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Abstract: Neuroglia of the central nervous system (CNS), represented by cells of neural (astrocytes, oligodendrocytes and 
NG2 glial cells) and myeloid (microglia) origins are fundamental for homeostasis of the nervous tissue. Astrocytes are 
critical for the development of the CNS, they are indispensable for synaptogenesis, and they define structural organisation 
of the nervous tissue, as well as the generation and maintenance of CNS-blood and cerebrospinal fluid-blood barriers. 
Astroglial cells control homeostasis of ions and neurotransmitters and provide neurones with metabolic support. 
Oligodendrocytes, through the process of myelination, as well as by homoeostatic support of axons provide for 
interneuronal connectivity. The NG2 cells receive direct synaptic inputs, and might be important elements of adult 
remyelination. Microglial cells, which originate from foetal macrophages invading the brain early in embryogenesis, 
shape the synaptic connections through removing of redundant synapses and phagocyting apoptotic neurones. Neuroglia 
also form the defensive system of the CNS through complex and context-specific programmes of activation, known as 
reactive gliosis. Many neurological diseases are associated with neurogliopathologies represented by asthenic and atrophic 
changes in glial cells that, through the loss or diminution of their homeostatic and defensive functions, assist evolution of 
pathology. Conceptually, neurological and psychiatric disorders can be regarded as failures of neuroglial homeostatic/ 
defensive responses, and, hence, glia represent a (much underappreciated) target for therapeutic intervention.  
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NEUROGLIA CONTROL HOMEOSTASIS OF THE 
CENTRAL NERVOUS SYSTEM 

 The nervous tissue is composed of numerous types of 
cells of neural (ectodermal: neurones and neuroglia) and non-
neural (mesodermal: microglia, endothelial cells, pericytes, 
muscle cells, etc.) origins organised into tightly coordinated 
cellular networks. Evolution of the nervous system progressed 
through cellular specialisation, with neurones becoming 
chiefly occupied with fast information processing and transfer, 
and neuroglial cells assuming responsibility for housekeeping. 
Neuroglia of the central nervous system (CNS) is classified 
into macroglia (astrocytes, oligodendrocytes and NG2 cells) 
and microglia (which are the descendants of embryonic 
macrophages invading the brain early in development). The 
systemic function of neuroglia is the preservation of  
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homeostasis at all levels of the CNS organisation, from 
molecular to organ [1, 2].  

 Homeostatic tasks performed by neuroglia are extremely 
broad. Astrocytes, which are arguably the most diversified 
type of glia, define the architecture of the grey matter being 
the central elements of the glio-vascular unit. Inside these 
glio-vascular units elaborated processes of astroglia cover 
synaptic contacts and neuronal membranes, and control 
molecular composition of the interstitium by regulated 
transport of water, ions and neuroactive agents such as 
neurotransmitters and neurohormones [3, 4]. Astrocytes are 
indispensable for synaptic connectivity; astroglial cradle 
governs synaptogenesis, synaptic maturation and synaptic 
maintenance [5, 6]. Astroglia are fundamental for neuro- 
transmission, being specialised in clearance of neuro- 
transmitters (such as glutamate, GABA and adenosine) and 
for supplying neurones with glutamine, which is a dual 
precursor for glutamate and GABA [7, 8]. Astroglial cells 
provide neurones with metabolic substrates [9] and protect 
nerve tissue against reactive oxygen species (ROS), being 
the chief source of ROS scavengers such as glutathione and 
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ascorbic acid [10, 11]. Astroglia are responsible for: i) CNS 
development and adult neurogenesis [12]; formation and 
maintenance of the CNS-blood and cerebrospinal fluid-blood 
barriers [13]; and iii) the regulation of local blood flow  
[14]. In addition, specialised astrocytes appear as central 
chemoceptors involved in systemic regulation of Na+, pH 
and CO2 homoeostasis [15, 16], and regulation of sleep [17].  

 Oligodendrocytes contact, support and myelinate axons 
in grey and white matters, thus, being central elements of the 
CNS connectome. The NG2 glia (a lineage related to 
oligodendrocytes) possibly contribute to adult myelination 
and may also possess certain homeostatic functions. Finally, 
microglia are highly important for development of the CNS 
and shaping neuronal networks through synaptic stripping 
and removal of excessive neurones which undergo massive 
apoptosis at different stages of embryogenesis [18-20].  

NEUROGLIA MOUNTS BRAIN DEFENCE 

 Homeostatic function of neuroglia is linked to its  
wide defensive capabilities. Indeed, brain lesions trigger 
homeostatic response such as the containment of 
excitotoxicity through buffering an excess of K+ and 
glutamate, and by the release of ROS scavengers. In 
conditions of ischaemia and glucose deprivation astrocytes 
and oligodendrocytes protect neurones by supplying them 
with lactate. Neuroglial cells are in possession of an 
evolutionary conserved defensive programme known as 
reactive gliosis, triggered in response to polyaetiological 
insults [21, 22]. The gliotic response is further sub-classified 
into reactive astrogliosis, reactive response of NG2 cells and 
activation of microglia. Oligodendrocytes (as well as 
Schwann cells in the peripheral nervous system) are also 
activated in response to axonal damage, this activation being 
a part of Wallerian degeneration. Reactive gliosis is a 
complex and multistage response of glial cells, which is 
disease- and context- specific, and involves activation of 
thousands of genes. This glial reactivity is a defensive 
response aimed at protecting stressed neurones (and the brain 
in general) isolating injured area, removing pathogens, dying 
cells and cellular debris, and remodelling the nerve tissue 
after the resolution of pathology.  

 The hallmarks of reactive astrogliosis are hypertrophy 
and proliferation of astrocytes associated with up-regulation 
of cytoskeletal components such as glial fibrillary acidic 
protein (GFAP), vimentin or nestin [23, 24]. An increased 
expression of these intermediate filaments are, however, 
only considered as broad markers of this process, because 
astrogliotic metamorphosis may produce many different, yet 
to be fully characterised, reactive phenotypes specific for 
different diseases. In the process of a productive gliotic 
response astrocytes undergo a complex remodelling of their 
biochemistry and function, which generally leads to 
neuroprotection. In severe lesions astrocytes produce glial 
scar aimed at isolating the area of damage; astrogliosis is 
also critical for regeneration of nerve tissue after resolution 
of pathology. All in all, the suppression of astrogliotic 
response is detrimental for nerve tissue viability and 
exacerbates pathological progression (for details and 
exhaustive reference lists see [22-26]). Morphologically, 
astrogliosis is broadly divided into isomorphic gliosis in 

which domain organisation of astrocytes is preserved and 
anisomorphic gliosis in which astrocytes proliferate and lose 
their domain organisation with their processes becoming 
densely overlapped. Isomorphic gliosis is fully reversible, 
whereas anisomorphic gliosis is frequently resolved in the 
formation of a glial scar. Reactivity of NG2 glia has been 
studied to a much lesser extent; their response to a pathological 
insult is represented by shortening and thickening cellular 
processes and a strong increase in the expression of NG2. 
Together with astrocytes NG2 glia may contribute to the 
formation of a glial scar through secreting chondroitin 
sulphate proteoglycan 4 [27]. In certain conditions NG2 cells 
may possibly act as stem cells; in particular, they can 
generate new oligodendrocytes which in turn can assist in 
post-lesion remyelination of axons [28, 29].  

 Microglial activation is the second major component of 
reactive gliosis. Activation of microglia progresses through 
many stages and cell phenotypes characterised by distinct 
morphological, biochemical, functional and immunological 
changes. Similarly to astroglia, activation of microglia is a 
multistage, complex and context-specific process, which 
produces multiple phenotypes of activated cells, many of 
which demonstrate prominent neuroprotective features [30-
32]. In conditions of severe or specific brain lesions, such as, 
infectious encephalitis, microglial cells start to proliferate, 
become motile, accumulate around sites of damage and 
become phagocytotic, thus, actively removing foreign agents 
and cell debris [30].  

PATHOLOGICAL POTENTIAL OF NEUROGLIA: 
NEUROLOGICAL DISEASES AS NEUROGLIO- 
PATHIES 

 The philosophy of contemporary clinical and 
experimental neurology is created around neuronal doctrine 
that regards neurones as a central element for pathological 
progression. This is reflected by drug development, with 
most of the agents being specifically aimed at affecting 
neuronal excitability or neuronal receptors. This neurono-
centricity is somewhat surprising in the light of common 
definition of the disease as a homeostatic failure. In this 
respect, the homeostatic arm of the nervous system, the 
neuroglia, shall naturally be considered as a fundamental 
element for initiation, development and outcome of 
neurological disorders. Indeed, neurones when left to their 
own devices have limited capacity for self-protection and for 
meeting environmental challenges; it is the neuroglia that 
protect and maintain the nervous system operation. The glio-
cenric angle in neurology is still in statu nascendi (as 
reviewed recently [33-45]), although it is rapidly gaining 
popularity.  

 Conceptually, the glial involvement in a neuro- 
pathological process could be primary or secondary, i.e., 
primary neurogliopathy (manifested by the loss or change of 
the glial functions) and secondary reactivity, respectively. 
The boundary between these two faces of glial pathology is 
blurred and often they are present in combination. A striking 
example of astrogliopathy (which can be considered as an 
astroglial asthenia) is associated with the down-regulation  
of astrocyte-specific glutamate transporters (excitatory 
amino acid transporters 1 and 2), which is a common cause 
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of many neurotoxic (e.g., mercury, lead or aluminium 
encephalopathies) and neurodegenerative (e.g., amyotrophic 
lateral sclerosis-also called motor neurone disease, Wernike-
Korsakoff encephalopathy or Huntington's disease) disorders; 
a compromised astroglial glutamate clearance acts as a primary 
mechanism of neurotoxicity, neuronal death and brain 
atrophy [44, 46-51]. Similarly, toxic damage to astrocytes 
produced by ammonia that leads to the occlusion of 
glutamate-glutamine shuttle, exocytotic release of glutamate, 
failure in glutamate clearance and K+ buffering is a central 
element for hepatic encephalopathy [52-55].  

 Atrophy and asthenia of neuroglia have been identified in 
major neuropsychiatric diseases such as schizophrenia and 
major depression; in both pathologies degradation of astrocytes 
and oligodendrocytes are prominent histopathological 
features [40, 45]. Similarly, atrophic astrocytes have been 
observed in the pre-symptomatic stages of Alzheimer's 
disease (AD) in animal models [56-58]; the earliest 
occurrence of this atrophy was found in entorhinal and 
prefrontal cortices, the most vulnerable regions in AD 
pathology [59, 60]. The asthenic astroglial cells in these two 
brain regions failed to mount gliotic response to extracellular 
depositions of amyloid which might be a relevant explanation 
for this high vulnerability. Astroglial asthenia in AD was 
paralleled with a loss of microglial functions. Namely, in the 
animal models, microglial cells almost doubled their density 
at pre-plaque stages of the disease, this being very similar to 
changes found in normal ageing [61-63]. Formation of 
plagues trigger activation and accumulation of activated 
microglia around plaques [38, 64]; these activated cells, 
however, are deficient in their phagocytotic function [65].  

 Another facet of glial contribution to neuropathology is 
represented by reactivity. Reactive astrogliosis and activation 
of microglia usually appear in response to disease-specific 
lesions. For example, reactive glia in AD is recruited in 
response to an appearance of senile plaques or perivascular 
amyloid depositions. Similarly, gliotic response accompanies 
late stage of amyotrophic lateral sclerosis [66, 67]; is 
detected in fronto-temporal dementia [68] and is prominent 
in thalamic dementia (in which astroglial activation has been 
claimed to be associated with a loss of function, which 
causes neuronal death [69]). In neuronal ceroid lipofuscinosis, 
also known as Batten disease, astroglial reactivity (manifested 
by significant increase in GFAP expression and hypertrophy) 
occurs at the very early stages [70]; inhibition of astrogliosis 
(by genetic removal of intermediate filaments GFAP and 
vimentin) accelerates disease progression and exacerbates 
neurodegeneration [71]. Unresolved gliotic response, 
however, may have various detrimental consequences to the 
outcome of neurological diseases. Chronic astrogliosis, for 
example, suppresses neurogenesis, whereas an astroglial scar 
prevents axonal regrowth. Suppression of astroglial reactivity 
improved regeneration in lesioned nerves and enhanced 
regenerative processes in animal models of ischemia, stroke 
and injury and facilitated integration of retinal grafts, as well 
as differentiation of transplanted neural stem cells [24].  

TARGETING NEUROGLIA FOR NEUROTHERAPY 

 Neuroglial cells are one of the central elements of 
neuropathology; loss of neuroglial function as well as 

neuroglial reactive responses contribute to most (if not all) 
neurological, neuropsychiatric and neurodevelopmental 
diseases. A multitude of molecules, specifically expressed by 
neuroglial cells and responsible for their homoeostatic and 
defensive functions, are potential and legitimate targets for 
therapeutic management. In this special issue we collected 
papers specifically dedicated to neurogliopathology with an 
aim to expand glio-centric views into translational medicine.  
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