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Abstract

A novel sequence has been introduced that combines multiband imaging with a multi-echo

acquisition for simultaneous high spatial resolution pseudo-continuous arterial spin labeling

(ASL) and blood-oxygenation-level dependent (BOLD) echo-planar imaging (MBME ASL/

BOLD). Resting-state connectivity in healthy adult subjects was assessed using this

sequence. Four echoes were acquired with a multiband acceleration of four, in order to

increase spatial resolution, shorten repetition time, and reduce slice-timing effects on the

ASL signal. In addition, by acquiring four echoes, advanced multi-echo independent compo-

nent analysis (ME-ICA) denoising could be employed to increase the signal-to-noise ratio

(SNR) and BOLD sensitivity. Seed-based and dual-regression approaches were utilized to

analyze functional connectivity. Cerebral blood flow (CBF) and BOLD coupling was also

evaluated by correlating the perfusion-weighted timeseries with the BOLD timeseries.

These metrics were compared between single echo (E2), multi-echo combined (MEC),

multi-echo combined and denoised (MECDN), and perfusion-weighted (PW) timeseries.

Temporal SNR increased for the MECDN data compared to the MEC and E2 data. Connec-

tivity also increased, in terms of correlation strength and network size, for the MECDN

compared to the MEC and E2 datasets. CBF and BOLD coupling was increased in major

resting-state networks, and that correlation was strongest for the MECDN datasets. These

results indicate our novel MBME ASL/BOLD sequence, which collects simultaneous high-

resolution ASL/BOLD data, could be a powerful tool for detecting functional connectivity and

dynamic neurovascular coupling during the resting state. The collection of more than two

echoes facilitates the use of ME-ICA denoising to greatly improve the quality of resting state

functional connectivity MRI.

Introduction

The impact and applications of resting-state functional connectivity magnetic resonance imag-

ing (rs-fcMRI) continue to grow. Developed in 1995 [1], rs-fcMRI is collected while a subject

is not performing a task. rs-fcMRI uses correlations between low-frequency fluctuations in the
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signal to extract connected brain networks. Most rs-fcMRI studies rely on blood oxygenation-

level dependent (BOLD) contrast, which measures magnetic susceptibility changes caused by

variations in blood oxygenation. However, BOLD contrast is sensitive to cerebral blood flow

(CBF) and cerebral blood volume (CBV), in addition to blood oxygenation [2]. Recently, arte-

rial spin labeling (ASL), which measures CBF changes directly by magnetically tagging blood

flowing into the brain, has been used for rs-fcMRI [3–6].

Evaluated separately, BOLD and ASL contrasts each have several advantages and disadvan-

tages for rs-fcMRI. The BOLD signal can be acquired with high temporal and spatial resolu-

tion, resulting in images with high temporal signal-to-noise ratios (tSNR) and sensitivity;

however, the BOLD signal is an indirect measure of neuronal activity and results from the

combination of a number of factors including CBF, CBV, and oxygen consumption [2, 5, 7].

Thus, inferring neuronal underpinnings directly from the BOLD signal is not straightforward.

Furthermore, the BOLD signal is sensitive to physiological factors including motion, respira-

tion, and cardiac influences [8]. The BOLD signal also has limited spatial specificity due in

part to its susceptibility to draining veins [9–11]. Conversely, the ASL signal is derived from

capillaries and provides a more direct, spatially specific measure of neuronal activity. ASL can

also be used to derive quantitative CBF, which is directly related to brain physiology. ASL,

however, requires a tagging module to label inflowing blood and a post-labeling delay (PLD)

to allow tagged blood to flow into the brain. For pseudo-continuous ASL (pCASL), the recom-

mended approach for ASL imaging [12], the suggested tagging time and PLD are each more

than 1.5 s, resulting in long repetition times (TRs). Additionally, the total readout times of ASL

acquisitions are severely limited by the short T1-relaxation of the tagged blood. This, in turn,

reduces the signal-to-noise ratio (SNR) and restricts the image resolution and total number of

slices that can be acquired.

To address some of these issues, several sequences have been developed to obtain ASL and

BOLD contrast simultaneously by collecting ASL- and BOLD-sensitive echoes in one acquisi-

tion [13–17]. These sequences have several applications. First, the coupling between CBF and

BOLD has been evaluated to determine the contributions of CBF to the BOLD response [15,

16]. These studies have found functional connectivity to be positively correlated with CBF/

BOLD coupling within functional networks. Second, cerebrovascular reactivity (CVR) mea-

surements, which measure the ability of blood vessels to dilate [18], have been obtained [19].

BOLD- and CBF-derived CVR measurements have been shown to be complimentary [20],

making simultaneous ASL/BOLD approaches attractive. Finally, simultaneous ASL/BOLD

scans have been used to calibrate the BOLD signal [21, 22] and to compute the cerebral meta-

bolic rate of oxygen consumption (CMRO2) [23]. CMRO2 fluctuations have also been used to

generate resting-state brain networks [24]. However, these sequences still necessitate long TRs

and a limited number of slices.

Recently developed multiband (MB), or simultaneous multi-slice (SMS) imaging, where

multiple slices are excited and acquired simultaneously, can be used to increase spatial and/or

temporal resolution [25, 26]. MB imaging has been developed and validated for functional

magnetic resonance imaging (fMRI) [27] and rs-fcMRI [26, 28]. MB imaging also has been

combined with ASL to acquire high-resolution ASL images [29–31]. These studies only evalu-

ated static CBF measurements, not dynamic CBF timeseries necessary for rs-fcMRI studies.

Because the majority of the TR in ASL consists of tagging and PLD modules, the major advan-

tage of MB-ASL is that interslice labeling delay times and total readout times can be reduced.

This leads to increased SNR and more accurate CBF estimations and increases the number of

slices that can be acquired [29–31].

Emerging research has shown multi-echo (ME) echo-planar imaging (EPI) techniques have

the ability to increase the sensitivity of BOLD acquisitions [32–37]. These approaches acquire
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several echoes in one excitation. Echoes can then be combined by weighting each echo by the

voxelwise T2� [32, 34, 38]. This weighting approach takes advantage of the fact that BOLD

contrast is maximized when the echo time (TE) is equal to T2� in the tissue. Since T2� varies

by tissue type, different weightings are used for different brain regions. BOLD sensitivity can

be further increased by applying ME denoising procedures to the data. One such technique,

ME independent component analysis (ME-ICA), can automatically separate BOLD and non-

BOLD echoes [39–42]. This technique uses ICA to identify signal components representing

the most variance in the data. These components then get classified as either BOLD or non-

BOLD based on whether or not their amplitudes are linearly dependent on TE, respectively.

The non-BOLD components are then removed from the data via linear regression. These stud-

ies have shown ME-ICA increases individual and group level functional connectivity [39, 40],

can separate slow BOLD from non-BOLD drifts [37], and can also be used to increase task-

based sensitivity [42]. ME-ICA has also been evaluated for MB BOLD data showing improved

performance over SB acquisitions [43]. To date, simultaneous ASL/BOLD techniques acquire

only two echoes and do not take advantage of the sensitivity gains of acquiring additional

echoes.

In this study, four techniques—MB, ME, ASL, and BOLD—are combined to create a single

sequence. Using this sequence, high resolution, whole-brain simultaneous ASL/BOLD data

were acquired to evaluate resting-state connectivity.

Methods

MBME ASL/BOLD sequence

Fig 1 shows a sequence diagram for the MBME ASL/BOLD sequence. The general sequence

design consists of an unbalanced pCASL tagging module [44, 45], followed by a PLD period.

This is followed by a MB excitation with a ME EPI readout. Blipped-controlled aliasing in par-

allel imaging (blipped-CAIPI) [28] was employed to reduce g-factor noise amplification caused

by the slice-unaliasing in MB imaging by incorporating z-gradient blips. This technique shifts

Fig 1. MBME ASL/BOLD pulse sequence design. The sequence consists of a pCASL labeling train, followed by a post-label delay, and a multi-echo

EPI readout. The phase is rewound to the start of k-space after each echo and the next echo is acquired. Multiband imaging was also utilized by inserting

a multiband excitation pulse in place of the single band pulse. Finally, blipped-CAIPI was employed to reduce g-factor penalties associated with MB

imaging.

doi:10.1371/journal.pone.0169253.g001
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individual simultaneously excited slices in image space by fractions of the field of view to

reduce aliasing of the slices.

At the start of each MBME ASL/BOLD acquisition, calibration repetitions were acquired

using a radiofrequency (RF) phase-cycling approach [46]. Varying constant phase shifts were

added to subsequent MB RF pulses to allow the slices to be unaliased using a discrete Fourier

transform. For example, to unalias four slices, four repetitions are required. This method

ensures identical geometric distortions between the calibration image and the actual acquisi-

tion. For acquisitions incorporating in-plane acceleration (R), such as the ME approach used

here, a multishot technique was applied. For each constant phase, R interleaves were collected

and combined to fill 2D k-space. This allowed 2D k-space to be fully sampled while keeping

the same distortion as the functional repetitions. The last repetition in each acquisition was

acquired with no tagging to obtain an M0 image, used to normalize the subtracted perfusion-

weighted (PW) maps for CBF quantification.

Each echo in the ME acquisition was obtained consecutively with a single excitation. The

user prescribed the timings of the first and second echoes. Subsequent TEs were set at the min-

imum time following the previous echoes. Of note, the readout was identical for calibration

and functional repetitions. The only difference was the varying RF phase for the calibration

repetitions and the addition of blipped-CAIPI for the functional repetitions. Navigator echoes

were acquired at the beginning of each shot by sampling the center of k-space several times in

the positive and negative frequency encode directions. These echoes were used to correct for

Nyquist ghosting in each shot and repetition.

Subjects

This study was approved by the Medical College of Wisconsin/Froedtert Hospital Institutional

Review Board, and all subjects provided written informed consent before participating. Seven

healthy adult volunteers (four male, three female, mean age = 35.0 +/- 13.6 years, age range

23–58 years) were recruited for this study. All subjects were right-handed. Subjects were asked

to refrain from intake of caffeine before the MRI exam.

Imaging

Imaging was performed on a GE 3 Tesla MR750 system with a body transmit coil and 32-chan-

nel NOVA receive head coil. High-resolution anatomical images were collected for co-registra-

tion with the functional images. These included a T1-weighted magnetization-prepared rapid

acquisition with gradient echo (MPRAGE) with the following parameters: TR/TE = 7.6/3.0

ms, FA = 8˚, FOV = 256 mm, 1×1×1 mm3 resolution, BW = 62.5 kHz, and TI = 900 ms. An

additional T2-weighted image was also acquired using a CUBE sequence with the following

parameters: TR/TE = 2500/63.6 ms, FA = 90˚, FOV = 256 mm, 1×1×1mm3 resolution, and

BW = 125 kHz.

Resting-state scan protocol

Each subject underwent one resting-state MBME ASL/BOLD scan, which utilized an unbal-

anced pCASL labeling scheme with labeling time = 1.5 s and PLD = 1.0 s. Calibration volumes

were acquired at the start, and as part, of each MBME ASL/BOLD scan. A partial k-space

acquisition was employed with 20 overscan lines. To keep the later TEs within reasonable

ranges and reduce total readout time, in-plane acceleration was employed with R = 2. Addi-

tional parameters for the MBME ASL/BOLD run were as follows: number of echoes = 4,

TE = 9.1, 25, 39.6, 54.3 ms, TR = 3.5 s, MB-factor = 4, number of excitations = 9 (total

slices = 9×4 = 36), FOV = 240 mm, resolution = 3×3×3 mm3, FA = 90˚, RF pulse width = 6400

Multiband multi-echo simultaneous ASL/BOLD for functional connectivity
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ms. Scans lasted 644 seconds resulting in 167 acquisitions excluding calibration reps. Subjects

were instructed to lie awake with their eyes closed.

Reconstruction

All image reconstruction was performed in Matlab (MathWorks, Inc.). First, Nyquist ghosting

correction was performed using navigator echoes collected at the beginning of each excitation.

Next, the echoes were separated.

Calibration repetitions were unaliased using a discreet Fourier transform. In this study, two

calibration volumes were acquired and the second one was used as the calibration image for

slice and in-plane unaliasing. A slice-GRAPPA algorithm [28] was implemented for MB una-

liasing and applied separately for each echo. This technique is described in detail elsewhere

[28]. To unalias in-plane acceleration, a traditional 1D-GRAPPA approach [47] was used fol-

lowing the slice-unaliasing procedure. Finally, coils were combined using a sum of squares

approach, and partial k-space was reconstructed using a homodyne technique [48].

Preprocessing

The rs-fcMRI data processing pipeline is shown in Fig 2. Prior to ASL processing and echo

combination and denoising, preprocessing was performed on each echo separately using

AFNI (https://afni.nimh.nih.gov/afni) and FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki). This pro-

cedure included despiking, volume registration, detrending with a 3rd order polynomial, and

skull-stripping of the data. For the volume registration, motion was estimated for the first echo

and those estimates were applied to the subsequent echoes. All datasets were co-registered to

the anatomical MPRAGE image using an affine registration with 12 degrees of freedom (dof).

As above, individual echoes were coregistered using the transformation matrix generated from

the first echo. The anatomical image was skull-stripped and transformed to Montreal Neuro-

logical Institute (MNI) space using a non-linear registration algorithm and segmented into

gray matter, white matter, and CSF. The functional data were then transformed to MNI

space using the transformation matrix output from the MPRAGE-MNI registration and

normalization.

ASL processing

All ASL signal processing used the first echo with a TE of 9.1 ms. The mean PW signal was cal-

culated by averaging and subtracting the labeled from the control repetitions. A PW timeseries

was also generated using the surround subtraction method [49].

Multi-echo combination and denoising

Multi-echo combination was performed using AFNI. All echoes were used in the combination

and were combined using the T2�-weighted approach [38, 50]. First, the voxelwise mean

across time of each individual echo dataset was used to estimate the signal immediately after

excitation, S0 , and the voxelwise T�
2
, T�2ðfitÞ using log linear regression (Eq 1). Next, the voxewise

T�2ðfitÞ was used to determine the weights, wðT�
2
Þ (Eq 2), which were used in a weighted summa-

tion of the echoes. In Eqs 1 and 2, TEn is the nth echo time.

SðTEnÞ ¼ S0 � expð� ð1=T�2ðfitÞ Þ � TEnÞ ð1Þ

wðT�
2
Þ ¼

TEn � expð� TEn=T�2ðfitÞ Þ
P

nTEn � expð� TEn=T�2ðfitÞ Þ
ð2Þ

Multiband multi-echo simultaneous ASL/BOLD for functional connectivity
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The multi-echo combined data then underwent an additional denoising procedure using

the automated ME-ICA technique and the meica.py plugin in AFNI [39]. This technique is

described in detail elsewhere and classifies independent components as BOLD or non-

BOLD based on whether or not their amplitudes are linearly dependent on TE, respectively

[39–41]. Components deemed non-BOLD were then regressed out of the multi-echo com-

bined data producing a separate multi-echo combined and denoised dataset. The multi-

echo combined and multi-echo combined and denoised datasets were each analyzed

separately.

Fig 2. Schematic showing the resting state functional connectivity pipeline for the ASL and BOLD echoes. The first and second echoes were

processed separately to yield the PW and E2 data respectively. Echoes were also combined using a T2*-weighted approach to generate the MEC dataset.

This dataset was further denoised using ME-ICA resulting in the MECDN dataset. Each echo was despiked, volume registered using the transformation

matrix from the first echo, detrended, registered to the anatomical image, and transformed to MNI space. Additional preprocessing steps differ for each

dataset and are shown in Row 2. For all datasets, after preprocessing, functional connectivity was assessed with seed-based and dual-regression

approaches (Row 3).

doi:10.1371/journal.pone.0169253.g002
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MEICA performance

To evaluate the performance of the MEICA algorithm for denoising MBME ASL data, the

number of components identified, number of components removed, and amount of variance

removed by the regression of non-BOLD components were analyzed for each subject. In addi-

tion, the mean value of κ, which reflects the goodness of fit to the ΔR2� model, was examined

in accepted and rejected components. High values of κ reflect a component that has a strong

linear dependence on TE and is likely to be BOLD-related. All components were manually

checked to make sure they were correctly classified by the algorithm. This included visually

inspecting both the maps of beta-weights, time courses, and Fourier transformed time courses

for each component. Components with obvious artifacts and high frequency components

were deemed to be non-BOLD.

rs-fcMRI processing

The preceding steps resulted in four separate datasets for each MBME ASL/BOLD scan that

underwent further processing for rs-fcMRI analyses: individual second echo (E2, TE = 25ms),

multi-echo combined (MEC), multi-echo combined and denoised (MECDN), and perfusion-

weighted (PW) time series. All data were blurred with a 4.5 mm full width at half maximum

Gaussian kernel. Several nuisance regressors were removed from the PW, E2, and MEC data

including the six rigid-body motion parameters and their derivatives, and white matter and

CSF signal. For the E2 and MEC data, the label/control oscillations were regressed out of the

data by including a column of alternating -1s and 1s in the design matrix. The E2 and MEC

data were also bandpass filtered between 0.01 and 0.1 Hz. The MEC data was fed into the

ME-ICA algorithm prior the regression of label/control oscillation and bandpass filtering.

Degrees of freedom (dof) were adjusted on an individual subject basis for the MECDN data by

subtracting the number of removed components from the dof.

Resting-state connectivity analysis

Both seed-based and dual-regression analyses were employed for the rs-fcMRI analysis. For

the seed-based analysis, several seeds were chosen, including the posterior cingulate cortex

(PCC), left (L) and right (R) motor cortex, L/R insula, and L/R hippocampus. Seed locations

are shown in Table 1. The PCC seed was chosen to extract the default mode (DMN) network.

Table 1. Montreal Neurological Institute coordinates of seed regions used in the functional connectiv-

ity analysis.

Seed x y z

PCCa 0 -54 26

MFGa 6 56 14

L Motora -34 -24 60

R Motora 40 -18 56

L Insulaa -40 -8 8

R Insulaa 40 -8 8

L Hippocampusb -28 -28 -12

R Hippocampusb 24 -28 -12

Abbreviations: PCC = posterior cingulate cortex; MFG = medial frontal gyrus; L = left; R = right.
a8mm radius spherical ROI.
b4mm radius spherical ROI

doi:10.1371/journal.pone.0169253.t001
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The insula and hippocampus seeds were chosen based on a previous report [40]. Specifically,

the hippocampus seeds were selected to examine the effect of ME-ICA denoising on subcorti-

cal connectivity. All seeds were 8 mm radius spheres with the exception of the hippocampus

seeds, which were 4 mm radius spheres according to the anatomical structure. The mean signal

was extracted from each seed and correlated with each voxel in the brain using Pearson corre-

lation. Correlation values (R) were then transformed to z-scores using a Fisher z-transform. A

group analysis was then conducted using a one-sample t-test on the Fisher-transformed z-

scores. For individual and group maps, voxels with corrected p<0.005 (minimum cluster

size = 46, cluster corrected α = 0.05) were considered significant. A cluster-corrected α of 0.05

means the probability of getting a single noise-only cluster is 0.05.

In addition to the seed-based analysis, a dual regression analysis was performed to compare

across datasets (i.e., E2, MEC, MECDN, PW) [51] and implemented in FSL. For this analysis, a

template containing predefined ICA components of interest was used [52]. The template con-

tains 7 spatially independent networks derived from a clustering approach, which identified

networks of functionally coupled regions using data from 1000 normal subjects [52]. For each

component of interest, the procedure described in [53] was applied. First, the spatial compo-

nent map was used as a spatial regressor in a general linear model (GLM) and the temporal sig-

nal associated with the network was extracted. This signal was then used as a regressor in a

second GLM to find the subject-specific spatial maps associated with the template network.

Group maps were created for each dataset by converting correlations to z-scores and using a

one-sample t-test.

CBF/BOLD coupling

An additional analysis was carried out to examine the coupling of the CBF and BOLD signals for

each of the datasets. The CBF/BOLD coupling was assessed by correlating the signals from each

of the E2, MEC, and MECDN datasets to the PW data on a voxelwise basis using Pearson corre-

lation. Signal was extracted from the datasets following rs-fcMRI processing. Correlation maps

were converted to z-scores using a Fisher’s z transform, and a group t-test was performed across

subjects for each dataset to create group CBF/BOLD coupling maps. The CBF/BOLD coupling

maps were thresholded at p<0.005 (minimum cluster size = 46, cluster corrected α = 0.05).

Quantitative analysis

Whole-brain tSNR was computed for the timeseries datasets prior to detrending and nuisance

regression and defined as the mean signal divided by the standard deviation across the time-

series. For the PW data, tSNR was calculated in GM only. In addition, the mean correlation

value was extracted from significantly correlated voxels for each seed region of interest (ROI).

This was computed using two masks. First, a connectivity mask was determined for each sub-

ject, seed ROI, and dataset by thresholding at a corrected p<0.005 (minimum cluster size = 46,

cluster corrected α = 0.05). The number of correlated voxels was also computed using this

mask. Second, using voxels that were significantly correlated for all four datasets with cor-

rected p<0.005 (minimum cluster size = 46, cluster corrected α = 0.05), an overlap mask was

created for each ROI and subject. Metrics, including tSNR, mean correlation, and network

size, were compared using a paired t-test. Comparisons with a Bonferroni corrected p-

value < 0.05 were considered significant.

Results

Representative individual echo, MEC, MECDN, and mean PW images are shown in Fig 3.

As expected, SNR decreases with TE. Image quality is similar for the MEC and MECDN data

Multiband multi-echo simultaneous ASL/BOLD for functional connectivity
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and improved over the individual echo cases. tSNR was significantly higher for the MECDN

data (106 +/- 11) compared to the MEC (69 +/- 12) and E2 data (47 +/- 9) and for the MEC

data compared to the E2 data (MECDN > E2, P < 0.0001; MECDN > MEC, P = 0.0009;

MEC > E2, P = 0.005).

Fig 3. Representative perfusion-weighted, individual echo, and multi-echo images. (A) Example individual echo,

MEC, and MECDN images from one subject. Image SNR decreases with echo time. Image quality improves with echo

combination and signal in the inferior portions of the brain is recovered. All images share the same color scale. (B)

Perfusion weighted images. Images were produced by averaging and subtracting the label images from the control images.

High-resolution whole-brain images were collected in a relatively short amount of time with reduced signal loss caused by

T1-relaxtion of the labeled blood.

doi:10.1371/journal.pone.0169253.g003
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MEICA performance

Table 2 shows summary statistics for the ME-ICA analysis. On average, approximately 64

components were identified, 23 of those were removed accounting for 79% of the variance, As

expected, the mean κ in accepted components was higher than in rejected components.

Fig 4A shows plots of κ and ρ verses component ranked by κ and ρ respectively. Here, ρ is a

measure of how well a component fits the ΔS0 model. In contrast to κ, high ρ indicates compo-

nents are likely artifacts. Both plots show the characteristic “L” shape described in Kundu et al.

[40] for all subjects. All accepted components were correctly classified as BOLD-related net-

works. These components and associated beta-weight maps were free from obvious artifact,

and in most cases were closely matched to well-known networks from the literature (i.e.

DMN, motor network, salience network, etc.). Examples of accepted and rejected networks

are shown in Fig 4(B)–4(E). Fig 4B shows an accepted network, the DMN. Fig 4C and 4D

shows networks rejected due to being an R2� artifact and non-BOLD component respectively.

Fig 4E shows a rejected perfusion-weighted component, characterized by oscillating signal. In

fact, a PW signal was identified for each subject and correctly rejected as non-BOLD by the

algorithm.

Functional connectivity

Resting-state networks were extracted using seeds in the PCC, L/R motor cortex, L/R insula,

and L/R hippocampus for the E2, MEC, MECDN, and PW datasets. Fig 5 shows the seed-

based functional connectivity results from the group analysis across subjects for each seed with

a cluster-size corrected threshold of p<0.005. For the E2 data, some bilateral and long-range

connectivity was seen for the PCC and motor cortex seeds. Little connectivity was seen away

from the seed region for the insula and hippocampus seeds. An increase in the number of clus-

ters and cluster size and strength were observed for the MEC data. A further increase in the

number of clusters was seen for the MECDN data and similar clusters tended to be larger and

have stronger correlations. For the insula seeds, significant bilateral and long-range connectiv-

ity was observed for the MECDN data, which included strong connectivity in the temporal

lobe. For the hippocampus seeds, minimal connectivity was seen for the E2 and MEC datasets.

For the MECDN dataset, connectivity was detected with the contralateral hippocampus, areas

associated with the DMN including PCC, MFG, middle temporal gyrus, and parietal cortex.

Even at the relatively high threshold, robust bilateral, long range PW data connectivity was

observed for the PCC and motor cortex seeds. More-limited connectivity was seen for the

insula and hippocampus seeds, although some long-range connections were observed for the

insula seeds.

Table 2. MEICA performance.

Subject # # of Components

Identified

# of Components

Removed

Variance

Removed

Mean κ Accepted

Components

Mean κ Rejected

Components

1 40 17 86.2 33.6 8.3

2 66 20 74.7 31.0 9.1

3 73 27 84.9 21.5 8.1

4 73 25 73.6 28.2 8.8

5 52 24 86.2 27.5 10.5

6 72 29 80.7 37.8 11.3

7 70 18 63.7 32.2 9.8

Mean

(Stdev)

63.7 (12.8) 22.9 (4.6) 78.6 (8.4) 30.2 (5.2) 9.4 (1.2)

doi:10.1371/journal.pone.0169253.t002
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Fig 4. MEICA performance. A. Curves of κ and ρ for all subjects. Both curves display the characteristic “L”

shape expected from the ME-ICA algorithm. κ describes the goodness of fit to the TE dependence of each

component and ρ described the fit to a ΔS0 model. In general, components with κ above and ρ below the

elbow are kept in the denoised timeseries. B-E display example networks from one representative subject. B.

An example accepted BOLD component (DMN). C. A rejected component classified as an R2* artifact. D. A

rejected non-BOLD component. E. A rejected PW component.

doi:10.1371/journal.pone.0169253.g004
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Quantitative results are shown in Fig 6. Mean correlation for both the overlap maps and

individual maps was significantly increased for the MEC data compared to the E2 data, and for

the MECDN data compared to both the MEC and E2 data for the PCC, L/R motor, and L/R

insula with the exception of MECDN vs. MEC for the PCC using individual masks. Some

Fig 5. Group seed-based functional connectivity maps. Connectivity maps are displayed for PCC, L/R motor cortex, L/R insula, and L/R hippocampus

seeds. Maps are the result of a one-sample t-test on the Fisher-transformed z-scores and were thresholded at P < 0.005 with minimum cluster size = 46, α =

0.05. For all seed regions, connectivity was markedly increased in terms of network size and correlation strength for the MECDN datasets compared to the

others. Limited insula and hippocampus connectivity was observed for the E2 and PW datasets. Bilateral insular connectivity was seen for the MEC dataset.

The MECDN data produced significant bilateral connectivity with long-range connections for both the insula and hippocampus seeds. Robust connectivity was

detected with the PW data for the PCC and motor network seeds. Some bilateral connectivity was seen for the insula seeds.

doi:10.1371/journal.pone.0169253.g005
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significant differences were seen for the hippocampus seeds. The MECDN correlation was sig-

nificantly higher than the PW correlation for the PCC, L/R motor, and R insula seeds for both

masks. Similar trends were observed for the network size, displayed as a fraction of intracranial

voxels. Of note, the MECDN had a significantly higher network size compared to the MEC

Fig 6. Quantitative results. Mean correlation in overlapping significant voxels (Top), mean correlation in significant

voxels for the E2, MEC, MECDN, and PW data separately (Middle), and network size, displayed as a fraction of

intracranial voxels (Bottom). Voxels with P < 0.005 and minimum cluster size = 46, α = 0.05 were considered

significant. Parameters were extracted on an individual subject basis. * = P < 0.05; ** = P < 0.01; *** = P < 0.001,

Bonferroni-corrected.

doi:10.1371/journal.pone.0169253.g006
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and E2 data for the L/R hippocampus seeds. In addition, network size was higher for the PW

data compared to the E2 data for the L/R motor cortex, and R insula seeds.

A dual regression approach was also incorporated to assess functional connectivity. All

seven networks were analyzed, but three representative networks, the DMN, motor net-

work, and salience network, are shown in Fig 7. These networks were chosen to match the

networks extracted from the seed based analysis. For all 7 networks, the MEC data had

stronger and more widespread connectivity compared to the E2 data. The MECDN data

had more widespread connectivity compared to the MEC data for the DMN and salience

networks and similar connectivity for the motor network. This was also consistent across all

networks as MECDN data had similar or stronger connectivity compared to the MEC data.

The PW connectivity was not as strong as the BOLD connectivity, though bilateral connec-

tivity was observed for most networks.

CBF/BOLD coupling

Results of the CBF/BOLD coupling analysis are shown in Fig 8, which depicts the group CBF/

BOLD coupling for the E2, MEC, and MECDN datasets. The coupling was widespread, but

was strongest in the DMN and the visual network. Correlation strength and area were

increased for the MECDN data compared to the MEC and E2 data.

Discussion

In this study, an MBME ASL/BOLD sequence was implemented to evaluate resting-state con-

nectivity. This sequence allows for the simultaneous collection of high spatial resolution ASL

and BOLD-weighted time series. Four total echoes were collected, which enabled the use of

ME-ICA denoising to improve data quality. Resting-state fcMRI data were collected using this

sequence and resting-state networks were compared between MEC, MECDN, and the E2 data-

sets collected in a typical simultaneous ASL/BOLD experiment. Networks extracted using the

PW signal were also examined. MECDN data had significantly increased tSNR compared to

MEC and E2 data. In addition, the results of a seed-based analysis showed that resting-state

brain networks were larger and connections were stronger for the MECDN data. A dual

regression analysis was performed and showed additional clusters for the MECDN data. A

CBF/BOLD coupling analysis revealed increased CBF/BOLD coupling in resting-state brain

networks when the data were processed using ME-ICA denoising.

The MBME ASL sequence has several advantages over other sequences. Previous simulta-

neous ASL/BOLD studies were limited in the number of slices that could be acquired. Because

of the addition of multiband imaging, whole-brain simultaneous ASL/BOLD data can be

acquired with MBME ASL with limited T1-relaxation of the tagged blood due to reduced

interslice labeling delay times and total readout times. Thus, high quality, whole-brain PW

data can be obtained. Another advantage is the ability to collect additional echoes beyond the

two echoes used in typical simultaneous ASL/BOLD sequences. The additional echoes can be

combined to increase tSNR for the BOLD echoes with a small increase in TR. Furthermore,

ME-ICA denoising can be applied to automatically remove artifactual and non-BOLD compo-

nents from the data [39–41].

The performance of the MEICA algorithm was investigated. The algorithm performed well

for all subjects. The mean number of rejected components was 22.9 +/- 4.6 representing 78.6

+/- 8.4% of the normalized variance. There were no misclassified components observed, and

for all subjects tSNR for the MECDN data was increased compared to the E2 and MEC data.

In addition, all subjects had κ and ρ curves (Fig 4A) with the expected “L” shape [40]. The κ
and ρ thresholds are set by finding the elbow of this curve. In general, components with κ
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Fig 7. Group dual-regression based functional connectivity maps. Connectivity maps are displayed for

the default mode network, motor network, and salience network. Maps are the result of a one-sample t-test on

the z-scores and were thresholded at P < 0.005 with minimum cluster size = 46, α = 0.05. Additional clusters

were seen for the MEC data compared to the E2 data and for all networks, and for the MECDN data compared

to the MEC data for the DMN and salience networks. Existing clusters also tended to be larger for the MECDN

Multiband multi-echo simultaneous ASL/BOLD for functional connectivity
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above the κ threshold are classified as BOLD components while components with ρ above the

ρ threshold are classified as artifacts. Interestingly, a perfusion related component was found

for all subjects (Fig 4E). This component was characterized by oscillating signal caused by the

signal differences between label and control acquisitions. In all cases this component was cor-

rectly classified as non-BOLD and removed from the data. Thus, label/control oscillations did

not have to be removed from the data prior to ME-ICA (either by filtering or adding a column

data for these networks. Motor network connectivity was similar between the MEC and MECDN datasets.

Bilateral, long range connectivity was seen for all datasets, including the PW data.

doi:10.1371/journal.pone.0169253.g007

Fig 8. Group CBF/BOLD coupling. Results are shown for the E2, MEC and MECDN datasets. Widespread

coupling was observed and increased coupling was seen within well-known brain networks including the

DMN, and visual networks. Stronger, more widespread coupling was seen for the MECDN data compared to

the MEC and E2 data.

doi:10.1371/journal.pone.0169253.g008
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of -1s and 1s to the design matrix for regression), or explicitly removed from the denoised data

after ME-ICA.

ME-ICA denoising led to increased resting-state network area and strength. In order to bet-

ter visualize the benefits of the multi-echo acquisition, a relatively high threshold of p<0.005

was used for all voxel-wise analyses. For the seed-based analysis, at this threshold, connectivity

was limited, but present for the E2 data. Additional clusters were observed for the MEC and

MECDN data. The MECDN clusters were larger and connections stronger than those in the

MEC data, particularly in the anterior portions of the brain. More widespread motor network

connectivity was observed for the MECDN data, including in the insula, which has been

shown to be part of the somatomotor network [54, 55].

Bilateral insular connectivity was seen for the MEC data; however, more widespread bilat-

eral connectivity was observed for the MECDN data, which included clusters in the DMN

regions, motor cortices, and occipital lobe. The insula is known to be involved in a number of

processes, including motor and visual processing, and has shown connectivity with the DMN

in previous studies [56, 57]. Hippocampal connectivity was limited for the MEC data. Calculat-

ing subcortical connectivity is difficult because CSF and blood flow pulsation lead to reduced

BOLD contrast. However, for the MECDN data, bilateral connectivity was observed and clus-

ters were seen in the PCC, anterior brain regions, middle temporal gyrus, and motor cortices.

These results mirror the results from Kundu et al. in their seminal paper describing ME-ICA

[40]. They found very little subcortical connectivity using a T2�-weighted echo combination,

bandpass filtering, and typical nuisance signal regression. When ME-ICA was employed, sig-

nificant hippocampal connectivity was found with sensory, temporal, and premotor cortical

areas.

The relatively weak connectivity for the seed-based E2 case is likely due to a combination of

the stringent threshold (P<0.005), the relatively small number of subjects (7), and the rela-

tively long TR (3.5s). Of note, however, is that by collecting more than 2 echoes ME-ICA

denoising can be used to compensate for these shortcomings. Additional echoes do cause a

slight increase in TR, however the majority of the TR in a pCASL acquisition is the labeling

(1.5s) and PLD (1.0s). Therefore, this effect is limited. Fig 5 shows extensive connectivity for

all seeds for the MECDN case even at high thresholds.

Fig 6C shows the percent of significant intracranial voxels for the seed-based analysis. For

the E2 case, over 20% of voxels were significantly correlated with the PCC and motor seeds,

while Fig 5 shows much more limited connectivity. This discrepancy is a result of the voxel

counts in Fig 6 being extracted on a per-subject basis using Pearson correlation and Fig 5

being the result of a 1-sample t-test across a relatively small number of subjects using relatively

high threshold (P<0.005). Many more voxels reached significance on an individual subject

basis compared to across subjects.

Using the dual regression analysis, stronger, more widespread connectivity was observed

for the MEC data compared to the E2 data for all networks. Larger clusters were observed for

the MECDN data in the DMN in the anterior cingulate cortex (ACC) inferior PCC, and the

thalamus. In the salience network, larger cluster sizes were observed in the insula and ACC for

the MECDN data compared to the MEC data. MECDN and MEC connectivity was very simi-

lar for the motor network.

The increase in connectivity for MECDN data is likely due to the increase in tSNR. Murphy

et al. showed the relationship between tSNR and the number of time points necessary to detect

activation for a certain effect size for BOLD data [58]. This relationship is nonlinear, and a rel-

atively small increase in tSNR can result in a large reduction in the number of time points nec-

essary to detect significance. The use of ME-ICA denoising in this study resulted in a tSNR

increase from 47 for E2 data to 106 for the MECDN data. This greatly increases statistical
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power, reducing the number of time points necessary to detect significance. Thus, the long TR

required in ASL, and subsequent reduced number of observations in a given period of time, is

less problematic with this method.

We were also able to consistently detect resting-state networks using the PW timeseries,

especially for the seed-based analysis. For example, bilateral connectivity was seen for the

PCC, motor cortex, and insula seeds, despite the high threshold. This is quantified in Fig 6,

where correlation strength and network size were similar or greater for the PW data compared

to both the MEC and E2 data. The use of multiband imaging with a blipped-CAIPI allowed for

the collection of whole-brain high-resolution data with limited SNR losses due to g-factor con-

siderations. Furthermore, MB imaging allowed T1-related PW signal loss to be minimized.

To explore one possible use for the simultaneous ASL/BOLD sequence, we analyzed CBF/

BOLD coupling, defined as the correlation between the PW and BOLD timeseries. We found

CBF/BOLD coupling was widespread and variable, however, coupling was increased in well-

known brain networks including the DMN and visual network. These results support the

results from Tak et al. [16]. They also found increased positive coupling in the DMN and visual

network. In addition, they found increased coupling in the task-positive network including

the intraparietal sulcus (IPS), dorsal anterior cingulate cortex (dACC), and middle temporal

region (MT). We did see significant coupling in this region for the MEC and MECDN datasets,

but not to the extent they showed. One interesting finding was coupling strength and area

were stronger for the MECDN data than for the MEC and E2 data. This likely stems from a

reduction in noise for the MECDN data, leading to more accurate connectivity and coupling

results. This novel sequence could be a valuable tool for studies on neurovascular coupling

[59–61].

This study had some limitations. First, the number of subjects was relatively small. The pur-

pose of this study was to determine the feasibility of using the MBME ASL/BOLD sequence to

detect resting-state connectivity; thus, a small subject size was justified. Significant group net-

works were still identified. Second, a relatively short PLD was employed for this study. This

could be an issue for interleaved and MB slice acquisitions, where superior slices are acquired

earlier in the readout, and could lead to intravascular artifacts. Despite this, we were able to

robustly detect brain networks using ASL. Other studies have employed short PLDs to study

functional connectivity. One study used a 3D pCASL acquisition and PLD = 0.600s to perform a

functional connectivity analysis [62]. They further used ICA to extract and remove intravascular

signal. This method could be utilized in future studies with MBME ASL. Another study analyzed

functional connectivity with both a 3D pCASL sequence with PLD = 1.0s and a BOLD EPI

sequence [63]. They found robust ASL-based connectivity and considerable overlap between

ASL and BOLD networks. Future studies should examine the effect of PLD on rs-fcMRI for MB

pCASL scans. Background suppression, in which the background signal is reduced using satura-

tion and inversion pulses, has been shown to increase tSNR and improve the sensitivity of ASL

[12, 64]. However, the BOLD signal is drawn from the background signal. Thus, reducing the

background signal will reduce BOLD SNR and tSNR. In spite of this, one recent study recom-

mended background suppression for 2D dual-echo ASL acquisitions [13] finding the large CBF

signal gains offset the slight BOLD sensitivity losses. The additional echoes in MBME ASL/

BOLD may also help offset some of the BOLD SNR losses. Further studies are needed to deter-

mine the effects of BS on MBME ASL/BOLD acquisitions. Finally, we did not collect heartbeat

or respiration measurements as part of the functional acquisitions. Thus, respiration and heart-

beat signals were not regressed out of the data. For the MEDN data, the MEICA denoising

process should identify and remove the non-BOLD physiological signals as noise. However,

physiological noise in fMRI can come from either BOLD or non-BOLD sources. Future studies

should examine the effect of regressing physiologic variables from MBME ASL data.
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This sequence has several other potential applications. In addition to assessing the contribu-

tions of CBF to the BOLD response using CBF/BOLD coupling [15, 16], this sequence can be

used to measure CVR, CMRO2 [19, 22], and CBF-CMRO2 coupling [21, 59–61, 65]. The latter

has also been used to investigate the effects of drugs [66] and hypercapnia [67] on brain physi-

ology. By incorporating MB imaging and more than two echoes, our sequence can provide

high-resolution, whole-brain images with increased BOLD sensitivity.

In conclusion, MB, ME, pCASL, and BOLD imaging were combined into one sequence.

This sequence allowed for the simultaneous acquisition of high spatial resolution ASL and

BOLD timeseries. Functional connectivity was robustly detected using ASL and BOLD data-

sets. In addition, the collection of more than two echoes allowed for MEICA denoising to be

applied. This technique resulted in the detection of larger, stronger resting-state networks,

increased CBF/BOLD coupling, and increased signal stability.
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