
through activation of
ERK and NF-κB

[155]
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Table 4. Cont.

Disease Model Treatment Outcome Ref

APL HL-60 cells
RA 100, 125, and 150 µM;
Ara-C 5, 10, and 20 nM;
combination therapy

Synergistically
inhibited DNA
synthesis to potentiated
the anti-proliferative
effect of Ara-C

[81]

HNSCC UM-SCC-1, UM-SCC-6,
and OSC-2 cells

RA 80 µg/mL;
Blue light 400–500 nm; 60 J/cm2,
2 min;
combination therapy

Reduced EGFR
activation and H2O2
production.

[80]

Metastatic melanoma B16F10 cells RA 20 and 40µM;
RA combination with X-rays

Specifically sensitized
radiation induces
apoptosis of tumor cells

[156]

9. Conclusions

Substantial evidence has been proven the potential benefits of RA and RA-enriched
plants as drug candidates for the prevention and treatment of cancer. Among RA-rich
plants, rosemary, basil, and Perilla frutescens (L.) Britt are potential anti-tumor plants as
dietary supplements. In this review, antioxidative and anti-inflammatory effects of RA
prevent tumorigenesis, and oral RA is a potential application to prevent CRC. RA exerts
anti-tumor effects by inhibiting tumor cell proliferation and EMT, inducing cell cycle
arrest and apoptosis, in which PI3K/AKT, NF-κB, IL-6/STAT3, p53, VEGF, and glycolysis
pathways are involved. Inhibition of MDR protein by RA increases chemosensitivity in
tumor therapy. In tumor therapy, RA is widely used in the treatment of digestive system
tumors, including HCC and CRC. In addition, RA can increase the sensitivity of DDP and
DOX drugs in the treatment of solid tumors. To improve the oral bioavailability of RA,
modification of excipients, encapsulation using cyclodextrins, drug delivery systems, and
derivatives of RA are promising candidates. This review provides a theoretical basis for
the use of RA in the prevention and treatment of cancer. However, RA is worthy of further
investigation based on high-throughput methods and clinical studies. It is expected to
become one of the promising methods for preventing and treating cancer in the future.
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Abbreviations

RA, Rosmarinic acid; CRC, colorectal cancer; DDP, cisplatin; HCC, hepatocellular carcinoma;
DMBA, 7,12-dimethylbenz[a]anthracene; TPA, 12-tetradecanoylphorbol 13-acetate; ROS, reactive
oxygen species; HPPR, Hydroxyphenylpyruvate reductase; HNSCC, head and neck squamous cell car-
cinoma; BAP, 6-benzylaminopurine; NAA, naphthalene acetic acid; MAPK, the mitogen-activated pro-
tein kinase; ERK1/2, extracellular signal-regulated kinases 1 and 2; PI3K, the phosphatidylinositide-3-
kinase; MeJA, Methyl jasmonate; TAT, tyrosine aminotransferase; ALL, acute lymphoblastic leukemia;
TiO2 NPs, titanium dioxide nanoparticles; IC50, half-maximal inhibitory concentration; RAS, ros-
marinic acid synthase; SLN, solid lipid nanoparticles; DOX, doxorubicin; SOD, superoxide dismutase;
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CAT, catalase; DMH, 1,2-dimethylhydrazine; AOM, azoxymethane; GPx, glutathione peroxidase;
EGFR, epithelial growth factor receptor; Ara-C, cytarabine; NLRP3, NOD-like receptor family pyrin
domain containing 3; IL-1β, interleukin-1β; IL-6, interleukin-6; TLR4, Toll-like receptor 4; STAT3,
signal transducer and activator of transcription 3; COX-2, cyclooxygenase-2; IKK-β, I-kappaB kinase-
β; TNF-α, tumor necrosis factor-α; TGF-β, transforming growth factor-β; BAX, BCL-2 associated
X; BCL-2, B cell lymphoma-2; PARP, poly (ADP-ribose) polymerase; HDAC2, histone deacetylases
2; Gli1, glioma-associated oncogene homolog 1; SYK, spleen tyrosine kinase; MARK4, microtubule
affinity regulating kinase 4; MCM7, mini-chromosome maintenance complex component 7; BAX,
BCL-2 associated X; mTOR, the mechanistic target of rapamycin; EMT, epithelial-mesenchymal
transition; HSP27, heat shock protein 27; MUC1, Mucin 1; BAD, BCL-2 associated agonist of cell
death; MDR, multidrug resistance; P-gp, P-glycoprotein; HIF-1, hypoxia-inducible factor 1; MMPs,
matrix metalloproteinases; ECM, extracellular matrix; VEGF, vascular endothelial growth factor;
GSH, glutathione; MDA, malondialdehyde; DSS, dextran sodium sulfate; ACF, aberrant crypt foci;
CYP450, cytochrome P450; DNMT1, DNA methyltransferases 1; FOXM1, Forkhead box M1; S6K1,
ribosomal protein S6 kinase β-1; MM, multiple myeloma; 5-FU, 5-fluorouracil; FOXO4, Forkhead box
O4; MRP-4, multidrug resistance-associated protein 4; ATRA, all-trans retinoic acid.
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