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Abstract: The stomatognathic system is a functional complex of tissues and organs located within
the oral and craniofacial cavities. The craniofacial anatomical factors and the biomechanics of the
temporomandibular joints affect many systems throughout the body, including the organ of vision.
However, few scientific reports have shown a relationship between the organ of vision and the
stomatognathic system. The purpose of this review is to provide an overview of connections along
neural, muscle-fascial, and biochemical pathways between the organ of vision and the stomatognathic
system. Based on the literature presented in this review, the connections between the organ of vision
and the stomatognathic system seem undeniable. Understanding the anatomical, physiological,
and biochemical interrelationships may allow to explain the interactions between the mentioned
systems. According to the current knowledge, it is not possible to indicate the main linking pathway;
presumably, it may be a combination of several presented pathways. The awareness of this relation-
ship among dentists, ophthalmologists, physiotherapists, and optometrists should increase for the
better diagnosis and treatment of patients.

Keywords: stomatognathic system; organ of vision; neurotology; myopia; TMD; ophthalmology; optometry

1. Introduction

The stomatognathic system is a functional complex of tissues and organs located
within the oral and craniofacial cavities [1]. The temporomandibular joint (TMJ) is a
paired, functionally coupled joint that was defined by Kaltenborn as anatomically complex,
but mechanically simple. Considering the articular disc, it is a modified gliding-hinge joint,
according to McConailla’s classification [2]. Okeson described it as one of the most complex
joints that build the human body [3]. The TMJ consists of articular surfaces of two bones:
temporal and mandibular, which are separated by an articular disc [4]. The masticatory
muscle group includes four pairs of muscles: the masseter muscle, the temporal muscle,
the medial pterygoid muscle, and the lateral pterygoid muscle [5]. Okeson also points
out the important role of the biceps muscle in the masticatory function, and, therefore,
according to the above-mentioned author, it can be included in the muscles of the masti-
catory organ [3]. The superficial temporal and maxillary branches of the external carotid
artery supply the TMJ. The auriculotemporal and masseteric branches of the mandibular
nerve (V3), which is a branch of the trigeminal nerve, are a sensory supply to the TMJ. [4].
Temporomandibular disorders (TMDs) include issues related to the masticatory muscles,
the TMJ, and surrounding tissues [6]. They are primarily characterized by joint and/or
muscle pain, acoustic symptoms in the TMJ, and limitation or deviations in the mandibular
range of motion [7]. TMDs are recognized by the World Health Organization (WHO) as
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the third most common dental disease after dental caries and periodontitis. The National
Institute of Dental and Craniofacial Research estimates that TMDs affect between 5 and 12%
of the population, more often women than men [8]. The ratio of female to male patients
with TMDs is 4.1:1 [9]. The annual cost to treat TMDs patients in the United States alone is
estimated at 4 billion dollars [8]. The relationship between the parts of this system and the
rest of the body, and the impact of its functioning is recognized. For example, the temporo-
mandibular joint is linked to posture, whereas pain from musculotendinous trigger points
from the quadriceps region can be transferred to the craniofacial region [10–12]. There is a
paucity of literature on the effects of vision on dental function [13].

The organ of vision consists of the eyeball, which receives visual impressions; the vi-
sual pathways that conduct visual stimuli; and the visual centers in the cortex, where
images are processed. Each eyeball is surrounded by seven different bones. The eyeball
consists of three membranes: the outer fibrous membrane (sclera and cornea), the middle
vascular membrane (iris, ciliary body, choroid), and the inner membrane (retina). The out-
ermost layer is formed by the opaque sclera, which turns into the transparent cornea in
the anterior part. Together, they form a rigid, but flexible, structure of the eyeball [14].
The cornea is additionally the main refractive element in the eye. The iris has an opening
called the pupil, the width of which varies with light intensity. Behind the cornea, there is
an anterior chamber, the posterior border of which is the iris. Rays of light passing through
the pupil are refracted by the lens, resulting in an image on the retina. The human eye
has two types of photoreceptors: rods and cones. Rods are responsible for night vision,
and cones are responsible for day vision. Macula—part of the retina, contains the largest
concentration of cones in the eye, which allows us to see small details. Six extraocular
muscles are responsible for moving the eyeball in the direction of gaze. The eye artery
is responsible for the main vascularization of the eye structures. Seven pairs of cranial
nerves are involved in the process of vision. The optic nerve (II) is the most important and
is responsible for normal vision. Nerves III, IV, and VI are responsible for innervating the
periorbital muscles. The VII nerve is responsible for blinking and the tear reflex. Damage
to the VIII nerve can cause rhythmic and uncontrolled eye movements [14]. Myopia is a
common condition that develops primarily in childhood and early adulthood, involving the
blurring of objects viewed from a distance, and is often the result of abnormal elongation
of the eyeball—causing the refractive image formed by the cornea and lens to fall in front
of the photoreceptors [15]. Myopia is one of the most common visual problems worldwide,
with a prevalence of 10–30% among the adult population in many countries, and up to
80–90% among young adults in the countries of Asia [16–18]. It is estimated that by 2050,
there will be 4.8 billion myopia patients [19]. Myopia is already the most common cause of
irreversible visual impairment in the working population [20,21]. Myopia can be optically
corrected with glasses, contact lenses, or refractive surgery. Nevertheless, it is associated
with complications, such as cataract, open-angle glaucoma, and retinal detachment [22].
These complications can lead to irreversible visual impairment in later life. Global potential
productivity loss in 2015 was estimated at 244 billion dollars associated with uncorrected
myopia, and 6 billion dollars due to myopic macular degeneration [20].

The eye, as a sense organ, develops mainly from the neuroepithelium and the ectoderm.
The retina develops from the ectoderm, and the lens and cornea, which are the elements that
significantly influence the formation of refractive disorders, are formed from the superficial
ectoderm. Only muscles, vessels and corneal endothelium and stroma develop from the
extracellular mesenchyme. They form an optic vesicle up to the 4th week of embryonic
development [23]. On the other hand, soft tissues of the stomatognathic system arise from
the mesenchyma at around week 10 of prenatal development [24], and only teeth arise
from the ectoderm at around week 5. As such, it would seem that these processes are
embryologically separate. However, studies on disorders in the development of the eye
and stomatognathic system in diseases such as Down syndrome or ectodermal dysplasia
show that gene expression changes and the processes of embryological development of
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the above structures are delayed [25], which results in a higher percentage of refractive
disorders [26], and defects of the stomatognathic system [27].

Based on our recent research, we have also noticed a connection between the organ
of vision and the stomatognathic system. Closing and opening the eyes affected the
electromyographic patterns of the masticatory and cervical muscles in myopic subjects [28].
There are still no clear scientific reports on the possible connections between the mentioned
systems. The aim of this review was to describe connections along neural, myofascial,
and biochemical pathways between the organ of vision and the stomatognathic system.

2. The Relationship between Organ of Vision and Stomatognathic System Dysfunctions
2.1. Visual Stimulation and Masticatory Muscles Activity

The influence of the visual stimulation on masticatory muscle activity has been re-
ported in several studies. The earliest study reached by the authors was Widmalm and
Ericsson (1983). They observed that changes in visual stimulation in subjects without
visual impairment affected temporal muscle activity and cortical activity (EEG) of patients.
Closing both eyes reduces muscle activity by 50–100% [29]. Holmgren et al. (1985) ob-
served that closing the eyes effects a decrease in temporal muscle tension in patients with
TMDs [30]. Miralles et al. (1998) detected a significant decrease in sternocleidomastoid
and masseter muscle electromyographic activity at rest with eyes closed in a group of
healthy subjects, and with myogenic craniocervical dysfunction. However, they observed
no change in sEMG activity during maximal voluntary clenching between measurements
with open and closed eyes [31]. Monaco et al. (2006) observed that eye closure results in
a decrease in temporal muscle activity in people with myopia [32]. Monaco et al. (2006)
also observed that corrective lenses in people with visual impairment can improve the
bioelectrical tension and balance of masticatory muscles [33]. Spadaro et al. (2010) as-
sessed temporal muscle activity at rest in subjects without visual impairment and TMDs.
They showed no differences in sEMG measurements between the open eye and closed eye
tests [34]. Ciavarell et al. (2014) evaluated changes in subjects with masticatory muscle
pain and myopia relative to healthy subjects in sEMG recordings during an open/closed
eye test. In healthy subjects, no differences were shown between the tests. Patients with
visual impairment showed large changes between both tests [35]. Fiorucci et al. (2012)
reported the absence of changes in temporal muscle activity between open/closed eyes
tests in subjects without visual impairment. However, they observed changes in temporal
muscle activity between open/closed eyes tests in subjects with visual impairment [36].
Monaco et al. (2020) investigated the effect of standard vision correction on sEMG in TMDs
patients compared to subjects without TMDs. The results of their study revealed that
TMDs individuals with visual impairment who use standard glasses have considerably
higher sEMG values than non-TMDs individuals with visual impairment who use standard
glasses. In TMDs subjects, vision correction had no positive effect on stomatognathic or
periocranial muscles [37]. Zielinski et al. (2021) observed that closed eyes during sEMG
testing were associated with a decrease in activity index values during dental roller clench-
ing, and also a decrease in all functional indices of sternocleidomastoid muscle clenching
during clenching in the intermaxillary position. This study also revealed an association
with an increase in the functional index of the left temporalis muscle opening compared
to testing with eyes open. According to these studies, eye closing and opening in myopic
patients may be associated with altered electromyographic patterns in the cervical and
masticatory muscles [28].

2.2. Structural Disorders in the Stomatognathic System and the Visual Impairment

Cuccia and Cardonna (2008) observed changes in binocular function in patients with
temporomandibular disc displacement compared to healthy subjects [38]. Monaco et al.
observed that ocular convergence defects were more common in subjects with mandibular
lateral deviation than in controls (2004) [39]. They have also suggested a possible association
between astigmatism and crossbite (2011) [40] and myopia and Class II division 1 maloc-
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clusion (2012) [41]. Bollero et al. (2017) noted that ocular motor defects had a significantly
higher prevalence in patients with unilateral crossbite and midline deviation [42]. Vompi
et al. (2020) noted a positive association between TMDs and visual impairment. Specif-
ically, associations were found between functional or skeletal orthognathic changes and
oculomotor dysfunction. However, the type of relationship could not be determined [43].

3. Neurological Connection
3.1. Vestibulo–Ocular Reflex Connection

The neurological connection of the stomatognathic and visual systems are focused
on the vestibulo–ocular reflex (VOR). Even if the eyes and head are continually moving,
as they are in most activities, this reflex keeps the body balanced. Humans’ eye muscles are
instantly activated when individuals make a head movement, generating an eye movement
that is opposite to the head movement at the same speed. The medial longitudinal fasciculus
is responsible for the coordination of movements of the corresponding muscles of the
eyeballs. It adjusts the field of view, which, in turn, stabilizes the retinal image, keeping the
eye fixed in space, and focused on the object despite head movement [44]. The reflex that
additionally supports the achievement of stabilization of the visual target and the image
on the retina is the cervico–ocular reflex, which acts in conjunction with the vestibulo–
ocular reflex. It is worth noting that information is processed by three sources: the visual
system through the eyes, proprioceptive receptors, and vestibular receptors in the inner
ear. For the brain to perceive the activity of the vestibular system, it must receive impulses
via the afferent pathway from different parts of the vestibular system. The vestibular
complex receives afferent information from other parts of the central nervous system, e.g.,
the reticular formation, parts of midbrain nuclei, cerebellum, and especially from the spinal
cord [45].

Proprioceptors are sensory receptors in the inner ear (vestibular receptors), muscles
(muscle spindles), tendons (Golgi tendon organ), and joints that inform us about the
movement or relative position of our body or body part, responding to stimuli arising
internally. Proprioceptors play a key role in vision and visual behavior. Proprioceptive
inputs are necessary for oculomotor control, maintenance of binocular vision, and spatial
localization [46]. In animals, experimental removal of these inputs led to impaired depth
perception, and altered VOR [47,48].

Processes in the brainstem control many of the vestibular reflexes. Connections in the
reticular formation, thalamus, and vestibular cortex contribute to body orientation in space
and movement awareness. The reticular formation is a complex network of brainstem
nuclei and neurons that serve as a major integration and relay center for many important
brain systems to coordinate functions necessary for survival. The structure of the reticular
formation forms a network-like connection between nuclei and neurons; hence its name
“reticular”, which correlates with its function to integrate, coordinate, and influence various
regions of the central and peripheral nervous systems. The reticular formation lacks clear
boundaries, and the numerous nuclei contained within this structure do not have precise
territory delineations, making the reticular formation a difficult structure to characterize
and study [49].

The reticular formation receives many direct and indirect afferent stimuli from cu-
taneous, vestibular, trigeminal, proprioceptive, auditory, and autonomic neurons [45].
The reticular formation also plays an important role in gaze, head movements, and sac-
cadic hand coordination. Different parts of the reticular formation are responsible for
different functions of the eye [50]. For example, the paramedian pontine reticular forma-
tion coordinates the medial longitudinal fasciculus, which is why it plays a huge role in
the coordination of horizontal gaze. The mesencephalic reticular formation coordinates
vertical gaze, and the medullary pontine reticular formation coordinates gaze holding
and head movements [49]. These regions directly communicate with extraocular motor
nuclei, and are crucial for saccadic eye movements. These centers also have connections
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via descending reticular neurons to coordinate posture and neck movements with eye
movements [49].

It is worth noting here that trigeminal neurons project directly to the reticular formation
nuclei, and they respond to afferent stimuli through reflex movement. Stimulation of the
reticular formation nuclei can lead to increased muscle tone and muscle contractions, e.g.,
causing facial and neck muscle tremors [51,52]. The sensory nuclei of the trigeminal nerve
are so large that they mediate the impulses of all cranial nerves [44].

The above information may explain the changes in masticatory muscle tone caused
by the change in visual stimulus in myopic subjects. The medial vestibular nucleus sends
excitatory signals to the contralateral abducens nerve nucleus, and simultaneously sends
inhibitory signals to the ipsilateral abducens nerve nucleus. Hypothetically, at this stage,
the trigeminal nucleus is stimulated, and sends an impulse to the muscles of the masticatory
organ, which causes an increase in activity of the muscles of the masticatory organ, which
additionally stabilizes the craniofacial region. Stimulation also goes through the known
pathway to the lateral rectus muscle, and through the neurons of the medial longitudinal
fasciculus. It transmits excitation to the part of the contralateral oculomotor nucleus
innervating the medial rectus muscle. Thus, excitation in the right semicircular canal
during head movement causes the eyeballs to turn in the opposite direction (Figure 1).

According to the above-mentioned studies, activity changes occurred mainly in sub-
jects with myopia [32,36], and patients with TMDs [30,35]. Studies in healthy subjects are
not consistent regarding changes in activity [29,34].

3.2. Central Sensitization Connection

The phenomenon of transferred pain has long been considered one of the possible
causes of craniofacial pain; the mechanisms causing this phenomenon have not been
explained yet [50]. For example, pain of musculoskeletal origin in people with TMD
seems to be related to the presence of muscle-active trigger points and tension, both in
the muscles of the masticatory organ, and in the muscles of the cervical spine [53–55].
Central sensitization (CS) is a multifaceted spinal–cortical process in which the central
nervous system (CNS) amplifies nociceptive sensory stimuli that may then be perceived as
experiences of unpleasantness within interneurons originally unrelated to the sensation
of that pain, and can cause a central excitatory effect [56]. The concept of CS is based
on deregulation of neuronal transmission in the central nervous system that results in
hypersensitivity to pain stimuli [56]. The clinical manifestation of the central excitatory
effect mechanism depends on the type of interneuron involved. In the case of afferent
interneurons, this will be pain transduced, and in the case of efferent interneurons, it will
result in increased muscle activity [56]. The cornea is the most densely innervated tissue in
the body, with four types of nociceptors innervating its epithelium [46]. Despite their great
importance in defending body integrity, the links between nociception, the nervous system
specifically encoding potential pain, and vision are still poorly studied [57]. Some studies
support a bilateral link between gaze and nociceptive activity. For example, distracting
attention from the location of pain results in a slower response to painful stimuli, and a
reduction in pain [58]. The study by Filbrich et al. suggests that nociceptive stimuli may
affect the perceptual processing of spatially compatible visual inputs [57].
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Figure 1. Demonstration of the possible pathway between the muscles of the masticatory organ
and the organ of vision in myopic subjects (eyes open—(A), and eyes closed—(B)) based on the
vestibulo–ocular reflex.
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The main hypotheses are related to threat or pain [59]. The phenomenon of transferred
pain is caused by afferent impulsion towards the CNS, e.g., in the form of deep pain. It will
induce an excitatory effect to nociceptive coupling based on whether visual stimulus in
uncorrected myopia will be perceived by the body as nociceptive or not. Another question
is whether a change in the visual stimulus in myopic subjects (eyes closed vs. eyes open)
would be associated with peripheral silencing of the main nociceptive sites, e.g., the cervical
segment, and stomatognathic system. Responses from the stomatognathic system and
cervical segment will be transmitted as a response to the nociceptive stimulus to effectors
located within the eyeball. The appropriate response to the nociceptive stimulus would be
closing the eyes. Closing the eyes hypothetically will decrease activity in the muscles of the
pain-affected regions, which are the stomatognathic system and the cervical segment.

A human study indicates that markers of subcortical nociceptive processing at the level
of the brainstem were markedly suppressed by accompanying touch; also, studies indicate
that touch also inhibited the arrival of ascending nociceptive stimuli to the cortex [60].
These findings indicate that touch inhibits concurrent nociceptive stimuli at the subcortical
level, consistent with the results of spinal animal experiments [61,62]. The effect of direct
touch on changes in the corneal nociceptor area remains unexplored. Closing the eyes
through the eyelids may have a silencing effect on nociceptors within the eyes, and this,
via CS nerve pathways, could cause silencing of the interneurons of the efferent muscles of
the masticatory organ (Figure 2). The closing of the eyes may be associated with silencing
of the nociceptive response, which is located in a different region, e.g., the cervical region
and stomatognathic system.

Patients often compensate for vision problems by leaning forward or turning their
head from side to side. These individuals often have a protracted position of the head
and cervical spine, which leads to increased tension of the thoracic muscles, descending
fibers of the quadriceps, scapular lever, sternoclavicular and sternocleidomastoid mus-
cles, and suboccipital muscles [63]. Long-term shortening of the aforementioned muscles
can cause ischemia and symptoms including headache and dizziness, tinnitus, and neck
stiffness [64]. Long duration of excitation of nociceptors can cause CS in the posterior
horn neurons, and open inactive synaptic connections in adjacent segments, leading to an
excitatory effect at the spinal cord or brainstem level [65]. Excitation can also be transmitted
further through the sensory nuclei of the trigeminal nerve which mediate the impulses of
all cranial nerves [57].

The influence of the neck and pectoral girdle muscles on continuous impulsion,
and the influence on increased tension in the masticatory muscles have been demon-
strated [54]. However, the connections between the cervical spine region, stomatognathic
system, and the organ of vision are still not fully explained. Based on the above consid-
erations, CS may explain the changes observed in sEMG in subjects with myopia [32,36],
in subjects without visual impairment but with TMDs [30,35], and the lack of response in
sEMG recordings in healthy subjects [34].
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Figure 2. Changes in muscle activity associated with central sensitization (eyes open—(A) and eyes
closed—(B)) in myopic subjects.

4. Biochemical Connection

Kynurenine (KYN) is a major metabolite of tryptophan (TRP) formed in the kynurenine
pathway. The reaction is catalyzed by tryptophan-2,3-dioxygenase (TDO) or indoleamine-
2,3-dioxygenases 1 and 2 (IDO). TDO is a constitutive enzyme present mainly in the
liver [66]. KYNA is enzymatically produced from a key intermediate compound in the
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tryptophan catabolic pathway, KYN [67]. KYN and its metabolites, collectively known as
kynurenines, exhibit diverse biological activities [66]. Initially, both quinolinic acid and
KYNA, a glutamate agonist and antagonist, respectively, were shown to be involved in
the control of neurotransmission, neuronal cell membrane excitability, and neurodegenera-
tion [66,68]. It has been shown that KYNA can protect neurons from excitotoxic damage
caused by quinolinic acid [69,70]. The retina is the layer of photoreceptor cells and glial
cells in the eye that processes light energy, and transmits it to the visual cortex, whose job
is to perceive and integrate visual impressions. Damage within the retina can cause loss
within the vision [14]. The retina is located in the posterior segment of the eye bulb. It is the
innermost layer of the eye localized under other major layers of the eye, which include the
choroid and sclera [71]. The kynurenine pathway has been shown to play a role in retinal
ontogenesis [72]. Also, the presence of kynurenine and kynurenine pathway enzymes
have been demonstrated in the retinas of several vertebrate species [73–75]. Increased IDO
expression in the retina has been shown in diabetic retinopathy as a result of microglial
activation [76]. Recent studies note retinal damage are associated with imbalances in the
kynurenine pathway in the damaged retina [77]. The response of the kynurenine pathway
to retinal/visual nerve injury depends on the nature of the injury. In particular, mechan-
ical injury to the optic nerve causes a significant decrease in retinal KYNA levels, and
this response may be explained by differences in the expression of kynurenine pathway
enzymes [77]

Myopic individuals have observable changes in the retina [78,79] and optic nerve [80].
To the best of our knowledge, there is lack of studies analyzing changes in the kynurenine
pathway directly in subjects with myopia relative to healthy subjects. Based on the studies
cited above, we can hypothesize that changes are present in the kynurenine pathway in
the retina and optic nerve in myopic subjects. The role of kynurenines, however, in skele-
tal muscle is less well understood, and remains largely unknown. It was only recently
discovered that there is an intense conversion of KYN to KYNA in exercising skeletal
muscles [81–83]. It is now broadly believed that physical activity may have beneficial
outcomes on the central nervous system, as a result of reducing the amount of circulating
KYN available for further metabolism in the brain [84,85]. Based on numerous studies,
the link between exercise-induced changes in peripheral kynurenine homeostasis and
brain function appears to be indisputable [66,85–87]. It has also been demonstrated that
skeletal muscle is a heterogeneous tissue composed of cell types with different metabolic
profiles, including KYN metabolism, which has implications for KYN-modulating mech-
anisms [88]. Changes in the metabolism of the kynurenine pathway are evidenced by
scientific studies [81,85,88]. The association between physical activity and lower myopia
has been recognized in the literature [89]. Also, in temporomandibular disorders, such as
myalgia, there was a negative correlation between TRP and pain intensity, and a positive
correlation between KYN/TRP and pain intensity [90]. This supports theories of the effect
of the kynurenine pathway in myopia.

According to a recent study by Tuka et al. (2021), there is a widespread metabolic im-
balance in migraineurs that manifests itself in a completely reduced peripheral catabolism
of TRP during the interictal period. It may act as a trigger for migraine attacks, contribut-
ing to excess glutamate, induced neurotoxicity, and generalized hyperactivity. This may
draw attention to the clinical significance of the kynurenine pathway in migraine [91].
According to studies, KYNA and its derivatives may act as modulators at different levels of
the migraine pathomechanism. They can produce antinociceptive effects in the periphery,
in the caudate trigeminal nucleus, and can interact with migraine triggers and depression,
spreading through the cortex. Experimental data suggest that KYNA or its derivatives may
offer a novel approach to migraine therapy [92].

It has been proven that people with refractive errors were more likely to experience
migraine episodes [93]. The work of Lajmi et al. (2021) also confirms that abnormal
ametropia may be a possible cause of headaches [94]. Research on TMDs versus headache
shows that TMDs were associated with an increased incidence of primary headaches.
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Migraine was the most common primary diagnosis of primary headaches in individuals
with TMDs [95]. The association between TMDs and migraines was also noted in the work
of Goncalves et al. They demonstrated that in women with TMDs and migraine, migraine
improved significantly only when both conditions were treated [96]. The connections
discussed between headaches, TMDs, and refractive errors and changes in the kynurenine
pathway are purely hypothetical. To our knowledge, there have been no studies on this
topic. This needs to be checked. However, the evidence for inter-system connections is
quite clear.

The biochemical linkages discussed above may explain structural changes in indi-
viduals with ocular pathologies (ocular convergence defects vs. lateral mandibular devia-
tion [39], astigmatism vs. crossbite [40], myopia vs. Class II division 1 malocclusion [41]).
Bollero et al. (2017) noted ocular motor defects versus crossbite and midline deviation [42],
and that there is a correlation between TMDs occurrence and visual impairment preva-
lence [43] (Figure 3).
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contributing to excess glutamate, induced neurotoxicity, and generalized hyperactivity. 

This may draw attention to the clinical significance of the kynurenine pathway in mi-

graine [91]. According to studies, KYNA and its derivatives may act as modulators at 

different levels of the migraine pathomechanism. They can produce antinociceptive ef-

fects in the periphery, in the caudate trigeminal nucleus, and can interact with migraine 

triggers and depression, spreading through the cortex. Experimental data suggest that 

KYNA or its derivatives may offer a novel approach to migraine therapy [92]. 

It has been proven that people with refractive errors were more likely to experience 

migraine episodes [93]. The work of Lajmi et al. (2021) also confirms that abnormal ame-

tropia may be a possible cause of headaches [94]. Research on TMDs versus headache 

shows that TMDs were associated with an increased incidence of primary headaches. 

Migraine was the most common primary diagnosis of primary headaches in individuals 

with TMDs [95]. The association between TMDs and migraines was also noted in the 

work of Goncalves et al. They demonstrated that in women with TMDs and migraine, 

migraine improved significantly only when both conditions were treated [96]. The con-

nections discussed between headaches, TMDs, and refractive errors and changes in the 

kynurenine pathway are purely hypothetical. To our knowledge, there have been no 

studies on this topic. This needs to be checked. However, the evidence for inter-system 

connections is quite clear. 

The biochemical linkages discussed above may explain structural changes in indi-

viduals with ocular pathologies (ocular convergence defects vs. lateral mandibular devi-

ation [39], astigmatism vs. crossbite [40], myopia vs. Class II division 1 malocclusion 

[41]). Bollero et al. (2017) noted ocular motor defects versus crossbite and midline devia-

tion [42], and that there is a correlation between TMDs occurrence and visual impairment 

prevalence [43] (Figure 3). 

 
Figure 3. A hypothetical explanation of structural changes in the visual and stomatognathic systems
with the kynurenine pathway.

5. Muscular–Tendinous Connection

Traditionally, the word fascia was mainly used by surgeons to describe the stratified
tissue surrounding other organs, muscles, and bones [97]. Recently, the definition has been
expanded to include all collagen-based soft tissues of the body, including cells that form
and maintain the extracellular matrix. The new definition also includes some tendons,
ligaments, bursae, endomysium, perimysium, and epimysium [98]. The fascial tissue forms
a continuous, three-dimensional, viscoelastic matrix that supports the structure of the entire
body. Fascia can be classified as superficial, deep, visceral, or parietal, and further classified
according to anatomical location [99]. The classical concept of its passive role in force
transmission has recently been refuted [100]. Fascial tissue contains contractile elements
that allow a modulating role in force transmission and force generation. The last function
not only acts as a transporter of the generated mechanical voltage, but stores mechanical
energy to conserve myogenic energy [100,101]. The fascial continuum enables the correct
distribution of tension information produced by the various tissues covered or supported
by the fascia, allowing the entire body system to interact in real-time [101].

Deep fascia surrounds structures such as bones, muscles, nerves, and blood vessels.
It usually has a more fibrous texture, and is rich in hyaluronan compared to the other
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subtypes. The deep fascia is highly vascularized and contains well-developed lymphatic
channels. In some cases, the deep fascia may even contain free motorized nerve endings,
such as the corpuscles of Ruffini and Pacini [97]. The deep fascia is a membrane that extends
throughout the body, and is held under basal tension by numerous muscle extensions [102].
Based on this anatomical relationship, fascia can transmit the tension generated by muscle
contraction to adjacent areas, resulting in stimulation of proprioceptors in that area [103].

The connection between the organ of vision and the muscles of the masticatory or-
gan takes place through the deep fascia of the orbit (Tenon’s fascia) connecting with the
deep fascia of the skull (cranial fascia), and through it with the temporal fascia, and then
connecting with the deep fascia of the neck [103,104]. Tenon’s fascia is the fibrous layer
surrounding the eyeball from the edge of the ciliary body to the entrance of the optic nerve.
In the middle part, it attaches to the back of the conjunctiva of the eye, and in the middle
part, it connects with the eye muscles—it forms sheaths of four rectus and two oblique
muscles, and also connects with the fatty body of the orbit, and forms a continuity with the
sheath of the optic nerve [103]. The temporal fascia is a dense fibrous layer covering the
temporal muscle, and its surface provides an attachment site for the superficial fibers of the
temporal muscle, and through the deep cervical fascia, it connects to the quadrilateral and
sternocleidomastoid muscles [103,104].

The discussed anatomy of the fascia, its biomechanics in the transmission of tension,
and, in particular, its ability to change the body system in real-time [101], may explain the
relationship between the organ of vision and the muscles of the masticatory organ observed
during surface electromyography tests with the eyes open and closed.

One of the hypotheses explaining the changes present in myopia may be the alterations
in the area of the eyelid network associated with the defect: elongation of the eyeball, which
is one of the causes of myopia [105]; and protracted positioning of the head and the cervical
spine [63,106]. When the eyes are open, myopia patients may aggravate the increased
tension within the muscular–fascial system by visually tonic tension of cervical muscles,
main muscles of the masticatory organ, and extraocular muscles. The fascial hypothesis
can explain structural changes within systems, as well as changes in bioelectrical tensions,
due to the ability of the fascia to respond in real-time.

6. Conclusions

Based on the presented review, the nervous, biochemical, and fascial connections be-
tween the organ of vision and the stomatognathic system seem undeniable. Understanding
the anatomical, physiological, and biochemical interrelationships may allow us to explain
the interactions between systems. According to our current knowledge, it is not possible to
indicate the main impact pathway, and we think it may be a combination of several pre-
sented pathways. Dentists, ophthalmologists, physiotherapists, and optometrists should
be increasingly aware of this relationship for better diagnosis and treatment of patients.
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