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Abstract: Pneumoconiosis remains one of the most common and harmful occupational diseases in
China, leading to huge economic losses to society with its high prevalence and costly treatment.
Diagnosis of pneumoconiosis still strongly depends on the experience of radiologists, which affects
rapid detection on large populations. Recent research focuses on computer-aided detection based on
machine learning. These have achieved high accuracy, among which artificial neural network (ANN)
shows excellent performance. However, due to imbalanced samples and lack of interpretability,
wide utilization in clinical practice meets difficulty. To address these problems, we first establish a
pneumoconiosis radiograph dataset, including both positive and negative samples. Second, deep
convolutional diagnosis approaches are compared in pneumoconiosis detection, and a balanced
training is adopted to promote recall. Comprehensive experiments conducted on this dataset demon-
strate high accuracy (88.6%). Third, we explain diagnosis results by visualizing suspected opacities
on pneumoconiosis radiographs, which could provide solid diagnostic reference for surgeons.

Keywords: convolutional neural networks; pneumoconiosis detection; interpretability; balanced training

1. Introduction
1.1. Pneumoconiosis Diagnosis

Pneumoconiosis is a disease caused by long-term inhalation of mineral dust [1]. Its
retention in the lungs during occupational activities, mainly characterized as diffuse fibrosis
of lung tissue, is the most serious and common occupational disease in China. The high
prevalence and costly treatment of pneumoconiosis bring huge economic losses to society.
According to the national occupational disease report, by the end of 2018, more than
970,000 cases of occupational diseases were reported in China, and more than 870,000
cases of pneumoconiosis were included, accounting for about 90% of all occupational
disease cases. Since 2010, the number of new pneumoconiosis cases reported each year has
exceeded 20,000 cases. According to relevant surveys, the average annual medical cost per
pneumoconiosis case in China is 19.05 thousand yuan, and other indirect costs are 45.79
thousand yuan on average. Simplifying an average survival period after diagnosis as 32
years, the average economic burden caused by pneumoconiosis for each patient is 2.075
million yuan without taking inflation into account [2,3].

Though pneumoconiosis is prevalent and costly, many cases have confirmed that the
earlier that pneumoconiosis is diagnosed and treated, the better treatment could be. The
main cause of death in cases of pneumoconiosis lies in a variety of complications that
emerge in the late-developed stage, of which respiratory complications account for 51.8%
and cardiovascular disease complications account for 19.9%. Early diagnosis and treatment
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of pneumoconiosis will largely inhibit the development of complications, which is of great
importance for treatment.

In China, the diagnosis of pneumoconiosis based on chest X-ray radiographs is still
manual in clinical practice, rather than computer-aided and automatic diagnosis, which
creates two drawbacks. First, the accuracy rate is not high enough. Manual radiograph
reading requires high diagnostic skills, and the variation in diagnosis of pneumoconiosis
caused by inconsistency of professional level and experience can be as high as 75.6%.
Second, stability is not good enough. When workload is high, physicians may overlook
subtle lesions due to fatigue, some of these being small pulmonary nodules and subtle
calcified spots. Therefore, in order to improve the accuracy and stability of pneumo-
coniosis diagnosis, there are two major bottlenecks that need to be addressed, and an
automatic and data-driven pneumoconiosis diagnosis system will make early and accurate
diagnosis possible.

1.2. Data-Driven Methods and Deep Learning

In the literature on the computer analysis scheme of chest radiographs in the twentieth
century, three main areas are distinguished by Ginneken et al. [4]: (1) general processing
techniques, (2) algorithms for segmentation and (3) analysis for a particular application.
However, these methods emphasize utilization of imaging processing techniques, rather
than data mining and pattern recognition. Electronic health records provide massive image
data and rich patient information, especially chest radiographs and graphic details, which
make data-driven methods possible.

Recent research has shown that a data-driven automatic diagnostic system can be sim-
plified to a framework in which image features and texture patterns of chest radiographs are
first extracted, followed by a data-driven classifier based on a machine learning algorithm.
Yu et al. first enhanced opacity details on images by applying a multi-scale difference filter
bank algorithm, and then they calculated histogram features and co-occurrence matrices as
artificially encoded information [5]. Zhu et al. utilized 22 wavelet-based energy texture
features. Then, they applied a support vector machine (SVM) to distinguish between
normal and abnormal samples and reached an AUC of 0.974 ± 0.018 and accuracy of
0.929 ± 0.018 [6]. In addition, Zhu et al. compared the classification ability of decision tree
(DT) and support vector machine (SVM) with four different kernels for pneumoconiosis
diagnosis, and they finally reached the conclusion that the AUCs of DT and SVM were 0.88
and 0.95, respectively. Furthermore, among all tested SVM kernels, polynomial kernel has
performed best [6]. Researchers [7] also have utilized three-stage artificial neural network
(ANN) for hierarchical classification, while four extracted features are still calculated in
fixed paradigm, including gray-level histogram, gray-level difference histogram, gray-level
co-occurrence matrix (GLCOM) feature map and gray-level run-length matrix (GLRLM)
feature map in each ROI, which is still not end-to-end.

In 1998, inspired by individual neurons in the primary visual cortex of cats, Yann
LeCun et al. proposed LeNet [8], the first modern convolutional neural network, to classify
handwriting digits, which provides an end-to-end differentiable model for image classifica-
tion. Convolutional neural networks (CNNs) differ from other neural network models that
have convolutional operations as the main character. In 2012, AlexNet [9], the latest CNN
at that time, outperformed the second-place system by 12% in the ImageNet image classifi-
cation competition. Since then, CNNs have been widely studied and largely improved. By
now, researchers have proposed ZFNet [10], VGGNet [11], GoogleNet [12], ResNet [13],
DenseNet [14], EfficentNet [15] and many other deep convolutional structures, which
are called deep learning models. CNNs provide end-to-end solutions for image feature
extraction and outperform traditional benchmarks in nearly all image recognition tasks, for
instance, image classification, semantic segmentation, image retrieval and object detection.

Recently, data-driven deep learning has made achievements in assisting physicians
with lung disease diagnosis. Cai et al. applied texture analysis in pneumonia diagnosis [16]
and achieved an accuracy of 0.793 on diagnosing 29 images. Kermany et al. established
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a deep learning framework for pneumonia diagnosis and applied it to CT and X-ray
datasets [17]. They demonstrated that performance of diagnosis based on deep learning
is comparable to that of human experts. Specifically in silicosis diagnosis, Wang XH
et al. investigated the powerful capability of deep learning and demonstrated that the
performance of Inception-V3 is better than that of two certified radiologists [18]. However,
detection performance and balance between accuracy and recall still have much room
for improvement. Moreover, lack of interpretation impedes CNNs from playing a part in
clinical application.

In summary, contributions of this paper include the following:

(1) We have proposed a pneumoconiosis radiograph dataset based on electronic health
records provided by Chongqing CDC, China, which is a full image dataset under
privacy protection guidelines. The URL is https://cloud.tsinghua.edu.cn/f/d8324c2
5dbb744b183df/ (accessed on 14 August 2021)

(2) We have established two data-driven deep learning models based on ResNet and
DenseNet, respectively. A brief comparison and discussion has been conducted on
their performance. We rebalance weights of positive and negative samples, which
trade off well between accuracy and recall.

(3) We have explained diagnosis results by interpreting feature maps and visualizing
suspected opacities on pneumoconiosis radiographs, which could provide a solid
diagnostic reference for surgeons.

2. Materials and Methods
2.1. Dataset Preparing Process

Chongqing CDC, China, has collected chest radiograph files for approximately one
year from August 2016 to June 2017, which are important components of electronic health
records. For privacy protection, we removed patient names and other private information
from these files, and we then invited two clinical experts to diagnose pneumoconiosis cases
as data annotation. We converted the above medical image files from DICOM format to
jpg format, and in this way images could be shown and processed by the algorithm more
easily [19]. We eliminated low-quality or irrelevant images of the same patient and removed
images with omissive or incorrect annotation from the dataset. An original radiograph
dataset with 706 images was finally obtained, of which 142 cases were pneumoconiosis-
positive and the rest were negative.

We then conducted some pre-processing and refining to the above images.
First, we enhanced image contrast by using histogram equalization to highlight

possible features. Histogram equalization is a technique used to adjust pixel distribution
and allocate image intensities [20]. Figure 1 shows the image and histogram before and
after histogram equalization, which demonstrates that the contrast of the new image has
been enhanced and its histogram has also been equalized.

Second, we downsized images to one quarter of their original size, and we finally
obtained images that were 694 × 719 pixels. This radiograph shrink operation reduces
storage space and increases program speed, while preserving details to the maximum
extent.

Finally, all images were randomly split into a training set and testing set based on
a four-to-one ratio. The training set consisted of 452 negative samples and 114 positive
samples, while the testing set consisted of 112 negative samples and 28 positive samples.
We published data at https://cloud.tsinghua.edu.cn/f/d8324c25dbb744b183df/ (accessed
on 14 August 2021).

This study was approved by the Medical Ethics Committee of Chongqing Center for
Disease Control and Prevention (17 May 2019) and the Academic Management Committee
of Chongqing Center for Disease Control and Prevention (17 May 2019). Informed consent
was obtained from all physician participants involved in the study. Patient consent was
waived due to the retrospective nature for use of their data.

Figure 2 shows the preparation procedure of our pneumoconiosis radiograph dataset.

https://cloud.tsinghua.edu.cn/f/d8324c25dbb744b183df/
https://cloud.tsinghua.edu.cn/f/d8324c25dbb744b183df/
https://cloud.tsinghua.edu.cn/f/d8324c25dbb744b183df/
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2.2. Convolutional Models: ResNet and DenseNet

Convolutional neural networks (CNNs) have excellent performance in many fields,
especially in image-related tasks such as image classification [9,21], object detection [22]
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and semantic segmentation [23]. CNNs are mainly composed of three types of neural
network layers, namely the convolutional layer, pooling layer and full connection layer.

Convolutional layers adaptively extract features from input data through convolution
operation with kernels of different sizes. Let input data for a convolutional layer be a tensor
with four dimensions, (N, Cin, Hin, Win) and output data be a tensor (N, Cin, Hin, Win),
where N represents batch size, C number of channels, H height of input data and W width
of input data. The calculation method of each dimension of output data is shown as
Equations (1) and (2):

out(N, Cout) = bias(Cout) + ΣCin
0 weight(Cout, k) ∗ input, (1)

Hout(Wout) =
Hin(Win) + 2 × padding − kernelsize

stride
+ 1, (2)

where weight represents the convolutional parameter, padding means width of zero padding
that ensures smooth convolution at the edge, kernel size is the size of the convolutional
kernel and stride is the moving step size of the convolutional kernel. Between convolutional
layers, a nonlinear activation function is implemented to improve fitting ability, for instance,
sigmoid function [24,25], tanh function and Rectified Linear Unit function (ReLU) [26].

Pooling layers include max pooling and average pooling [27], picking the maximum
and calculating the average of the selected pooling region, respectively. Pooling operation
has advantages that make it almost essential in CNNs. It helps in reducing the size of
feature maps, narrowing the quantity of network parameters, improving computing speed
and inhibiting overfitting.

Fully connected layers function as a classification or regression head. Going through
convolutional and pooling layers, the final feature map is flattened into a high dimension
vector, and then it is remapped by fully connected layers to one hot-label space or metric
space to complete classification or regression, respectively.

Since LeNet [8] and AlexNet [9], CNNs have been widely studied and largely im-
proved. Fast operation, light deployment and high precision are key objectives when
designing CNNs, and two variants of CNNs, ResNet [13] and DenseNet [14], have received
much attention. We implemented these two convolutional models in pneumoconiosis
detection and obtained high accuracy after refining and rebalancing.

2.2.1. ResNet

Let xl−1 and xl represent feature maps after the (l − 1)th and lth convolutional layers,
and Hl the lth convolutional layer. The traditional CNNs follow the equation below (3):

xl = Hl(xl−1). (3)

To obtain high precision, the number of convolutional layers increases and CNNs go
deep to extract features. However, because of the exponential effect of the chain derivative
rule in the back propagation algorithm, network degradation happens. The gradient
attenuates exponentially, and weights and parameters cannot be updated, leading to failure
of optimization. When network degradation happens, both training loss and test loss
increase. It differs from overfitting [28], in which case training loss decreases while test
loss increases.

To address the degradation problem, He et al. [13] created ResNet to learn residual
representation between model input and output. ResNet consists of a series of residual
blocks (Figure 3 left). Each block could be expressed as two components, identity mapping
and residual part, and the latter is made up of two convolution layers.



Int. J. Environ. Res. Public Health 2021, 18, 9091 6 of 14

Int. J. Environ. Res. Public Health 2021, 18, x 6 of 14 
 

 

much attention. We implemented these two convolutional models in pneumoconiosis 
detection and obtained high accuracy after refining and rebalancing. 

2.2.1. ResNet 
Let 𝑥  and 𝑥  represent feature maps after the (l − 1)th and lth convolutional lay-

ers, and 𝐻  the lth convolutional layer. The traditional CNNs follow the equation below (3): 𝑥 = 𝐻 (𝑥 ). (3) 

To obtain high precision, the number of convolutional layers increases and CNNs 
go deep to extract features. However, because of the exponential effect of the chain de-
rivative rule in the back propagation algorithm, network degradation happens. The gra-
dient attenuates exponentially, and weights and parameters cannot be updated, leading 
to failure of optimization. When network degradation happens, both training loss and 
test loss increase. It differs from overfitting [28], in which case training loss decreases 
while test loss increases. 

To address the degradation problem, He et al. [13] created ResNet to learn residual 
representation between model input and output. ResNet consists of a series of residual 
blocks (Figure 3 left). Each block could be expressed as two components, identity map-
ping and residual part, and the latter is made up of two convolution layers. 

 
Figure 3. Residual block design and ResNet34 structure. (a) Residual block; (b) ResNet34. 

Residual blocks bypass convolutional operation by skipping identity mapping, as 
the following Equation (4) shows: 𝑥 = 𝐻 (𝑥 ) + 𝑥 . (4) 

Based on residual blocks, we created ResNet34, which consists of 16 blocks (Figure 
3). The input image is first resized as 672 × 672, and then it is convoluted by a 7 × 7 ker-
nel into 64 channels with stride 2. A maximum pooling layer with a 3 × 3 kernel process-
es the acquired feature map with stride 2. The following is 16 residual blocks, three 
blocks with 64 output channels, four blocks with 128 output channels, six blocks with 
256 output channels and three blocks with 512 output channels. Finally, after an average 
pooling, the feature map is flattened into a vector with 512 dimensions, and a successive 
fully connected layer functions as a 2-category classification head. 

ResNet34 is supervised by Cross Entropy Loss [29]. Let p(x) be the ground truth 
probability distribution, q(x) a predicted probability distribution and n the number of 
categories. Cross Entropy Loss function between p and q could be represented as Equa-
tion (5): 𝐻(𝑝, 𝑞) = Σ 𝑝(𝑥 ) 𝑙𝑜𝑔 𝑞(𝑥 ) . (5) 

Figure 3. Residual block design and ResNet34 structure. (a) Residual block; (b) ResNet34.

Residual blocks bypass convolutional operation by skipping identity mapping, as the
following Equation (4) shows:

xl = Hl(xl−1) + xl−1. (4)

Based on residual blocks, we created ResNet34, which consists of 16 blocks (Figure 3).
The input image is first resized as 672 × 672, and then it is convoluted by a 7 × 7 kernel
into 64 channels with stride 2. A maximum pooling layer with a 3 × 3 kernel processes
the acquired feature map with stride 2. The following is 16 residual blocks, three blocks
with 64 output channels, four blocks with 128 output channels, six blocks with 256 output
channels and three blocks with 512 output channels. Finally, after an average pooling, the
feature map is flattened into a vector with 512 dimensions, and a successive fully connected
layer functions as a 2-category classification head.

ResNet34 is supervised by Cross Entropy Loss [29]. Let p(x) be the ground truth prob-
ability distribution, q(x) a predicted probability distribution and n the number of categories.
Cross Entropy Loss function between p and q could be represented as Equation (5):

H(p, q) = −Σn
i=1 p(xi)log(q(xi)). (5)

2.2.2. DenseNet

Similar to residual block, which creates short paths from precursor residual block to
successive block, a dense block in DenseNet [14] connects any layer to all subsequent layers
to address the degradation problem, as shown in Figure 4. These connections link layers
densely, and thus gradients directly obtained from all preceding layers, x0, x1, . . . , xl−1,
enable deep supervision of xl . Dense blocks concatenate feature maps from all precursor
layers and then put them into a batch normalization (BN) [30], a rectified linear unit
(ReLU) [26] and a 3 × 3 convolution layer (Conv), which could be represented as the
following Equation (6):

xl = Hl([x0, x1, . . . , xl−1]). (6)
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To lessen the number of episodic feature maps and to speed up calculations, a 1 × 1
convolution is introduced before 3 × 3 convolution, and such design is named bottleneck.
Figure 5a makes a comparison between a dense block with bottleneck and a basic one.
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In DenseNet, transition block plays a role in down-sampling feature maps instead of a
single pooling layer. The transition blocks are composed of a batch normalization, a 1 × 1
convolution (Conv) and a 2 × 2 average pooling layer, as shown in Figure 5b.

Consisting of the components above, DenseNet40 with three bottleneck dense blocks
or with three basic dense blocks is shown as Figure 6, left or right, respectively. DenseNet
is also supervised by Cross Entropy Loss when completing a classifying task.
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3. Results
3.1. Rebalanced Training for ResNet

In this research, we utilized four metrics to measure and compare the performance of
our model’s accuracy, precision, recall and F1 score. Their definitions are shown in Table 1.

Table 1. Definitions of metrics utilized.

Metrics Definition

TP True Positive. Samples predicted to be positive with a positive ground truth label.
FP False Positive. Samples predicted to be positive with a negative ground truth label.
FN False Negative. Samples predicted to be negative with a positive ground truth label.
TN True Negative. Samples predicted to be negative with a negative ground truth label.

Accuracy accuracy = TP+TN
TP+TN+FP+FN

Precision precision = TP
TP+FP

Recall recall = TP
TP+FN

F1 Score F1 =
2∗precision∗recall
recall+precision

In the clinical practice of pneumoconiosis diagnosis, recall is often more important
than precision, for the cost of a false negative is more than that of a false positive [31].
Therefore, we readjusted weights on each sample and assigned the weights of negative
and positive samples to be different in the following experiment. Cross entropy loss
function between the ground truth probability distribution p and the predicted probability
distribution q could be represented as Equation (7), with a scale factor n balancing weights
between negative and positive samples:

Loss(y, θ) = −Σ2
i=1[αp(xi)log(q(xi)) + α(1 − p(xi))log(1 − q(xi))]

(α = n, i f i = pos; α = 1, i f i = neg).
(7)

In the following experiments, we set n = 1 and n = 5. While the former scale factor
reflects the true distribution of samples in our dataset, the latter can intuitively rebalance
the importance of negative and positive samples through sample weight.

All training experiments were conducted based on PyTorch 1.2.0 after training 40 epochs
with a batch size of 2, Adam optimizer and a learning rate of 0.00005. To improve the gen-
eralized performance on the test set, we only used random horizontal flip when training,
rather than other data augmentation methods, for retaining basic characters of chest radio-
graphs. Images were resized into 672 × 672 to fit the input size of our model. Figure 7a–d
depicts the ResNet34 training process with scale factors 1 and 5, respectively. The final
performance on the test set is shown in Table 2.

Table 2. Performance of ResNet34 on test set with scale factors 1 and 5, respectively.

ResNet34 ResNet34

n 1 5

Accuracy 0.893 0.879
Precision 0.842 0.739

Recall 0.571 0.607
F1 Score 0.681 0.667
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3.2. Refining Structure for DenseNet

In this section, we try to refine the model structure and improve the diagnostic
accuracy of DenseNet from four perspectives, which are deep layers, dropout operation,
reduction operation and bottleneck blocks. The scale factor of negative and positive samples
is 5 in this section for rebalancing training. All training experiments were conducted based
on PyTorch 1.2.0 after training 40 epochs with a batch size of 2, Adam optimizer and a
learning rate of 0.00005. To improve the generalized performance on the test set, we only
used random horizontal flip when training, rather than other data augmentation methods,
for retaining basic characters of chest radiographs. Images were resized into 672 × 672 to
fit the input size of our model.

3.2.1. Deeper Layers

More convolutional layers and deeper model structures could extract image features
more effectively. Based on experiments, we improved the accuracy of pneumoconiosis
detection by adding multiple layers within a dense block (DenseNet64) or tagging multiple
dense blocks with the same inner structure (DenseNet53). The specific structures of
DenseNet40, DenseNet64 and DenseNet53 are shown in Figure 8, and a brief comparison
of their final performance on the test set is shown in Table 3. As DenseNet goes deeper,
the accuracy of the pneumoconiosis diagnosis increases, no matter if the number of inner
layers is elevated or if the number of dense blocks is promoted.
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Table 3. Performance of DenseNet40, DenseNet64 and DenseNet53 on the test set.

Model DenseNet40 DenseNet64 DenseNet53

Accuracy 0.843 0.871 0.886
Precision 0.714 0.750 0.833

Recall 0.357 0.536 0.536
F1 Score 0.476 0.625 0.652

We selected the most promising DenseNet among the three, Densenet53, for further
promotion in subsequent experiments.

3.2.2. Dropout Operation

Dropout is a technique in which neurons are randomly inactivated with a certain
probability to reduce model overfitting when training. We tested the impact of dropout on
DenseNet53, shown in Table 4. The experimental results supported not to conduct dropout
operation in subsequent experiments.

Table 4. Impact of dropout operation on DenseNet53.

Drop rate 0 0.25

Accuracy 0.886 0.843
Precision 0.833 0.714

Recall 0.536 0.357
F1 Score 0.652 0.476
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3.2.3. Reduction Operation

Reduction operation works in transition layers to indicate how many times the number
of output channels in next dense block is reduced. The impact of reduction is shown in
Table 5, which supported a lower reduction rate to improve diagnostic accuracy.

Table 5. Impact of reduction operation on DenseNet53.

Reduction 0.25 0.5 1

Accuracy 0.886 0.871 0.836
Precision 0.833 0.692 0.647

Recall 0.536 0.643 0.393
F1 Score 0.652 0.667 0.489

3.2.4. Bottleneck Blocks

As stated in Section 2.2.2, bottleneck blocks could lessen the number of input feature
maps and thus speed up the calculation Verified by our experiment, the deep convolutional
model with bottleneck blocks was 5% higher in detection accuracy than the model without
bottlenecks, as shown in Table 6.

Table 6. Impact of bottleneck blocks on DenseNet53.

Bottleneck False True

Accuracy 0.836 0.886
Precision 0.600 0.833

Recall 0.536 0.536
F1 Score 0.566 0.652

4. Discussion

In the above experiments, we trained and tested ResNet and DenseNet with different
structures and parameters. Our training process adopted a rebalanced sample weight,
which corresponds more with clinical practice. Under rebalanced training, ResNet34
achieved a 3.6% higher recall rate by only losing 1.4% in accuracy, and it finally reached
0.879 in accuracy when testing. This demonstrates that deep learning methods outper-
formed texture analysis [32], which achieved an accuracy of 0.793 on diagnosing 29 images.

For DenseNet, we added deep layers, changed bottleneck blocks, conducted a dropout
operation and examined a reduction operation to enhance feature representation ability.
As results show above, deeper layers and a lower reduction rate significantly improved
the diagnostic accuracy by 4.3% and 5%, respectively. Both improvements increased
the number of model parameters and, thus, extracted more image information about
pneumoconiosis. Bottleneck block also increased the detection accuracy by 5%, for a 1×1
convolution introduced in the bottleneck fused features despite cutting parameters down.
Shown by experiments in Section 3.2.2, the dropout operation decreased accuracy. The
reason is that in 40 epochs, which is restricted for comparison, DenseNet53 with dropout
cannot be trained finely, and it also demonstrates a drawback for consuming too much
time when training under limited calculation resources. Finally, the best was DenseNet53
with bottleneck blocks, which had a 0.25 reduction rate and no dropout operation, reaching
0.886 in accuracy when testing.

To study whether CNNs really learned features, we visualized and analyzed the
feature map output by the first convolutional layer of trained DenseNet53. The feature
map refers to each channel of the output tensor from convolutional layers. After train-
ing, a feature map can be regarded as the detection of one radiograph feature related to
pneumoconiosis. The strength of a pixel value in the feature map is the response to the
strength of feature. By visualizing these feature maps, our system could show signs of
pneumoconiosis and, thus, provide a reference to radiologists. Results demonstrate that
several output channels in DenseNet53, for example, the 2nd feature map in our trained
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model, can partially separate lung region from radiographs, shown in Figure 9b. Other
channels could capture and highlight suspected opacities, which are typical features of
pneumoconiosis, shown in Figure 9c,d. These visualizations of feature maps could enhance
the interpretability of deep learning models in medical diagnosis.
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This study focuses on pneumoconiosis diagnosis, specifically whether a patient has
pneumoconiosis or not. In future research, we will apply high-accuracy and interpretable
diagnosis techniques based on CNNs into pneumoconiosis staging, which concentrates on
determining each subject (normal, stage I, II or III pneumoconiosis) [32]. Staging is more
challenging because of small differences between stages, and it is also more practical when
accurately determining medical insurance.

5. Conclusions

Pneumoconiosis is one of the most common occupational diseases in China, with a
high incidence and high treatment cost, which has caused huge economic losses to modern
healthcare systems and patient families. Currently, the diagnosis of pneumoconiosis is
still largely dependent on the experience of radiologists, which affects the early diagnosis
among huge populations. Recent research has focused on computer-aided detection
based on machine learning algorithms, among which artificial neural network (ANN)
has achieved high accuracy. However, due to the imbalance of samples and lack of
interpretability, deep learning models are difficult to be widely used in clinical practice.
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To solve these two problems, we first aggregated a pneumoconiosis radiograph dataset
including both negative and positive samples. Second, we implemented, improved and
compared ResNet and DenseNet, two typical deep convolutional approaches in pneumoco-
niosis detection, and we adopted balanced training using re-adjusted weights. Comparative
experiments and the ablation study conducted on the above dataset demonstrated high
accuracy (88.6%). Third, we visualized feature maps to show suspected opacities on pneu-
moconiosis radiographs, which could enhance interpretability of deep learning models
and provide solid diagnostic reference for surgeons.
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