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Pulmonary fibrosis is a kind of interstitial lung disease with architectural remodeling of
tissues and excessive matrix deposition. Apart from messenger RNA (mRNA), microRNA
(miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA) could also play
important roles in the regulatory processes of occurrence and progression of pulmonary
fibrosis. In the present study, the pulmonary fibrosis model was administered with
bleomycin. Whole transcriptome sequencing analysis was applied to investigate the
expression profiles of mRNAs, lncRNAs, circRNAs, and miRNAs. After comparing
bleomycin-induced pulmonary fibrosis model lung samples and controls, 286 lncRNAs,
192 mRNAs, 605 circRNAs, and 32 miRNAs were found to be differentially expressed.
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses
were performed to investigate the potential functions of these differentially expressed
(DE) mRNAs and non-coding RNAs (ncRNAs). The terms related to inflammatory
response and tumor necrosis factor (TNF) signaling pathway were enriched, implying
potential roles in regulatory process. In addition, two co-expression networks were also
constructed to understand the internal regulating relationships of these mRNAs and
ncRNAs. Our study provides a systematic perspective on the potential functions of these
DE mRNAs and ncRNAs during PF process and could help pave the way for effective
therapeutics for this devastating and complex disease.

Keywords: pulmonary fibrosis, whole transcriptome sequencing, ceRNA, co-expression network, regulation

INTRODUCTION

Pulmonary fibrosis is a kind of lung disease that is a progressive and life-threatening pathologic
process resulting in organ failure. This fibroproliferative disease resulted from a various group
of lung disorders with similar clinical, pathophysiologic, and radiographic characteristics and
are known as interstitial lung disease (Pardo and Selman, 2002). Pulmonary fibrosis developed
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after many factors, not only injuries but also viral infections,
exposure to radiotherapy, chemotherapeutic drugs, and
aerosolized environmental toxins (Denham and Hauer-Jensen,
2002; Kelly et al., 2002; Fubini and Hubbard, 2003; Chen
and Stubbe, 2005). During the pulmonary fibrosis process,
there are various physiological processes involved including
severe scarring of the respiratory membrane, abnormal tissue
repair, damage of lung tissue, fibroproliferation, and deposition
of extracellular matrix. Fibrotic tissue replaced normal lung
parenchyma and finally caused loss of pulmonary function
(Crystal et al., 2002). It has been reported that plenty of pathways
were involved in the pathogenesis of pulmonary fibrosis,
such as inflammation, proteolytic/antiproteolytic imbalance,
coagulation, angiogenesis, and apoptosis (Antoniou et al., 2007).
The wound-healing response of pulmonary fibrotic conditions
can be classified into three distinct phases: injury, inflammation,
and repair (Wilson and Wynn, 2009). In addition, many
key genes, such as transforming growth factor beta (TGF-β),
interleukin (IL) gene family members, vascular endothelial
growth factor (VEGF), platelet-derived growth factor (PDGF),
are involved in the wound-healing response of pulmonary
fibrotic condition (Minshall et al., 1997; Elovic et al., 1998;
Ando et al., 2010).

In organisms, RNAs are described as an intricate interplay
among diverse RNA, including protein-coding messenger
RNAs (mRNAs) and non-coding RNAs (ncRNAs), microRNA
(miRNAs), pseudogenes, and circular RNAs (circRNAs). These
RNA transcripts act as competing endogenous RNAs (ceRNAs)
and are important post-transcriptional regulators of gene
expression (Salmena et al., 2011). As a kind of non-coding RNA,
miRNA serves as a critical regulator in gene expression and
is involved in a variety of crucial developmental, physiological,
and disease processes such as pulmonary fibrosis (Ambros, 2001;
He and Hannon, 2004). For instance, miR-326 is reported to
inhibit TGF-β expression and attenuate the fibrotic response. In
addition, more profibrotic genes such as smad3, est1, and MMP-
9 could also be down-regulated by miR-326 (Das et al., 2014).
MiR-21 regulates the activation of lung fibroblasts, while miR-
155 targets keratinocyte growth factor to regulate the process
(Pottier et al., 2009; Liu et al., 2010). Besides, miR-126 is involved
in cystic fibrosis by regulating the expression profiles of TOM1
(Oglesby et al., 2010).

Long ncRNAs (lncRNAs) could also participate into the
regulatory process of pulmonary fibrosis. For instance, up-
regulated lncRNA-CHER could derepress the inhibition of miR-
489 on MyD88 and Smad3 and then activates inflammation and
fibrotic signaling pathway (Wu et al., 2016). LncRNA-MALAT1
serves as a target of miR-503 and triggers the downstream fibrotic
signaling pathway, such as PI3K/AKT/mTOR pathways in silica-
induced pulmonary fibrosis (Yan et al., 2017). According to the
previous studies, lncRNA H19 promotes lung fibrosis through
lncRNA H19-miR-197a and lncRNA H19-miR-29b interactions
(Tang et al., 2016; Lu et al., 2018). As another kind of
ceRNA, circRNAs also participated in the regulatory processes
of pulmonary fibrosis. circHIPK2 promotes the activation of
astrocyte and fibroblast through up-regulation of the expression
of sigmar1 (Cao et al., 2017; Huang et al., 2017). Besides,

circHECTD1 has been proved to promote the silica-induced
pulmonary fibrosis via HECTD1 (Fang et al., 2018). In addition,
silica-induced initiation of circZC3H4 RNA/ZC3H4 pathway
promotes the pulmonary macrophage activation (Yang et al.,
2018). With the development of sequencing technology, whole
transcriptome sequencing analyses had been widely applied
to investigate the interactions between miRNAs–lncRNAs–
circRNAs–mRNAs in various physiological processes, such as
bronchopulmonary dysplasia, osteoclastogenesis, and bladder
cancer (Dou et al., 2016; Li et al., 2018; Wang et al., 2019).

In this study, expression profiles of mRNAs, lncRNAs,
miRNAs, and circRNAs were obtained through whole
transcriptome sequencing analyses. Then, a comparison
between bleomycin-induced pulmonary fibrosis model lung
samples and controls was applied to screen the differentially
expressed (DE) mRNAs and ncRNAs, which were the potential
key regulators in the pulmonary fibrosis process. Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis were performed to simplify the filtration
process and investigate the involved biological process (BP) and
KEGG signal pathway. Finally, a set of potential mRNAs and
ncRNAs involved in the fibrotic process were selected; lncRNA–
miRNA–mRNA and circRNA–miRNA–mRNA co-expression
networks were constructed to exhibit the potential ceRNA
regulatory relationships in co-expression network. The findings
facilitate our understanding of regulatory mechanisms, supply
fundamental support for further research in pulmonary fibrosis,
and lead to new theories for the pathogenesis and treatment of
pulmonary fibrosis.

MATERIALS AND METHODS

Ethics Approval and Consent to
Participate
All the experiments were conducted according to the Guidelines
for the Institutional Animal Care and Use Committee of
Affiliated Hospital of Shandong University of Traditional
Chinese Medicine.

Bleomycin-Induced Pulmonary Fibrosis
Model
Twenty specific path-free Sprague–Dawley (SD) rats of 7 weeks
old were raised in the laboratory. Then they were randomly
divided into two groups, the pulmonary fibrosis model group
and the control group. The model ones were administered with
7 mg/kg of bleomycin (Sigma, United States) through a single
intratracheal instillation under anesthesia, while the control rats
were administered with equal volume of saline (Szapiel et al.,
1979). After 28 days of treatment, rats were killed, and lung
specimens were collected for further analyses. Specimens were
immediately frozen in liquid nitrogen and stored at −80◦C for
RNA extraction. All the experiment procedures were conducted
in accordance with institutional animal and use committee of the
Shandong University of Traditional Chinese Medicine.
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Masson Staining
Lung specimens were fixed with 4% paraformaldehyde overnight.
After dehydrating in a series of ethanol and clearing in
xylene, lung tissues were embedded in paraffin and cut into
4-µm sections. The sections were stained with Masson bluing
solution and were examined under microscope to detect the
severity of fibrosis.

RNA Isolation and cDNA Library
Construction and Illumina Sequencing
Total RNA was extracted from each sample with TRIzol
reagent according to the manufacturer’s protocol (Invitrogen,
Carlsbad, CA, United States). The quality and purity of total
RNA were examined by 1.5% agarose gel electrophoresis,
NanoPhotometer Pearl (Implen GmbH, Munich, Germany), and
Agilent 2100 bioanalyzer (Agilent Technologies, Santa Clara, CA,
United States). Approximately 1 µg of total RNA was applied
to prepare small RNA library with TruSeq Small RNA Sample
Prep Kits (Illumina, San Diego, United States) in accordance
with the protocol. Then six libraries (three PF model rat
and three control ones) were sequenced by Illumina Hiseq
2500, and 50 bp single-end reads were generated at LC-Bio
(Hangzhou, China).

Another six cDNA libraries (three PF model rat and
three control ones) were constructed to detect the expression
profiles of mRNAs, lncRNAs, and circRNAs. Approximately 10
µg total RNA was used to deplete ribosomal RNA (rRNA)
with Epicenter Ribo-Zero Gold Kit (Illumina, San Diego,
United States). Following purification, the remaining RNAs
were fragmented into small pieces using divalent cations
under elevated temperature. The final cDNA libraries were
reverse-transcribed from the cleaved RNA fragments with
the mRNA-seq sample preparation kit (Illumina, San Diego,
United States). Then, the libraries were subjected to paired-end
sequencing of 150 bp on the Illumina Hiseq 4000 at LC-Bio
(Hangzhou, China).

Discovery of the Messenger RNAs, Long
Non-coding RNAs, Circular RNAs, and
MicroRNAs
The raw reads contained raw reads, low-quality bases, and
undetermined bases were removed by Cutadapt (Martin, 2011).
Then the sequence quality of remaining reads was validated
by FastQC1. Clean reads were mapped to the reference
genome of rat, Rattus norvegicus, by Bowtie2 and Tophat2
with the default parameters (Langmead and Salzberg, 2012;
Kim et al., 2013). Then StringTie was applied to assemble
the mapped reads of each sequencing libraries (Pertea et al.,
2015), and a comprehensive transcriptome was reconstructed
through merging all the samples. StringTie and Ballgown were
used to estimate the expression profiles of all the transcripts
(Frazee et al., 2015).

Transcripts that overlapped with known mRNAs and
shorter than 200 bp were filtered. Coding potentials of

1http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

these transcripts were predicted by CPC, CNCI, and Pfam
(Kong et al., 2007; Punta et al., 2011; Sun et al., 2013).
According to the prediction results, the transcript with CPC
score < −1 and CNCI score < 0 were discarded. The
remaining transcripts with class code (l, j, o, u, and x) were
considered as lncRNAs.

According to the pipeline used in the analysis of mRNA
discovery, unmapped reads were still mapped to the genome
by Tophat-fusion (Kim and Salzberg, 2011). CIRCExplorer was
used to de novo assemble the mapped reads to circRNAs (Zhang
et al., 2014, 2016). Then back splicing reads were identified
in unmapped reads through tophat-fusion and CIRECExplorer.
Then the expression profiles for circRNAs were calculated by
in-house scripts.

Raw reads generated from microRNA sequencing libraries
were subjected to ACGT101-miR (LC Sciences, Huston, TX,
United States) to filter out adapter dimers, junk, low complexity,
repeats, rRNA, transfer RNA (tRNA), small nuclear RNA
(snRNA), and small nucleolar RNA (snoRNA). Unique sequences
varying from 18 to 26 nucleotides were mapped to rat precursors
in miRbase 21.0 by BLAST in order to identify known
miRNAs and novel 3p- and 5p-derived miRNAs. The unique
sequence mapping to the rat mature miRNAs in hairpin arms
was considered to be known miRNAs. The unique sequence
mapping to the other arm of known rat precursor hairpin
opposite to the annotated mature miRNA containing arm was
identified as miRNAs. The remaining sequences were mapped
to other selected species precursors; then they were further
mapped to rat genome to determine the genomic locations.
They were also defined as known miRNAs. The unmapped
sequences were applied to predict novel miRNAs through
RNAfold2.

Differential Expression Analysis
Expression profiles of mRNAs and lncRNAs were calculated
by StringTie and R package Ballgown through FPKM (Frazee
et al., 2015; Pertea et al., 2015). mRNAs and lncRNAs with
p ≤ 0.05 and |log2foldchange| ≥ 1 were identified as differentially
expressed. DESeq v1.16.0 was used for differential expression
analysis between PF model and control replicates by a model
based on the negative binomial distribution. CircRNAs with
p ≤ 0.05 were regarded as DE ones. MiRNAs with p ≤ 0.05
and |log2foldchange| ≥ 1 were identified as DE miRNAs.
Multiple testing correction has been performed during statistical
analysis, and FDR and q-value were used to adjust the
results of DE RNAs.

The Prediction of Target Genes of Long
Non-coding RNAs and MicroRNAs
LncRNAs may play a cis role on neighboring target genes.
In this study, coding genes distributed in the 100,000 bp
upstream and downstream regions were filtrated out and
considered as target genes of lncRNAs. Targets of miRNAs
were predicted to construct the lncRNA/circRNA–miRNA–
mRNA networks. miRanda 3.3a and TargetScan were applied

2http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi
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to identify miRNA binding sites in lncRNAs, circRNAs, and
mRNAs (John et al., 2004; Lewis et al., 2005). Then, the predicted
results through these two algorithms were combined, and the
intersection was calculated.

Gene Ontology and Kyoto Encyclopedia
of Genes and Genomes Pathway
Analysis
In order to filter the potential mRNAs and ncRNAs playing
important roles in rat PF, GO and KEGG enrichment analyses
were carried out. The terms with p ≤ 0.05 were indicated to be
significantly enriched GO and KEGG terms.

qRT-PCR Validation
According to the DE RNAs, ceRNAs were selected to validate
the expression profiles in control group and model group by
qRT-PCR. The RNA used for Illumina sequencing was also
used here for the validation. Roche LightCycler 480 (Roche,
Forrentrasse, Switzerland) was applied to perform qRT-PCR
with SYBR Premix Ex Taq II (TaKaRa, Dalian, China). DAPDH
and U6 were used as the reference genes to normalize the
relative expression. Primers used in the research are shown
in Supplementary Table S1. Gene relative expression level
was analyzed by 2−1 1 Ct method. Statistical analysis was
performed by SPSS 20.0. Differences with p ≤ 0.05 were
considered significant.

RESULTS

Validation of Pulmonary Fibrosis Animal
Model
Masson staining was applied to identify whether the pulmonary
fibrosis rat model was successfully established. As is shown
in Figure 1, the alveolar structures in control lung specimens
were complete and continuous without obvious abnormality.
Besides, the alveolar septum was thinner and contained little
collagen fibers. On the contrary, a large number of lung
fibrous nodules (blue area) that exist in the lung interstitium
were observed in model group. All the features mentioned

FIGURE 1 | The Masson sections of Sprague–Dawley (SD) rat pulmonary.
(A–C) The control group treated with saline. (D–F) The model group treated
with bleomycin. Blue area represents fibrous nodules.

above indicated that pulmonary fibrosis rat model had been
successfully established.

Expression Profiles of Long Non-coding
RNAs and Messenger RNAs in PF
Models
A total of six cDNA libraries and six miRNA libraries were
sequenced on the Illumina platform, encompassing about 35
Gb of sequence. The data have been uploaded to National
Center for Biotechnology Information (NCBI) Sequence Read
Archive (SRA) site, with accession numbers of GSE153296.
Valid ratio of each library is shown in Tables 1, 2. As a
result of this analysis, 43,627 genes and 19,844 lncRNAs were
identified in all samples (Supplementary Tables S2, S3). Among
these, 286 lncRNAs (including 87 up-regulated and 199 down-
regulated) and 192 mRNAs (including 86 up-regulated and
106 down-regulated) were differentially expressed between PF
model samples and control samples with p < 0.05 and |
log2foldchange| ≥ 1 (Figure 2). Clear differences of lncRNAs
and mRNAs between PF model samples and control ones are
shown in the volcano plot (Figures 2A,B). In addition to this,
a heatmap of hierarchical clustering of DE genes or lncRNAs
was generated to visualize the overall pattern of gene expression
(Figures 2C,D). All the DE mRNAs and lncRNAs are shown in
Supplementary Tables S4, S5.

Expression Profiles of Circular RNAs and
MicroRNAs in PF Models
After prediction and filtration, 5,216 circRNAs and 798 miRNAs
were identified in PF model and control samples. According
to the comparison between model and control specimens,
605 circRNAs with | log2foldchange| ≥ 1 (including 287
up-regulated and 318 down-regulated) and 32 miRNAs with
p < 0.05 and | log2foldchange| ≥ 1 (including 18 up-
regulated and 14 down-regulated) were differentially expressed

TABLE 1 | Summary statistics of sequencing data.

Sample Raw reads Clean reads Q20 Q30 GC

Control_1 101469372 92707318 99.88 97.23 48.50

Control_2 99057016 87434102 99.78 96.82 49.50

Control_3 102536772 96788582 99.93 97.64 47.50

Model_1 104833184 95584308 99.88 97.33 48.50

Model_2 98225620 88734774 99.85 97.25 49.00

Model_3 96740918 88936996 99.87 97.23 49.50

TABLE 2 | Summary statistics of miRNA sequencing data.

Sample Raw reads Clean reads Unique reads Q30

Control_1_miRNA 15291456 10903843 761264 96.23

Control_2_miRNA 13801948 10022818 845695 95.92

Control_3_miRNA 11956735 8370568 893128 96.63

Model_1_miRNA 14355647 12017240 993372 96.71

Model_2_miRNA 12423822 10081951 889774 96.85

Model_3_miRNA 16478132 14025974 1033740 95.33
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FIGURE 2 | The expression profiles of long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs) in PF models. (A) Volcano plot of differentially expressed
(DE) mRNAs between control group and model group. (B) Volcano plot of DE lncRNAs between control group and model group. Red dots represent the mRNAs or
lncRNAs up-regulated in PF model samples, blue dots the down-regulated mRNAs or lncRNAs, and the gray dots the ones that showed no differences.
(C) Heatmap of DE mRNAs between control group and model group. (D) Heatmap of DE lncRNAs between control group and model group.

(Supplementary Tables S6, S7). In the volcano plot, the red plot
represents the circRNAs or miRNAs up-regulated in PF model
lungs, while the blue dots represent the down-regulated circRNAs
or miRNAs (Figures 3A,B). A heatmap was constructed to obtain
a hierarchical clustering of DE circRNAs and miRNAs. Different
colors represent the different expression levels of the circRNAs
and miRNAs (Figures 3C,D).

Gene Ontology and Kyoto Encyclopedia
of Genes and Genomes Enrichment
Analysis of Messenger RNA, Long
Non-coding RNA, Circular RNA, and
MicroRNA
GO and KEGG pathway analyses were performed to filter the
key regulators and pathways playing vital roles in the process
of pulmonary fibrosis with DE mRNAs (DE mRNAs), cis/trans-
regulated target genes of DE lncRNAs, hosting genes of DE
circRNAs, and target genes of DE miRNAs. All genes were
classified into three categories, including BP, cellular components
(CCs), and molecular functions (MFs). Key regulators were
obtained by terms in the BP category. The top 15 enriched
GO terms and KEGG signal pathways were listed in scatter

plots, which may be associated with mechanisms of pulmonary
fibrosis. In the scatter plots, the size of the dots represents
the gene numbers enriched in the GO terms. Besides, the p
value of every enriched term was represented by different colors
(Supplementary Figure S1).

In the GO enrichment results of DE mRNA GO
(Supplementary Figure S1A), it showed that many potential
pulmonary fibrosis-related terms were significantly enriched
such as “lymphocyte homeostasis,” “positive regulation of
IL-1 secretion,” “regulation of signaling receptor activity,”
and “regulation of neuron differentiation” (Supplementary
Table S8). It indicated that the immune system, neuron
system, and various signaling transduction pathways had
played important roles in the process of pulmonary fibrosis.
Besides, many pulmonary fibrosis-related pathways were
also enriched through KEGG analysis, such as “Cytokine-
cytokine receptor interaction,” “inflammatory mediator
regulation of TRP channel,” and “apoptosis” (Figure 4A
and Supplementary Table S8).

According to the GO enrichment results of DE lncRNAs
(Supplementary Figure S1B), we can find that many potential
GO terms were associated with the pulmonary process, such
as “cardiac muscle cell apoptotic process,” “neuronal action
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FIGURE 3 | The expression profiles of circular RNAs (circRNAs) and microRNAs (miRNAs) in PF models. (A) Volcano plot of differentially expressed (DE) circRNAs
between control group and model group. (B) Volcano plot of DE miRNAs between control group and model group. Red dots represent the circRNAs or miRNAs
up-regulated in PF model samples, blue dots down-regulated circRNAs or miRNAs, and the gray dots the ones that showed no differences. (C) Heatmap of DE
miRNAs between control group and model group. (D) Heatmap of DE circRNAs between control group and model group.

potential,” and “actin filament reorganization” (Supplementary
Table S9). In addition, “Notch signaling pathway” and
“regulation of actin cytoskeleton” KEGG pathway indicated

that DE may regulate the pulmonary process in the aspect of
apoptosis, nervous system, and cytoskeleton system (Figure 4B
and Supplementary Table S9).
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FIGURE 4 | Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis enrichment of differentially expressed (DE) competing endogenous RNAs
(ceRNAs). (A) KEGG pathway analysis enrichment of DE mRNAs. (B) KEGG pathway analysis enrichment of DE long non-coding RNAs (lncRNAs). (C) KEGG
pathway analysis enrichment of DE circRNAs. (D) KEGG pathway analysis enrichment of DE miRNAs.

As shown in Supplementary Figure S1C, many PF-related
GO terms were enriched in DE circRNA, such as “negative
regulation of epidermal growth factor,” “negative regulation of
ERK1 and ERK2 cascade,” and “positive regulation of TGF-
β receptor signaling pathway” (Supplementary Table S10).
Apart from these, various KEGG pathways including “lysine
degradation,” “regulation of actin cytoskeleton,” “cell adhesin
molecules (CAMs),” and “Wnt signaling pathway” were inferred
to be related to the regulation process of PF (Figure 4C and
Supplementary Table S10).

In the top 15 GO terms of DE miRNAs, we can find
many related terms such as “positive regulation of apoptotic
process.” Apart from these, many insignificantly enriched
GO terms were also associated with the pulmonary fibrosis
process including “angiogenesis” and “Wnt signaling pathway”
(Supplementary Figure S1D and Supplementary Table S11).
In the KEGG pathway enrichment analysis, “Wnt signaling
pathway,” “tumor necrosis factor (TNF) signaling pathway,”
“MAPK signaling pathway,” and “neurotrophin signaling
pathway” were significantly enriched (Figure 4D and
Supplementary Table S11).

Construction of the Long Non-coding
RNA–Messenger RNA Co-expression
Network
An lncRNA–mRNA co-expression network was constructed to
show a complex interaction between lncRNAs and mRNAs.
One lncRNA could regulate more than one gene in different
ways, while one gene could also be regulated by multiple
lncRNAs. As shown in Figure 5A, the DE lncRNAs and mRNA
were used to construct the co-expression network. The result
showed that Lrrk2 and RF00100 had the most interaction
relationship with lncRNAs.

Construction of the Circular
RNA–MicroRNA Co-expression Network
Another circRNA–miRNA co-expression network was
constructed to show a complex interaction between circRNAs
and miRNAs. CircRNAs played important roles as a sponge to

regulate miRNA, while one miRNA could also target more than
one circRNA. As shown in Figure 5B, miR-22-3p, miRNA-672-
3p/5p, miR-20a-5p, miR-195-5p, let-7i-5p, miR-27b-3p, and
miR-128-3p had the most interaction with circRNAs. There
miRNAs might have the function involved in pulmonary process.

qRT-PCR Validation
A set of ceRNAs of differential expression was validated
by qRT-PCR including five mRNAs (tnfrsf17, IL-11, rasd1,
IL-1a, and lair1), five miRNAs (miR-676, miR-2424, miR-
1247-5p, miR-3590-3p, and miR-9995-3p), and five lncRNA
(MSTRG.199, MSTRG.11560, MSTRG.11559, MSTRG.30244,
and MSTRG.15160). Expression profiles of these selected ceRNAs
are shown in Figure 6. It displays a similar expression pattern
between sequencing data and qRT-PCR data.

DISCUSSION

Pulmonary fibrosis, a chronic fibrosing interstitial lung disease, is
of unknown etiology and currently untreatable. It is imperative
that detailed and integrated understanding of the cellular
and molecular mechanisms of pulmonary fibrosis should be
focused on. And these are helpful for the effective therapeutics
for the disease. In this study, we applied high-throughput
sequencing technology to investigate the potential regulatory
mechanisms in the process of pulmonary fibrosis through DE
mRNAs and ncRNAs.

It was found that many related genes and terms were
enriched, including immune-related terms, nervous system-
related terms, and epithelial cell development. In this study,
nerve growth factor (NGF) and IL were observed, and it was
speculated that they might be related with pulmonary fibrosis.
It was reported that NGF plays important roles in the nervous
system, endocrine system, and immune system (Levi-Montalcini,
1987; Aloe et al., 1997). In addition, NGF also participates in
inflammatory responses and regulates the fibroblast migration
(Micera et al., 2001). Besides, IL-1a and IL-11 were also
significantly enriched in many immune-related GO terms, such
as “inflammatory response,” “connective tissue replacement
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FIGURE 5 | The network of differentially expressed (DE) competing endogenous RNAs (ceRNAs). (A) The interaction of microRNAs (mRNAs) and long non-coding
RNAs (lncRNAs). (B) The interaction of cirRNAs and miRNA.

FIGURE 6 | Verification of the expression patterns in both qRT-PCR and RNA-seq. The data are shown as mean ± SD (n = 3). Groups with different asterisks are
significantly different (p < 0.05). (A) The expression pattern of mRNA in both qRT-PCR and RNA-seq. (B) The expression pattern of miRNA in both qRT-PCR and
RNA-seq. (C) The expression pattern of lncRNA in both qRT-PCR and RNA-seq.

involved in inflammatory response wound healing,” and “positive
regulation of IL-2 biosynthetic process.” IL-11 can be expressed in
many kinds of cells, even in lung fibroblasts, alveolar, and airway
epithelial cells (Elias et al., 1994a,b). In addition, overexpression

of IL-11 can also lead to subepithelial fibrosis and promote the
accumulation of myocytes and myofibroblasts (Tang et al., 1998).
As a member of IL gene family, IL-1a can be releases from
damaged epithelial cells and trigger inflammatory responses in
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lung fibroblasts (Suwara et al., 2014). Our results were consistent
with those of the other studies, indicating that fibrosis and
immune response interacted. Interestingly, plenty of pax genes
were enriched in GO terms, which were related to nervous system
and epithelial cell development. pax8 is reported to play pivotal
roles in renal regeneration upon acute injury (Narlis et al., 2007)
and survival and proliferation of epithelial cells (Di Palma et al.,
2013). pax8 is overexpressed in idiopathic pulmonary fibrosis
(IPF) fibroblasts, which suggests that it may be a regulator in
promoting the growth, survival, and proliferation of fibroblasts
(Sheu et al., 2019). All these results are in line with the
wound repair phase model: (1) injury, (2) inflammation, and
(3) repair. It indicates that NGF, IL-1a, IL-11, and pax8 couple
with each other and serve a role in the processes of injury,
inflammation, and repair.

LncRNA is a novel class of mRNA-like transcripts with sizes
varying from 200 to 100 kb and plays functions in regulating
various BPs (Caley et al., 2010; Nagano and Fraser, 2011; Lee,
2012). In our study, many lncRNA-related pulmonary fibrosis
were identified in GO and KEGG enrichment. It was shown
that lncRNA MSTRG.23831.1 targeted in FBN1 and regulated
TGF-β signal pathway. TGF-β occupies a set of functions
including cellular differentiation, proliferation, cancerogenesis,
and apoptosis. As a multifunctional cytokines, TGF-β plays a
central role in wound healing, induces epithelial–mesenchymal
transition (EMT), and leads to pulmonary fibrosis (Willis and
Borok, 2007; Fernandez and Eickelberg, 2012). Apart from these,
another two lncRNA–mRNA pairs (lncRNA MSTRG.24730.1-
CASS4 and lncRNA MSTRG.38436.6-GDPD2) were significantly
enriched into GO term “actin filament reorganization.” Actin
cytoskeleton promotes myofibroblast differentiation and matrix
remodeling during fibrogenesis (Sandbo and Dulin, 2011).
Under stimulation of TGF-ββ1, ultrastructure of fibroblasts is
altered with an increase in cytoskeletal stress fiber formation
(Desmoulière et al., 1993; Vaughan et al., 2000). According
to the target prediction results, lncRNA MSTRG.19006.1 may
cis-regulate Adamts12 and then participate in the GO term
“negative regulation of cellular response to VEGF stimulus.”
VEGF is a key regulator of angiogenesis, which has been
implicated in the pathogenesis of fibrotic lung disease and
can also be regulated by TGF-β (Ward and Hunninghake,
1998; Magro et al., 2003; Ando et al., 2010). Taken together,
we can find that TGF-β serves as a central factor in the
regulating process of pulmonary fibrosis including cytoskeleton
system and angiogenesis. KEGG enrichment analysis also
supported the conclusion, such as “Notch signaling pathway”
and “regulation of actin cytoskeleton.” Notch can activate
the TGF-β/Smad signal and mediate the induction of SMA
gene expression and myofibroblast differentiation in alveolar
epithelial cells (Aoyagi-Ikeda et al., 2011). Co-expression network
analyses show that Lrrk and RF00100 were the hub ncRNAs
in pulmonary fibrosis. Lrrk could code leucine-rich repeat
kinase, and it was related with Parkinson’s disease. In addition,
it had the function of autophagy by autophagy–lysosomal
pathway (Giaime et al., 2017). This might connect with
fibrosis. The specific mechanism should be further studied by
gene knocking out.

In this study, DE circRNAs were also identified. Four
circRNAs (circRNA1863, circRNA3902, circRNA822, and
circRNA178) participated in the GO term “negative regulation
of epidermal growth factor receptor signaling pathway.”
Seven circRNAs (circRNA1388, circRNA1765, circRNA243,
circRNA2783, circRNA437, circRNA439, and circRNA988)
regulated TGF-β signaling pathway. Seven circRNAs
(circRNA1178, circRNA1355, circRNA1635, circRNA170,
circRNA1765, circRNA3100, and circRNA822) played important
roles in GO term “positive regulation of JNK cascade.” EGFR
is overexpressed in fibrotic lung tissue, which suggests that
EGFR signaling pathway is involved in epithelial regeneration
in fibrotic lung diseases (Suzuki et al., 2003). All the results
indicated that DE circRNAs did participate in plenty of aspects
involved in the regulation of pulmonary fibrosis process.

The potential roles of DE miRNAs were investigated by
GO and KEGG enrichment analyses of predicted target genes
in this study. It was found that many miRNAs targeted in
BCL gene family members such as bta-miR-339a, cpo-miR-424-
5p, eca-mir-8969-p5, rno-miR-3590-3p, and rno-miR-19b-3p.
It has been indicated that BCL-2 gene family members play
a crucial role in the pathogenesis of inflammation, apoptosis,
and fibrosis. Moreover, apoptosis serves as a critical role in
wound repair and in the pulmonary epithelial injuries leading
to fibrosis (Safaeian et al., 2014). DE miRNAs also participated
in angiogenesis process. rno-miR-195-5p is targeted in the 3’
UTR of EREG, rno-miR-128-3p and rno-miR-27b-3p are targeted
not only in the 3’ UTR of R−spondin3 but also in notch1, and
rno-miR-672-3p is targeted in the 3’ UTR of HIF1a and angpt2.
R−spondin3 is significantly expressed in blood-forming organs,
and the deficiency of R−spondin3 would lead to lethal vessel
remodeling defects. It could also promote vascular development
through up-regulating VEGF by the activation Wnt signaling
pathway. R−spondin3 keeps the balance between angiogenesis
and hematopoiesis (Aoki et al., 2008; Kazanskaya et al., 2008).
It was reported that HIF1a was highly expressed in bleomycin-
induced mouse models of lung injury (Gross and Hunninghake,
2001; Tzouvelekis et al., 2007; Ueno et al., 2011; Malli et al.,
2013). In addition, HIF1a even could up-regulate the adora2b
receptor on alternatively activated macrophages and contribute
to pulmonary fibrosis (Philip et al., 2017). Taken together, it
indicated that DE miRNAs have participated in the process
of pulmonary fibrosis by apoptosis, angiogenesis, and Wnt
signaling pathway.

In this study, the expression profiles of lncRNAs, mRNAs,
circRNAs, and miRNAs were detected by whole transcriptome
sequencing in pulmonary fibrosis model and control lung tissues.
After differential expression analysis, many mRNAs and ncRNAs
were differentially expressed, and the GO and KEGG enrichment
analyses allowed us to investigate the potential functions of
these DE mRNAs and ncRNAs in the regulating process of
pulmonary fibrosis. In addition, two co-expression networks
(lncRNA–miRNA–mRNA and circRNA–miRNA–mRNA) were
also constructed to understand the regulatory relations of these
mRNAs and ncRNAs. It was speculated that pulmonary fibrosis
was regulated by DE ceRNA related with apoptosis, angiogenesis,
and immunology. Co-expression networks investigated that
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ncRNAs (Lrrk and RF00100) and miRNAs (miR-22-3p, miRNA-
672-3p/5p, miR-20a-5p, miR-195-5p, let-7i-5p, miR-27b-3p, and
miR-128-3p) were the hub RNAs. The results of this study
provide a new insight and facilitate further studies into the
genetic basis of pulmonary fibrosis and ceRNA mechanism
of ncRNAs and mRNAs during the regulatory process of
pulmonary fibrosis.
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