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Accounting for biases in riboprofiling data indicates
a major role for proline in stalling translation
Carlo G. Artieri and Hunter B. Fraser
Department of Biology, Stanford University, Stanford, California 94305, USA

The recent advent of ribosome profiling—sequencing of short ribosome-bound fragments of mRNA—has offered an
unprecedented opportunity to interrogate the sequence features responsible for modulating translational rates. Never-
theless, numerous analyses of the first riboprofiling data set have produced equivocal and often incompatible results. Here
we analyze three independent yeast riboprofiling data sets, including two with much higher coverage than previously
available, and find that all three show substantial technical sequence biases that confound interpretations of ribosomal
occupancy. After accounting for these biases, we find no effect of previously implicated factors on ribosomal pausing.
Rather, we find that incorporation of proline, whose unique side-chain stalls peptide synthesis in vitro, also slows the
ribosome in vivo. We also reanalyze a method that implicated positively charged amino acids as the major determinant of
ribosomal stalling and demonstrate that it produces false signals of stalling in low-coverage data. Our results suggest that
any analysis of riboprofiling data should account for sequencing biases and sparse coverage. To this end, we establish
a robust methodology that enables analysis of ribosome profiling data without prior assumptions regarding which po-
sitions spanned by the ribosome cause stalling.

[Supplemental material is available for this article.]

Translation of messenger RNAs into polypeptides by ribosomes is

a fundamental process common to all life, and its dysregulation

has been implicated in a wide range of diseases (Scheper et al.

2007). This has prompted a wealth of research into understanding

the molecular underpinnings of translational dynamics. For in-

stance, it has long been known that the frequency of codon usage

in coding sequences (CDSs) is nonrandom, suggesting the action

of natural selection on the efficiency and/or accuracy of trans-

lational elongation (Kanaya et al. 2001; Plotkin and Kudla 2011).

The origins of uneven codon usage have been studied exten-

sively both experimentally and theoretically, implicating a number

of different, nonmutually exclusive mechanisms—though all re-

main controversial (Gingold and Pilpel 2011; Plotkin and Kudla

2011). Much attention has been focused on the relationship be-

tween the cellular abundances of tRNAs and the frequencies of their

cognate codons. Studies have found a strong correlation between

gene expression levels and codon usage bias (CUB), revealing that

highly expressed genes tend to use codons corresponding to the

most abundant tRNAs in bacteria (Grantham et al. 1981), fungi

(Bennetzen andHall 1982), andmetazoa (Shields et al. 1988; Stenico

et al. 1994; Duret and Mouchiroud 1999); however, the abun-

dances of charged tRNAs may be more important than total tRNA

levels (Welch et al. 2009). As in vitro studies have shown that the

rate of translation varies in a codon-specific manner, with the most

rapid rates occurring at codonswithhighly abundant tRNAs (Varenne

et al. 1984), it has long been presumed that CUB reflects selection for

a high translational rate in highly expressed transcripts, minimizing

sequestration of ribosomes at slowly translated codons (Andersson

and Kurland 1990).

Other factors thought to slow translation rates include the

presence ofmRNAsecondary structure,whichmust be ‘‘unwound’’ by

ribosomes (Namy et al. 2006; Wen et al. 2008); wobble base-pairing,

which can introduce nonoptimal geometries in codon–anticodon

interactions (Thomas et al. 1988; Kato et al. 1990); codons en-

coding positively charged amino acids, which may participate in

electrostatic interactions with the negatively charged ribosomal

exit tunnel (Lu et al. 2007; Lu and Deutsch 2008; Tuller et al. 2011;

Charneski and Hurst 2013); and proline, which is inefficiently

incorporated into polypeptides due to the unique structure of its

imino side-chain (Muto and Ito 2008; Wohlgemuth et al. 2008;

Pavlov et al. 2009; Johansson et al. 2011; Doerfel et al. 2013;

Gutierrez et al. 2013; Ude et al. 2013; Zinshteyn and Gilbert 2013).

Interpretation of the relative contributions of these factors has

been challenging, as their effects have typically been studied in

conditions not normally encountered in living cells—such as

within genes with low CUB but extremely high mRNA levels

(Gingold and Pilpel 2011; Plotkin and Kudla 2011).

However, this situation has changed radically with the recent

development of ribosome profiling, an in vivo technique for mon-

itoring transcriptome-wide rates of translation (Ingolia et al. 2009).

By isolating and sequencing short fragments of mRNA bound by

actively translating ribosomes, ‘‘riboprofiling’’ provides nucleotide-

resolution, quantitative information about the abundance and po-

sition of ribosomes on individual RNAs. When normalized for gene

expression levels obtained by sequencing unprotected mRNA, in-

creased ribosome-protected read coverage is expected from regions

where ribosomes spend a greater fraction of their time, thereby

identifying sequences that contribute to differences in rates of

elongation (Ingolia et al. 2009, 2011).

Nevertheless, a number of recent studies that have analyzed

the same yeast riboprofiling data (Ingolia et al. 2009) have come to

contradictory conclusions regarding the major determinants of

translation rate, including whether nonpreferred codons, RNA

secondary structure, or particular amino acids stall translation
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(Kertesz et al. 2010; Siwiak and Zielenkiewicz 2010; Tuller et al.

2010a,b, 2011; Qian et al. 2012; Zur and Tuller 2012; Charneski

and Hurst 2013;Wallace et al. 2013; Rouskin et al. 2014; Yang et al.

2014). Unfortunately, direct comparison of these analyses is chal-

lenging due to the differing assumptions made by each—such as

the precise location of active sites in ribosome-protected fragments

or the effects of sequences near ribosome-protected fragments.

An additional consideration is the possibility of sequence

biases introduced during riboprofiling library construction. For

example, such biases have been well documented in the case of

RNA-seq library preparation, where local base composition of

RNAs can produce undesirable secondary structure, bias reverse

transcription priming, and interfere with enzymatic steps such as

ligation (Zheng et al. 2011). Such effects manifest themselves as

protocol-specific biases in read coverage along transcripts, leading

to over- or underrepresentation of certain sequences (Bullard et al.

2010; Hansen et al. 2010; Li et al. 2010; Srivastava and Chen 2010;

Zheng et al. 2011). In studies of ribosome-protected fragments,

such biases could confound identification of the actual biological

factors affecting translational rate. However, the riboprofiling

protocol itself provides a means to mitigate technical biases in-

troduced during library construction: As the sequencing libraries

generated fromboth unprotectedmRNA (the ‘‘mRNA’’ fraction) and

ribosome-protected mRNA fragments (the ‘‘Ribo’’ fraction) differ

only in the method used to isolate RNA, shared biases between the

two are likely to represent technical artifacts (Qian et al. 2012).

In order to more thoroughly investigate factors that lead to

increased ribosomal occupancy, we took advantage of two recently

published yeast riboprofiling data sets that provide much higher

coverage data than was previously available (Artieri and Fraser

2014; McManus et al. 2014) and compared them to the data of

Ingolia et al. (2009). We observed consistent biases across data sets

that could be attributed to library construction. Controlling for

these artifacts identified codons uniquely enriched in the Ribo

fractions of the high-coverage data sets, suggesting that they may

contribute to ribosomal stalling in vivo.

Results

Riboprofiling data show consistent nucleotide biases

In order to explore how controlling for biases in library construc-

tion may affect our interpretation of sequences affecting trans-

lational rate, we analyzed two recently published Saccharomyces

cerevisiae riboprofiling data sets (Artieri and Fraser 2014; McManus

et al. 2014), hereafter, the ‘‘Artieri’’ and ‘‘McManus’’ data (Sup-

plemental Table S1). These data sets have ;283 and ;73 greater

sequencing depth than was previously available (Ingolia et al.

2009), respectively. As most previous studies of ribosomal occu-

pancy (Kertesz et al. 2010; Siwiak and Zielenkiewicz 2010; Tuller

et al. 2010a,b, 2011;Qian et al. 2012; Zur andTuller 2012; Charneski

and Hurst 2013;Wallace et al. 2013; Rouskin et al. 2014) reanalyzed

the S. cerevisiae data generated by Ingolia et al. (2009) (the ‘‘Ingolia’’

data), we also included these data. The Ingolia data include two

different growth conditions: rich and amino-acid-starved media

(analysis of the starved data are in the Supplemental Material).

Reads from all samples were mapped to the S. cerevisiae ge-

nome (seeMethods). Expression level estimates agreedwell among

replicates within each data set (Spearman’s r = 0.96–0.99 and 0.92–

0.99 for the Ribo and mRNA fractions, respectively), as well as

between data sets (r = 0.94–0.95 and 0.84–0.92 for the Ribo and

mRNA fractions, respectively) (Supplemental Figs. S1, S2). The

Ribo fractions of all three data sets showed an enrichment of reads

mapping at 28–29 nucleotides (nt), as expected based on the size of

the ribosome-protected fragment (Ingolia et al. 2009); however,

the degree of enrichment varied among data sets (Supplemental

Fig. S3; see Supplemental Material).

A larger proportion of the 59 ends of Ribo fraction reads map

to the first reading frame of codons compared with the second or

third (Ingolia et al. 2009), suggesting that there may be differences

among reads mapping to different reading frames. Therefore we

analyzed the nucleotide content of the mRNA and Ribo fraction

reads separately for those mapping to the first, second, or third

frame of codons (Fig. 1).

We observed three general patterns of sequence bias. First, all

data sets shared substantial biases in the 59 ends of non-rRNA reads

in both fractions, The most consistent of these is a preference for

adenine in the 59-most position, especially among first-frame

mappers (Fig. 2; Supplemental Figs. S4, S5). In the case of the Ribo

fraction of the Ingolia data, 66% of reads begin with adenine—

twofold greater than the adenine content within CDSs (32.6%). In

comparison, 34% of the Artieri and 33% of the McManus Ribo

fraction reads begin with adenine (Supplemental Table S2; Sup-

plemental Material). This 59 bias is likely an artifact of library

construction. Second, all data sets showed some depletion of cy-

tosines at position 4, whichwas generally more pronounced in the

Ribo fractions (see Supplemental Material; Supplemental Figs. S4,

S5). Third, the 39 termini of reads in the Artieri and Ingolia data sets

showed a general preference for adenine, particularly in themRNA

fractions (Fig. 2). This is likely a consequence of the use of poly-

adenylation as a template to prime reverse transcription; the

McManus data were generated with an alternative approach,

which appears to mitigate this bias (see Supplemental Material).

We assessed to what extent these sequence biases affected

codon usage by identifying the nine in-frame codons spanned by

each read (labeled positions 0–8 beginning from the 59 end of

Figure 1. Defining positions relative to the 59 end of riboprofiling reads.
Following the mapping approach of Ingolia (2010), ribosomes (large and
small subunits represented by gray circles) protect at least 27 nt of mRNA,
corresponding to at least nine codons. Nucleotides and in-frame codons
were counted from 59 to 39 as shown (arbitrary codons are indicated in
alternating blue and red for clarity). In the figure, the ribosome-protected
fragment begins in the first reading frame within a codon. However, for
reads mapping to the second or third reading frames, while nucleotide
counting begins at the first nucleotide, codon counting remains in-frame
with the first codon, 0, corresponding to the one containing the first
nucleotide. For reference, the orange letters indicate the codons that
previous studies have indicated as the exit-tRNA (E-site), the peptidyl-
tRNA (P-site), and aminoacyl-tRNA (A-site) sites, respectively (Ingolia et al.
2009; Stadler and Fire 2011; Li et al. 2012; Qian et al. 2012; Zinshteyn and
Gilbert 2013).
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mapping reads in Fig. 1) and determining the relative abundance

of each of the 61 sense codons compared with its expected fre-

quency across all reads (see Methods). We then calculated the co-

efficient of variation (CV) among the relative abundances at each

of the nine positions, where higher CVs indicate a greater deviation

from the expected codon frequencies (Fig. 2; Supplemental Figs. S4,

S5). Both fractions of all three data sets showed strong biases in

position 0, as was expected from the observed sequence biases.

Interestingly, the Ribo fractions of the Artieri andMcManus data

showed strongbiases at internal codonpositions relative to themRNA

fraction—particularly in the case of readsmapping to the first reading

frame—coinciding with the expected location of active ribosomal

sites (Fig. 1), suggesting that these may reflect a biological signal of

ribosome stalling. A similar pattern was observed in the Ingolia data,

though this was overshadowed by the stronger biases at 59 codons

(Fig. 2).We also noted that 28-nt reads, corresponding to the expected

length of the ribosome-protected footprint, showed stronger internal

codon biases in all three data sets compared with other mapping

lengths (Supplemental Figs. S6, S7; Supplemental Material). In con-

trast, the less common second-frame mappers showed less pro-

nounced internal codon biases. Interestingly, reads mapping to the

third reading frame of codons in all three data sets were offset by +1

codon, indicating that the ribosome was likely positioned one codon

downstream compared with first- and second-frame mappers.

Ribosome occupancy is associated with proline codons

Sequences that contribute to ribosome stalling should be enriched

only in the Ribo fraction, whereas the identical methodology ap-

plied to library construction in both fractions will lead to shared

technical artifacts (Ingolia et al. 2011; Stadler and Fire 2011; Qian

et al. 2012). Therefore, we normalized Ribo fraction coverage by

that of themRNA fraction (hereafter, ‘‘corrected Ribo coverage’’) as

outlined in Figure 3 and Supplemental Figure S8. Unlike previous

studies (Ingolia et al. 2009; Stadler and Fire 2011; Li et al. 2012;

Qian et al. 2012; Zinshteyn and Gilbert 2013), we did not attempt

to define specific positions within the ribosome-protected frag-

ments corresponding to the ribosomal active sites to avoid any

assumptions as to which position(s) were responsible for stalling.

Instead, we analyzed a window from eight codons upstream of the

59 end of Ribo fraction reads to eight codons downstream (labeled

positions �8 to +8, with position 0 corresponding to the in-frame

codon to which the 59 end of the readmapped) (Supplemental Fig.

S8); including codons upstream of the reads may reveal effects

of already-incorporated amino acids on translation, such as in-

teractions between positively charged residues and the exit tunnel

(Charneski and Hurst 2013). The log2-transformed enrichment of

each codon at each of the 17 positions was scaled by the mean

value of all codons at the same position, such that codons with

positive values were enriched and those with negative values were

depleted (Fig. 3; see Methods). Due to differences in 59 biases and

coverage, we focused our analysis on first-frame mappers in the

two higher-coverage data sets (for analysis of second- and third-

frame mappers and the Ingolia data, see Supplemental Material).

The scaled enrichment values of all 61 sense codons in the

Artieri data are shown in Figure 4A, revealing that the strongest

enrichments occurred at position 4, the position with the most

strongly biased codon representation specific to Ribo fraction reads

Figure 2. Patterns of nucleotide and codon representation across the three data sets. Reads were separated into those whose 59 ends map to the first,
second, or third reading framewithin codons (frame 1, 2, or 3). The fold enrichment of each nucleotide was determined by dividing its number of counts at
each position by the mean number of counts at positions within the same reading frame across the 27 nucleotides analyzed, thereby accounting for
differences in expected nucleotide proportions among reading frames within codons. Enrichment is plotted in log2 scale: red, adenine; blue, cytosine;
green, guanine; and yellow, thymine. Each codon position overlapped by each read was also determined by identifying the nine consecutive codons
beginning from the 59 end, as indicated in Figure 1. The gray bars indicate the coefficient of variation (CV) as a measure of the degree to which each
position deviates from the expected background frequency of the 61 sense codons; codon position 4 is indicated for reference.

Proline stalls ribosomes
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(Fig. 2; for the values plotted in all heatmaps, see Supplemental

Table S3). Nearly identical results were also observed in the

McManus data (Supplemental Fig. S9).Wenote that position 0 also

showed considerable enrichment, especially in the Ingolia data

(Supplemental Figs. S10, S11). However, this is most likely due to

the remaining effects of library construction (see Supplemental

Material). In addition, there is no evidence of enrichment among

upstream codons (�8 to �1), as would be expected if positive

amino acids slow translation as they pass through the nega-

tively charged ribosome exit tunnel (see Supplemental Mate-

rial; Lu et al. 2007; Charneski and Hurst 2013). This pattern

disappeared completely in both data sets when the order of

codons was randomly shuffled within each gene, preserving

the relative positions of mapped reads, indicating that it was

not an artifact of the relationship between codon order and

patterns of read mapping positions within transcripts (Sup-

plemental Fig. S12). Furthermore, observed patterns were ro-

bust to differences in 59-to-39 coverage biases between fractions

introduced by oligo-dT selection on the mRNA fraction (Sup-

plemental Fig. S13; Zheng et al. 2011).

As position 4 showed the strongest degree of preference for

particular codons among internal positions (Figs. 2, 4A), we fo-

cused on this position, which has been defined by previous studies

as the P-site (Ingolia et al. 2009; Stadler and Fire 2011; Li et al. 2012;

Qian et al. 2012; Zinshteyn and Gilbert 2013). We first explored

whether any biochemical properties of amino acids (i.e., positive,

negative, polar, or hydrophobic) were significantly enriched (Fig. 4B).

No category showed consistent enrichment, although both data

sets did show a slight paucity of coverage among codons for hy-

drophobic amino acids.

Among individual amino acids, both data sets showed greater

enrichment among the proline codons (CCN) than for any other

amino acid (Kruskal-Wallis rank sum test, P < 10�15) (Fig. 4B). The

four proline-encoding codons were among the five most enriched

codons in both data sets (the fifth, CGG, encodes arginine; see

below). We observed this enrichment at all gene expression levels

Figure 3. Steps in our calculation of corrected Ribo coverage. We analyzed Ribo fraction reads in a position-specific manner that controlled for shared
biases between the two fractions while making no a priori assumptions about which codon position(s) may be most important in explaining patterns of
coverage. (i) The 59 ends of reads were mapped and codon-level coverage determined from each fraction separately. Only sites with data from both
fractions were considered (excluded codons are indicated in gray). (ii) To account for coverage differences among genes, codon-level coverage values
were scaled by the mean codon-level coverage of analyzed codons within each gene. (iii) These scaled values were used to calculate a log2(Ribo/mRNA)
coverage ratio for each codon, thereby accounting for shared biases between the two fractions. (iv) Because increased coverage at the 59 position of
ribosome-protected fragments could be driven by sequence factors upstream or downstream, the log2(Ribo/mRNA) coverage at position 0 (green arrow)
was recorded for all codons from�8 to +8 relative to the 59 end for each analyzed site. The expected position of the ribosome is indicated for reference. (v)
We repeated this across all analyzed codons in the transcriptome, generating a distribution for each of the 61 nonstop codons at each of the 17 positions,
representing its position-specific relative contribution to ribosomal occupancy. (vi) Finally, the relative enrichment of each codon at each position was
determined by scaling its mean log2(Ribo/mRNA) coverage value by themean value of all 61 sense codons at that position, such that codons with positive
log2 values were enriched relative to expectations and those with negative values were depleted (as plotted as in Fig. 4A).
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(Supplemental Fig. S14), as well as in two additional riboprofiling

data sets from the closely related species Saccharomyces paradoxus

(Supplemental Figs. S15–S17; Artieri and Fraser 2014; McManus

et al. 2014). These results are consistent with proline’s previously

implicated role in translational pausing in vitro (Wohlgemuth

et al. 2008; Pavlov et al. 2009; Johansson et al. 2011).

We next tested whether other factors were associated with

ribosomal occupancy. Previous analyses of riboprofiling data have

suggested that mRNA secondary structure can slow translation

(Tuller et al. 2010b, 2011; Charneski and Hurst 2013; Yang et al.

2014). Therefore, we searched for evidence of increased corrected

Ribo coverage upstream of regions of mRNA secondary structure

(Ouyang et al. 2013). However, we observed that secondary

structure had stronger correlations with terminal adenine biases

than with any signal of ribosome stalling (Supplemental Fig. S18;

Supplemental Material). In addition, although G:U wobble base-

pairing has been associated with pausing in nematodes and

humans (Stadler and Fire 2011), we observed no such pattern in

yeast (Supplemental Fig. S19).

Finally, supporting previous riboprofiling-based observations

made in yeast (Qian et al. 2012; Zinshteyn and Gilbert 2013),

Escherichia coli (Li et al. 2012), and mouse (Ingolia et al. 2011), we

found no correlation between corrected Ribo coverage and non-

optimality of the codons at either position 4 (P-site) or position 5

(A-site) using three separate measures of codon optimality (Sup-

plemental Figs. S20, S21; Supplemental Material). Interestingly,

the rarest codon in S. cerevisiae, CGG (encoding arginine), showed

a substantial level of enrichment in both data sets (Fig. 4B).

However, this may not be related to its rarity, as similarly rare co-

dons (CGC and CGA, also encoding arginine), showed no such

enrichment.

Patterns of bias and enrichment in riboprofiling data
from other species

To test whether the sequence biases that we observed were a gen-

eral feature of riboprofiling data,we applied our analysismethod to

data sets from two additional species: one generated in the

nematode Caenorhabditis elegans (Stadler and Fire 2013) and the

other in the zebrafish Danio rerio (see Supplemental Material;

Supplemental Table S4; Bazzini et al. 2014).

Patterns of sequence bias in the C. elegans data were similar to

those observed in yeast, which was not surprising as it was gen-

erated using a nearly identical protocol (Supplemental Fig. S22).

Perhaps because the per-base coverage was ;20-fold lower than

the Artieri data, codon enrichments were weak (Supplemental Fig.

S23). However, we did observe increased ribosomal occupancy

among G:U wobble-pairing codons at position 4 (Supplemental

Fig. S24), similar to Stadler and Fire (2011), suggesting that the

different patterns observed in yeast are not simply a result of an-

alytical differences.

In contrast to the other species, the zebrafish data showed

completely different patterns of sequence bias that were also

largely fraction specific (Supplemental Fig. S25), likely reflecting

Figure 4. The corrected Ribo coverage reveals a strong enrichment of proline codons. (A) Heatmap of the mean-scaled log2 enrichment of codon
positions �8 to 8 in the Artieri data (the McManus data are similar) (Supplemental Fig. S9). All 61 sense codons are shown in alphabetical order indicated
by their sequences on the left. Enriched codons are indicated by an increasing intensity of yellow color, while depleted codons are blue. Colored boxes to
the right of each row indicate the biochemical category to which the codon belongs (color key is at the top of panel B). Codons associatedwith the E, P, and
A active sites of the ribosome (positions 3, 4, and 5, respectively) are indicated. (B) Bar plots indicating the log2 enrichment values at position 4 of both the
Artieri and McManus data sets. Codons are organized by amino acid using single-letter designations below the panel and grouped by biochemical type as
indicated at the top of the panel. Individual codons for each amino acid are in alphabetical order. The 95% confidence intervals around the scaled
enrichment values are indicated at the top of each bar. The asterisks indicate that proline (P) codons aremore enriched than any other amino acid (Kruskal-
Wallis rank sum test, P < 10�15).

Proline stalls ribosomes
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the investigators’ use of a different method for both mRNA iso-

lation and monosome purification. Nevertheless, despite these

differences, biases were pronounced in both the 59 and 39 ends of

reads. As was the case in the yeast data, biases at internal codon

positionswere unique to the Ribo fractions, though the position of

strongest bias was shifted by +1 codon (position 5), which may

reflect differences between species in the size of the ribosome-

protected fragment as well as the specific positioning of the ribo-

somal active sites (Stadler and Fire 2011).

In order to increase our power to detect enriched codons, we

separately pooled all mRNA and all Ribo fraction reads for analysis

(resulting in about fourfold lower per-base coverage than the

Artieri data) (see Supplemental Methods). Consistent with our

observations in yeast, all four proline (P) codons were enriched

at position 4 (P-site) (Supplemental Fig S26). Furthermore, three of

the four proline codons were also enriched at position 5, which is

the position showing the strongest deviation from expected codon

frequencies (Supplemental Fig. S25). Therefore the stalling effect of

proline incorporation appears to be conserved between yeast and

vertebrates.

Revisiting the effects of positively charged amino acids

A recent reanalysis of the Ingolia data concluded that positively

charged amino acids were the primary determinant of ribosomal

velocity (Charneski and Hurst 2013). Their approach assumed that

upon encountering a sequence feature causing ribosomal stalling

(such as a positive amino acid), the ribosome slows, leading to an

accumulation of Ribo fraction reads immediately downstream

from the feature. By comparing the magnitude of this accumula-

tion to read coverage upstreamof the stalling sequence—where the

rate of translation was presumed to be unhindered—they gener-

ated a normalized metric of stalling as shown in Figure 5. Specifi-

cally, to test the effect of a codon at position 0, the occupancy of all

codon positions (rpos) from 30 codons upstream to 30 codons

downstream was divided by the mean occupancy of upstream

codons �30 to �1 (rprec30), producing a normalized pausing value

(rpos/rprec30), where a value of one represents the average rate of

translation. The area under the curve (AUC) of themean-normalized

occupancy values from position 0 until the position where mean

occupancy returned to the average was used as a measure of the

stalling effect, if positive (Fig. 5).

We sought to test if the stalling effect of positive amino acids

was also detected in the higher-coverage Artieri andMcManus data

sets. We first replicated the pattern of increased stalling with in-

creasingly large clusters of positive amino acids (Fig. 5 inCharneski

and Hurst 2013) using the Ingolia data, confirming that the same

methods were being used (Supplemental Fig. S27). However, ap-

plying this approach to both higher-coverage data sets showed no

such trend (Fig. 6A,B). Similarly, using our analysis framework we

also found no enrichment of positive amino acids among up-

stream codons (position �8 to �1) in any of the S. cerevisiae ribo-

profiling data sets (Supplemental Fig. S28; Supplemental Material).

To further investigate this discrepancy, we performed an im-

portant control not reported in the original analysis (Charneski

and Hurst 2013): levels of apparent stalling in the absence of any

positive amino acids, using the same data set (see Methods)

(Ingolia et al. 2009). We found that the median apparent stalling

effect was actually stronger in the absence of any positively charged

residues than in any sized clusters of positive charges (Fig. 6C). We

observed a similar pattern of stalling when averaging over all

possible 61-codon windows in all genes (Supplemental Fig. S29),

suggesting that the apparent pattern of stalling is unlikely to be

related to the presence of positively charged amino acids.

We then explored whether read coverage could affect these

patterns even in the absence of any stalling by generating simu-

lated data at a range of coverage levels. Indeed,we observed stalling

in low-coverage but not high-coverage windows (Supplemental

Fig. S29; Supplemental Material). Since the simulated data con-

tained no actual stalling, we concluded that the rpos/rprec30method

detects stalling in any series of windows with sparse read coverage.

As a further test, we down-sampled the higher-coverage data to the

level used in the original analysis and found that overall patterns of

stalling indeed increased (Supplemental Fig. S30).

Discussion

Library construction biases

The relative importance of various factors in influencing the rate of

translation has remained controversial, despite recent advances in

our ability to measure translation rates at the level of individual

codons (Gingold and Pilpel 2011; Plotkin andKudla 2011).Most of

these factors were originally identified using in vitro approaches,

whichmay not accurately represent intracellular conditions. As an

in vivo method, riboprofiling has offered an unprecedented op-

portunity to study translational dynamics in living cells; yet

a number of different studies reanalyzing the same riboprofiling

data (Ingolia et al. 2009) have produced incompatible findings,

based on differing assumptions and methods of analysis (Kertesz

Figure 5. The rpos/rprec30 method of Charneski and Hurst. (A) As
a measure of the stalling effect of a codon (or group of codons beginning)
at position 0, the occupancy of all codon positions (rpos) from 30 codons
upstream (position �30) to 30 codons downstream (position 30) of the
putative stalling codon was divided by the mean occupancy of upstream
codons �30 to �1 (rprec30, indicated by the bracket). (B) This produced
a normalized pausing value (rpos/rprec30), where a value of one represents
the average rate of translation. (C ) After averaging the rpos/rprec30 values
among all similar groups of codons, the AUC (indicated by the shaded
purple area) of the mean-normalized occupancy values from position
0 until the position where mean occupancy returned to the average was
used as a measure of the stalling effect (if positive).
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et al. 2010; Siwiak and Zielenkiewicz 2010; Tuller et al. 2010a,b,

2011; Qian et al. 2012; Zur and Tuller 2012; Charneski and Hurst

2013; Wallace et al. 2013; Rouskin et al. 2014; Yang et al. 2014).

Our approach presents a number of improvements over pre-

vious analyses. First, we have explicitly taken into account shared

technical biases between the Ribo andmRNA fractions. Second, we

made no a priori assumptions regarding which codon positions

near the ribosome-protected fragments were responsible for rate

variation, but rather focused on codon position 4 in yeast because

it was a clear outlier in terms of enrichment in corrected Ribo

coverage. Third, we analyzed two independently generated, high-

coverage yeast data sets (Artieri and Fraser 2014; McManus et al.

2014) and found strong agreement between them. And fourth, we

found sequence biases in riboprofiling data from other species, as

well as conservation of the stalling effect of proline in zebrafish.

Our analysis revealed that like other next-generation se-

quencing methods (Bullard et al. 2010; Hansen et al. 2010; Li et al.

2010; Srivastava and Chen 2010; Zheng et al. 2011), riboprofiling is

subject to library construction biases that may confound any anal-

ysis of ribosomal occupancy. Inparticular, non-rRNAmapping reads

fromboth fractions of all yeast data sets, aswell as theC. elegans data

(Stadler and Fire 2013), showed a substantial preference for adenine

bases at the 59 ends of reads (and in some instances, the 39 ends

as well), as well as a paucity of cytosines four bases from the 59 end

(Fig. 2; Supplemental Material). Furthermore, zebrafish libraries

generatedwith anothermethod show evidence of their owndistinct

biases (Supplemental Fig. S25). As the majority of reads from the

Ribo fraction mapped to the first reading frame of codons, this

produces a skewed representation of reads mapping to codons that

beginwith these bases. In the Ingolia data in particular, the biases at

the 59 ends of reads overwhelmed those of all other positions, sug-

gesting that patterns of coverage are strongly influenced by this li-

brary construction bias (Fig. 2; Supplemental Fig. S28; Supplemental

Material).

Figure 6. No evidence of stalling at positive amino acids. We recalculated Charneski and Hurst’s (2013) Figure 5 using either the Artieri (A) or the
McManus (B) data. Following the published approach, clusters of increasing numbers of positive amino acid encoding codons were identified within the
range bounded by pairs of inverted triangles. The horizontal gray line indicates the average rate of translation. Error bars, 6SEM. No additive effect is
observed in either high-coverage data set, in contrast to the Ingolia data (Supplemental Fig. S27); the AUCs for one, two, three, four or five, and six ormore
positive charge clusters were 7.89, 12.83, �0.71, �1.36, and �2.75 for the Artieri data, and 6.46, 0.08, �0.59, 0.04, and 0.09 for the McManus data,
respectively. (C ) The data from Charneski and Hurst’s (2013) Figure 5 (black) compared to themean rpos/rprec30 generated from 100 random samplings of
61-codon windows devoid of any positive amino acid encoding codons (red). The average stalling pattern of windows lacking any positive charges is
stronger than that observed in any of the clusters (Kruskal-Wallis rank sum test of distributions’ AUC values, P < 10�15 for all clusters except for six or more
positive charges, where P = 0.02 after Bonferroni correction for multiple tests). Therefore the observed stalling effect of positive amino acids is not greater
than what would be expected by chance within the Ingolia data.
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It is also important to note that an additional caveat appli-

cable to all riboprofiling data sets discussed in this article is the use

of cycloheximide to arrest translation immediately prior to RNA

extraction (Ingolia et al. 2009; Stadler and Fire 2013; Zinshteyn

and Gilbert 2013; Artieri and Fraser 2014; Bazzini et al. 2014;

McManus et al. 2014). Cycloheximide binds to the occupied E-site

of the ribosome and prevents translocation by inhibiting the re-

lease of the uncharged tRNA (Obrig et al. 1971; Schneider-Poetsch

et al. 2010). This has the effect of stabilizing ribosomes during

a specific phase of the elongation cycle, which may obscure the

effects of sequences that exert their effect during other steps

of elongation (Lareau et al. 2014). Furthermore, it is unknown

whether cycloheximide shows preferences for particular tRNAs or

local sequence context, but if it does, this could produce artifactual

signals of ribosome accumulation that mask true biological signals

of ribosome stalling.

Proline codons are enriched in corrected Ribo coverage

Of the features previously implicated in modulating the rate of

translation in yeast, we observed consistent enrichment of Ribo

coverage only at proline codons (Fig. 4B): In both S. cerevisiae and

S. paradoxus, all four proline codons (CCN) were among the most

significantly enriched at codon position 4 in both the Artieri and

McManus data. Furthermore, we also observed enrichment of

proline codons at positions 4 and 5 in zebrafish (Supplemental Fig.

S26). Interestingly, position 4 corresponds towhat previous studies

have defined as the P-site (Ingolia et al. 2009; Stadler and Fire 2011;

Li et al. 2012; Zinshteyn and Gilbert 2013), where the imino side-

chain of proline is known to act as a particularly poor substrate in

the peptidyl transfer reaction. This is likely due to its restricted

conformational flexibility, whichmay limit the rate of translational

elongation (Wohlgemuth et al. 2008; Pavlov et al. 2009). Proline’s

ribosomal pausing effect is known to play an important role in

programmed stalling (Garza-Sanchez et al. 2006; Tanner et al. 2009),

and previous riboprofiling studies have found an enrichment of

proline codons in the context of multi-amino-acid motifs (PPE

[Ingolia et al. 2011] and PG [Zinshteyn and Gilbert 2013]), even in

cells not treated with cycloheximide (Ingolia et al. 2011).

No evidence that positive amino acids stall ribosomes

Though several recent studies have suggested that positively

charged amino acidsmay impede the progress of the peptide chain

through the negatively charged ribosomal exit tunnel (Lu et al.

2007; Lu and Deutsch 2008), we observed no consistent enrich-

ment for codons encoding positive amino acids in corrected Ribo

coverage either within or upstream of the footprints in any data

sets (Fig. 4B; Supplemental Figs. S9, S10, S16, S23, S26, S28). Two

previous studies found an association between riboprofiling read

coverage and the presence of positive amino acids in yeast—both

based on reanalysis of the data of Ingolia et al. (2009). The first

(Tuller et al. 2011) noted an association between ribosomal occu-

pancy at the 59 ends of CDSs and codons encoding positive amino

acids; however, this can be explained entirely by the requirements

of hydrophilic N-termini of transmembrane proteins (Charneski

and Hurst 2014). The results of the second study (Charneski and

Hurst 2013) were not supported by either high-coverage data set

(Fig. 6). Furthermore, upon reanalysis of the method previously

employed, we found that it led to false signals of stalling in low-

coverage windows, indicating apparent pausing even in simulated

data where no pausing was present, and produced the strongest

signals of ribosome pausing in regions containing no positive co-

dons at all (Fig. 6C). Therefore we conclude that there is no evi-

dence for a stalling effect of positive amino acids in vivo.

Other factors associated with ribosomal stalling

Multiple studies have shown that mRNA secondary structure plays

an important role in regulating translational initiation (Schauder

andMcCarthy 1989; Kudla at al. 2009; Goodman et al. 2013; Shah

et al. 2013). However, its importance in affecting the rate of ribo-

somal elongation remains controversial. For instance, a recent

study concluded that yeast mRNA secondary structure is far less

extensive in vivo than in vitro and is poorly predicted by com-

putationalmethods (Rouskin et al. 2014). Furthermore, analyses of

the effects of structure using yeast riboprofiling data have been

inconclusive (Tuller et al. 2011; Zur and Tuller 2012; Charneski

and Hurst 2013; Yang et al. 2014). Because mRNA structure is

influenced by base content (since G:C bonds are stronger than

A:U bonds), biases including the enrichment of adenines at

both termini of reads overwhelms any potential signal of in-

creased Ribo occupancy near regions of secondary structure.

Therefore, riboprofiling data may not be ideal for studies of the

effect of mRNA structure in the absence of methodological de-

velopments that control for biases introduced during library

construction.

Analysis of base-level riboprofiling data

Riboprofiling represents a significant advance over previous

methods of translational analysis by enabling measurements of

ribosomal occupancy across the transcriptome. While this ap-

proach has dramatically increased our knowledge of translational

regulation and evolution (Ingolia et al. 2009, 2011; Brar et al. 2012;

Li et al. 2012; Stadler and Fire 2013; Artieri and Fraser 2014; Bazzini

et al. 2014; Lareau et al. 2014; McManus et al. 2014), inconsistent

interpretation of nucleotide-level data has produced contradictory

results and made direct comparisons between studies challenging.

We conclude that mitigating technical biases in riboprofiling—

either experimentally or computationally—will likely reveal ad-

ditional features of mRNAs that are most relevant to translational

biology.

Methods

Riboprofiling data
The Saccharomyces riboprofiling data used in this study were
obtained from Artieri and Fraser (2014), McManus et al. (2014),
and Ingolia et al. (2009) (Gene Expression Omnibus [GEO] entries
GSE50049, GSE52119, and GSE13750, respectively). In the case of
the Artieri data, some of these samples were sequenced by mixing
riboprofiling libraries generated from both S. cerevisiae and the
closely related species S. paradoxus (Supplemental Table S5).
Therefore we independently sequenced the S. cerevisiae Ribo frac-
tion replicate 1 sample (deposited in the NCBI Sequence Read Ar-
chive [SRA] entry SRS514738) andmapped the reads (see below) in
parallel to the sample generated by sequencing the mixed species
libraries (GEO sample GSM1278062). The strong congruence of
estimated RPKMs between the individual and the multiplexed se-
quencing samples (rho = 0.995, P < 10�15) (Supplemental Fig. S31),
as well as patterns of nucleotide and codon enrichment between
the mixed and nonmixed biological replicates (Supplemental Figs.
S5, S32), indicated that the stringentmappingmethod successfully
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identified S. cerevisiae reads from the mixed sample. Supplemental
Table S5 indicates the sources of the individual replicates.

Riboprofiling library mapping

Reads from both fractions of all yeast data sets were mapped in
a strand-specific manner using the iterative method described in
Ingolia (2010). We first excluded reads that mapped to the com-
plete rDNA sequence of S. cerevisiaewhen trimmed to a length of 23
nt from the 59 end using Bowtie version 0.12 (Langmead et al.
2009), allowing three mismatches and a maximum of 40 mapping
locations. Remaining reads were mapped to the S. cerevisiae strain
S288c genome (R61-1-1, June 2008), allowing no multimappers
and no mismatches. Unmapped reads were then subjected to
a second round ofmapping to a reference consisting of the CDSs of
nonmitochondrial, nondubious genes present in annotation R61-
1-1 in order to account for splice-junction spanning reads. We
observed that allowingmismatches whenmapping to the genome
distorted the pattern of the first reading frame preference of Ribo
fraction reads, consistent with the known property of reverse
transcriptase to add untemplated bases the 59 end during cDNA
synthesis (Supplemental Fig. S33; Supplemental Material; Zajac
et al. 2013). Because fewer reads mapped with mismatches than
without, and because these reads showed inconsistent patterns of
reading frame distortion among samples, we chose to retain only
nonmismatch mapping reads. However, we note that retaining
mismatch mapping reads does not change our conclusions re-
garding the biological factors causing ribosome stalling (Supple-
mental Fig. S34). Nonmismatch mapping reads were filtered such
that nomore than 30 bp and no less than 27 bpmapped. Uniquely
mapping reads were then assigned to the CDSs if their 59-most base
mapped at or between the 16th codon and 16 codons before the
end, in order to avoid effects of ribosomes pausednear the start and
stop codons (Ingolia et al. 2009, 2011). Only protein-coding genes
with 40 or more codons were analyzed.

The read mapping length distribution (Supplemental Fig. S3)
was determined using the iterative trimming method as above on
all non-rRNAmapping reads but instead beganwith reads trimmed
to 35 bp (the shortest read length generated among all three data
sets) and trimming 1 nt at a time until reaching 23 nt, retaining the
longest mapping read length. Barplots were then generated by de-
termining the percentageof readsmapping at each length among all
mapping reads.

Identifying technical biases in riboprofiling data

Non-rRNA mapped reads were separated into categories based on
whether their 59 ends mapped to the first, second, or third reading
frame of codons. The relative proportion of each base among reads
was calculated for the first 27 nt of each read (corresponding to the
minimum mapping read length) (the number of nucleotides ana-
lyzed was extended accordingly for Supplemental Fig. S7). Nucle-
otide bias was then determined by scaling the proportions of each
base within each reading frame by its mean proportion across all of
the same positions within codons (i.e., all first, second, or third
positions) in the 27 nt, thereby accounting for codon-position–
specific differences in expected base compositions. The ratios were
log2-transformed for the purpose of plotting. In order to determine
the degree of overrepresentation of adenines at the 59 ends of reads,
the proportion of adenines in the first nucleotide position of
mapping reads was compared to the proportion of adenineswithin
the CDSs of analyzed genes (see also Supplemental Table 2).

The corresponding codon bias was determined by a fraction-
specific method analogous to that presented in Figure 3 and Sup-
plemental Figure S8: The 59 ends of reads from each fraction were

mapped separately, and the codon-level coverage was determined,
retaining only codons with 59 mapped reads in both fractions for
analysis. Within each gene, codon-level coverage values for each
fraction were separately scaled by the mean codon-level coverage
of analyzed codons in order to account for coverage differences
among genes. These scaled values were then log2-transformed
(e.g., log2[scaled mRNA coverage] or log2[scaled Ribo coverage])
and then applied to the 59 mapping codon and to the eight con-
secutive codons downstream (labeled 0–8; representing the mini-
mum number of codons overlapped by a short read), producing
a coverage value for each codon at each position. In this manner,
the mean log2 coverage value for each of the 61 sense codons at
each position was determined. We then asked whether the codons
at each position were over- or underrepresented relative to all nine
positions by scaling the log2 coverage value of each codon at each
position by the mean log2 coverage value across all nine positions,
producing a new value that represents the degree to which each of
the 61 sense codons deviates from its mean representation across
the length of the read. To represent the degree to which each po-
sition deviated from expected codon frequencies in a graphical
manner, we calculated the coefficient of variation (CV)—the
standard deviation expressed as a percentage of the mean—across
61 sense codons at each position, where higher CVs indicate po-
sitions with a greater deviation from expected codon proportions.

Determination of position-specific corrected Ribo coverage

In order to account for mapping biases shared between the mRNA
and Ribo fractions in a position-specific manner, Ribo fraction
occupancy was scaled by that of the mRNA fraction in the manner
outlined in Figure 3 and Supplemental Figure S8: The 59 ends of
reads from both fractions were mapped as detailed above, and the
codon-level coverage was determined for each fraction separately,
retaining only codons with 59 mapped reads from both fractions
for analysis. Within each gene, codon-level coverage values were
scaled by the mean codon-level coverage of analyzed codons.
These scaled values were used to calculate the log2(Ribo/mRNA
coverage) for each codon, accounting for shared biases between
the two fractions. This log2(Ribo/mRNA coverage) at position
0was then recorded in a codon andposition-specificmanner (from
�8 to +8 codons relative to the codon overlapped by the 59 end,
representing 17 codons in total). Performing this analysis over all
positions with data within the coding transcriptome produced
a distribution of log2(Ribo/mRNA coverage) values for each of the
61 nonstop codons at each of the 17 positions representing that
codon’s contribution to ribosomal pausing, given its position rel-
ative to the ribosome-protected fragment (represented in tabular
format by the mean log2[Ribo/mRNA coverage] of each codon at
each position). The relative enrichment of each codon at each
position was determined by scaling its mean log2(Ribo/mRNA
coverage) value by the mean value of all codons at that position
such that codonswith positive log2 valueswere enriched relative to
expectations and those with negative values were depleted. In
cases where a codon was not represented at a particular position,
which only occurredwhen datawere down-sampled or divided into
low-coverage subgroups, the codon was given a log2(Ribo/mRNA
coverage) value of zero at that position. Supplemental File 1 con-
tains scripts and code required to map riboprofiling data and per-
form the analyses noted above.

As a negative control, the analysis was rerun 100 times ondata
sets in which the genomic coordinates of the 59 ends of mapping
reads were preserved but the order of the codons within each gene
was shuffled at random. The start and stop codons were always
excluded from the shuffling by virtue of the exclusion of codons at
the beginning and ends of transcripts (see above).

Proline stalls ribosomes
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Analysis of factors implicated in affecting rates of translation

Codons were grouped into standard biochemical categories (i.e.,
positively charged, negatively charged, polar noncharged, and
hydrophobic) plus an additional ‘‘special’’ category containing
cytosine, glycine, and proline. Wobble base positions in S. cer-
evisiae were obtained from Percudani and Ottonello (1999). Posi-
tions within mRNAs in either single-stranded or double-stranded
conformation were obtained from Ouyang et al. (2013). The three
different optimality measures used were relative synonymous co-
don usage (RSCU) (Sharp and Li 1987), absolute adaptiveness (Wi)
(dos Reis et al. 2004), and the normalized translational efficiency
scale (nTE) (Pechmann and Frydman 2013).

Application of the Charneski and Hurst method

The rpos/rprec30 values for 61-codon windows centered on the first
positive amino acid encoding codon of a cluster of positive
charges were determined as indicated in Charneski and Hurst
(2013). The number of positive amino acids in each cluster (one,
two, three, four or five, and six or more), as well as the maximum
number of codons spanned by a cluster, were also defined as in
Charneski and Hurst (2013). Codon level coverage was calculated
as themean nucleotide coverage within a codon. To reproduce the
results of the original analysis, we combined the replicate data as
per their method: taking the average of the coverage in each
replicate. Note however, that unlike the original analysis, we did
not map reads to the mitochondrial transcriptome as it is unclear
whether translational dynamics are affected by differences be-
tween the cytoplasmic and mitochondrial ribosomes and tRNA
pools.

To determine whether a stalling effect was observed within
regions without positive charges, we identified all 61-codon
windows that do not contain any positive amino acids and treated
the center codon as the focal position for calculating the rpos/
rprec30 values. As many such windows are immediately adjacent to
one another (e.g., a run of 70 nonpositive amino acids will con-
tain 10 possible 61-codon windows), we subsampled a number of
positions equivalent to the number of ‘‘1 positive charge’’ clusters
used to draw panel 1 of Supplemental Fig. S27 at random 100
times from all possible windows lacking any positive amino acids,
and averaged the rpos/rprec30 values over the replicate subsamples.
To test whether the stalling effect of subsampled data was signif-
icantly different from the observed data, we performed Kruskal-
Wallis rank sum tests (see below) on the distribution of AUC
values from all of the positions analyzed in the actual data in
comparison to the mean AUCs of the 100 randomly sampled
replicates.

In order to explore how lower read coverage influenced the
appearance of ribosomal slowing in 61-codon windows, we sim-
ulated either 10, 100, or 1000 reads per CDSwith randommapping
location and an equal probability of any length from 27 to 30 nt.
The start and stop positions of the CDSs were based on the defi-
nition of CDS mapping reads used in Charneski and Hurst (2013):
The 59 end of reads mapped between 16 nt before the start and 14
nt before the end of the annotated CDSs.

Statistics

All statistics were performed using R version 2.14.0 (R Core Team
2013) in addition to custom Perl scripts. The 95% confidence
intervals were empirically determined from the distribution of
log2(Ribo/mRNA coverage) values from the data using the ‘‘boot’’
package (Davison and Hinkley 1997). Kruskal-Wallis tests were
performed using 10,000 permutations of the data as implemented
in the ‘‘coin’’ package (Hothorn et al. 2008).

Data access
The raw sequencing reads generated in this studyhave been submitted
to the NCBI Sequence Read Archive (SRA; http://www.ncbi.nlm.nih.
gov/sra) under accessionnumber SRS514738. The locationsof all other
data are indicated in the Methods and Supplemental Table S3.
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