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5-(Hydroxymethyl)-2-furfural (HMF), an active furfural, widely exists in various food

products and has potential safety risks. It can be eliminated by occurring aldol

condensation with α-unsubstituted ketones in the presence of catalysts. However, the

elimination process between HMF and ketones from food is rarely studied. In this

study, the adduct formation between HMF and zingerone (ZGR) catalyzed by proline

was investigated. It revealed that the adduct formation led to 99.75% of HMF being

trapped under the optimized reaction condition. Moreover, the in vitro digestion stability

of HMF-ZGR adduct (HMZ) and its cytotoxicity against Caco-2 cells were evaluated.

The results indicated that more than 75% of HMZ was remained after a three-stage

simulated digestion. Following 24 and 48 h of incubation, HMZ exhibited cytotoxicity

against Caco-2 cells with IC50 values of 41.47± 5.33 and 25.39± 3.12mM, respectively,

versus 35.39 ± 4.03 and 19.17 ± 2.10mM by HMF.

Keywords: 5-(hydroxymethyl)-2-furfural, zingerone, adduct, aldol condensation, cytotoxicity

INTRODUCTION

5-(Hydroxymethyl)-2-furfural (HMF), a common heat-induced endogenous compound, is formed
as an intermediary product of Maillard reaction or carbohydrate dehydration in a low pH
environment (1). It exists in a wide range of food products, such as honey (e.g., mean HMF
concentration in Malaysian honey at 4–5◦C to be 35.98 mg/kg after 2 months storage while that
at 25–30◦C to be 118.47–1139.95 mg/kg after 1 year storage) (2), coffee (e.g., 213.02–238.99 and
336.03–362.05 mg/kg HMF in traditionally and instant Turkish coffee before brewing, respectively)
(3), cereal or cereal products (e.g., breakfast cereals, 6.91–240.51 mg/kg) (4), dried fruits (e.g., dried
plum, 1,600–2,200 mg/kg) (5), and dairy products (e.g., infant milk powder, mean 2.3 mg/kg) (6).
However, it is found that HMF could exert negative effects on human beings. For example, high
HMF concentration can irritate eyes, upper respiratory tract, skin, and mucous membranes (7).
On the other hand, HMF can also metabolize into toxic 5-sulfo-oxymethylfurfural (SMF) in vivo,
of which mutagenicity has been recognized by the European Food Safety Authority (EFSA) (8, 9).
Additionally, Bakhiya et al. confirmed that SMF could induce nephrotoxicity after the uptake by
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GRAPHICAL ABSTRACT | In vitro digestion of the adduct (HMZ) formed between zingerone and HMF, cytotoxicity against Caco-2 cells of HMZ, and

absorption of HMZ by Caco-2 cells.

cells (10). Besides, SMF also caused hepatic lesions in a
study carried out on FVB/N mice, in which the mice were
administrated with SMF at dosages of 31.25, 62.5, 125, and
250mg SMF/kg (11). Concerning the potentially harmful impact,
an intake threshold of 0.54 mg/day for furan derivatives used as
flavoring agents is established in Europe (12, 13). In this case,
exploring effective methods to control the content of dietary
HMF is of necessity.

Currently, a number of researches on adducting HMF have
been conducted to find effective methods to control or reduce
the HMF content in foods. For instance, Wang et al. found that
Lysine could adduct HMF to form a Schiff base (HML) and
74.70% of HMF was eliminated under the optimized condition
(14), and Hamzalioglu et al. reported that the reaction of
HMF with amino as well as sulfhydryl groups to form Michael
adducts was another potential strategy for HMF elimination (8).
Additionally, it is also found that polyphenols [e.g., (+)-catechin,
(–)-epicatechin, and malvidin 3-O-glucoside] can behave as
possible HMF scavengers by forming condensates with HMF
(15). However, the adducts formation between HMF and ketones
from food has not been reported in any literature.

Ginger, also known as ginger root, belongs to the
Zingiberaceae family, and is commonly used as a flavoring
agent in Asia because of its aromatic odor and pungent taste (16).
Zingerone (ZGR) is one of the key active ketone compounds

Abbreviations: HMF, 5-(hydroxymethyl)-2-furfural; ZGR, zingerone; SMF, 5-

sulfo-oxymethylfurfural; α-MEM, minimum essential medium ALPHA; FBS, fetal

bovine serum; NEAA, non-essential amino acids; CCK-8, cell counting kit-8; PI,

propidium iodide; NMR, nuclear magnetic resonance.

in ginger that possesses various biological activities, including
anti-oxidant (17), anti-inflammatory (18), anti-cancer (19),
anti-hyperlipidemic (20), anti-bacterial (21), and liver protection
(22) effects. Proline, an amino acid commonly distributed in
plants, is also widely used as an effective catalyst for the aldol
reaction between ketones and aldehydes (23–25). Hence, in the
present study, the adduct formation between HMF and ZGR
was investigated, with proline as a catalyst. Herein, we report the
investigation of different reaction conditions on the elimination
of HMF and the formation of HMF-ZGR adduct (HMZ), the
structural characterization of HMZ, and the evaluation of the
stability of HMZ in simulated in vitro digestion as well as the
cytotoxicity of HMZ against Caco-2 cell lines.

MATERIALS AND METHODS

Materials
HMF (99%), ZGR (98%), proline (99%), and phosphate-
buffered saline (PBS, 0.1M, pH 7.4) were purchased from
Sigma-Aldrich (Shanghai, China). High-performance liquid
chromatography (HPLC)-grade methanol was acquired from
Merck (Darmstadt, Germany). All other reagents were of
analytical grade and sourced from Guangdong Guanghua Sci-
Tech Co., Ltd. (Shantou, China). Simulated salivary fluid
(SSF), simulated gastric fluid (SGF), and simulated intestinal
fluid (SIF) were obtained from Phygene Biotechnology Co.,
Ltd. (Fuzhou, China). Minimum essential medium alpha (α-
MEM) was purchased from Thermo Fisher Scientific, Inc.
(Waltham, MA). Fetal bovine serum (FBS), non-essential
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amino acid (NEAA), penicillin, streptomycin, 0.25% trypsin-
EDTA, Hank’s balanced salt solution (HBSS), cell counting kit-
8 (CCK-8) and Annexin V-fluorescein isothiocyanate (FITC)
apoptosis detection kit were purchased from Lubio Science
(Bern, Switzerland). Filters were from Jinteng Experimental
Equipment Co., Ltd. (Tianjin, China). Sample solutions (HMF
and HMZ) were dissolved with DMSO, diluted with PBS to
different concentrations, and filtered through a 0.22µm filter for
cell experiments.

Preparation of HMZ
The proline-catalyzed aldol reaction between acetone and several
aldehydes was reported previously (26), while that between HMF
and ZGR has not been described yet. Here, the preparation of
the adduct between HMF and ZGR was performed as follows:
ZGR (1.1 mmol), proline (0.1 mmol), HMF (1.0 mmol), and PBS
(5mL) was mixed and reacted in a three-necked flask at 37◦C for
2 h. At the end of the reaction, the mixture was extracted with
ethyl acetate and purified by silica column chromatography using
petroleum ether/ethyl acetate (60/1, v/v) as eluent to obtain the
product, HMZ.

Determination and Characterization of
HMZ
The reaction mixture and purified product were subjected to
HPLC analysis (Shimadzu, Japan; with diode array detector).
The sample (0.5 mg/mL, 10 µL) was dissolved with HPLC-
grade methanol, filtered through a 0.45µm filter, and analyzed
by a Zorbax SB-C18 column (4.6mm × 150mm, 5µm,
Agilent, USA) with a gradient elution composed of eluents
A (0.01% acetic acid in water) and B (100% methanol) at
a flow rate of 1.0 mL/min. The mobile phase started with
90% A and 10% B, then linearly increased to 100% B from
0.01min to 30min, and was maintained at 100% B for
10min. The wavelength for UV detection was set in the range
of 200–400 nm.

Nuclear magnetic resonance (NMR) spectroscopy was an
efficient and accurate technique for characterization, which was
also applied in metabolomic analysis (27). In the present study,
the chemical structure of HMZ was elucidated by collecting
its 1D and 2D NMR data. HMZ (20mg) was dissolved in
0.5mL of CDCl3 at 25◦C to record the 1H NMR, 13C NMR,
distortionless enhancement by polarization transfer 135 (DEPT-
135), 2D 1H correlation spectroscopy (1H-1H COSY), 1H-
detected heteronuclear single-quantum coherence (HSQC), and
1H-detected heteronuclear multiple-bond correlation (HMBC)
spectra on a Bruker 400 MHz NMR apparatus (Bruker Corp,
Fallanden, Switzerland). Chemical shifts were expressed in parts
per million (ppm).

Themass spectrometric (MS) data of HMZwas acquired using
the LCMS-8045 triple quadrupole mass spectrometer (Shimadzu
Corporation, Tokyo, Japan) equipped with an electrospray
ionization (ESI) source in negative ionization mode. The scan
range was from m/z 50 to m/z 1000. For MS/MS measurement,
the collision energy was 19.5 eV. Data analysis was performed in
the LabSolutions workstation for LCMS-8045.

Effects of Different Reaction Parameters
on HMF Elimination and HMZ Formation
A one-factor-at-a-time design was applied to estimate the effects
of different reaction parameters on HMF elimination by ZGR, as
well as the adduct formation between HMF and ZGR. ZGR/HMF
in the molar ratio of 2: 1 was mixed in a three-necked flask and
incubated at 40◦C for different durations (0.5, 1.0, 1.5, 2.0, 2.5,
and 3.0 h) to investigate the effect of reaction time. ZGR/HMF in
the molar ratio of 2: 1 was mixed and reacted for 3 h at different
temperature levels (20, 30, 40, 50, 60, and 70◦C) to study the effect
of temperature. In addition, temperature and reaction duration
were kept constant at 40◦C and 3 h, respectively, to evaluate the
effect of different ZGR/HMFmolar ratios (4: 1, 3: 1, 2: 1, 1: 1, and
1: 2). At the end of each reaction, 30 µL of the aqueous reaction
mixture was diluted with methanol to a final volume of 500 µL
forHPLC analysis. HMF andHMZwere quantified by comparing
their peak areas to each standard curve.

In vitro Simulation Digestion of HMZ
The adduct was subjected to in vitro simulated digestion at
three stages, namely, the mouth, gastric, and intestinal stages, to
evaluate its stability (28, 29). Briefly, HMZ (2mg) was dissolved
in DMSO (200 µL), diluted with ultra-pure water to the final
concentration of 0.5 mg/mL, and then mixed with 6mL of SSF
in a flask. The mixture was magnetically stirred at 100 r/min for
2min at 37◦C tomimic saliva digestion. Afterward, 10mL of SGF
was added to simulate the gastric phase, and the mixture was
reacted for 2 h under the same condition. Subsequently, 20mL
of SIF was added for the simulation of intestinal digestion for
another 2 h. Samples (100 µL) were withdrawn at the end of each
stage of the digestion process for HPLC analysis. Each digestion
process was repeated in triplicate, and the content of HMZ was
calculated by referring to the calibration curve.

Caco-2 Cell Culture
The Caco-2 cell line (ATCC HTB-37) was obtained from the
American Type Culture Collection (Rockville, MD, USA). Cells
were cultivated by the method of Kosińska-Cagnazzo et al.
(30) with slight modifications. Specifically, α-MEM medium
supplemented with 10% FBS, 1% penicillin/streptomycin, and 1%
NEAA was used to cultivate Caco-2 cells at 37◦C and 5% (v/v)
CO2 atmosphere. When the cells reached 80–90% confluence,
they were detached with 0.25% trypsin-EDTA and further sub-
cultured on fresh growth medium. Cells between passages 30 and
35 were used.

Cell Viability Assay
Cell viability was measured by the CCK-8 method as described
by Zhao et al. (31) with modifications. Briefly, Caco-2 cells
at a density of 2.5 × 104 cells/well were seeded into 96-well
plates and maintained at 37◦C under a humidified atmosphere
containing 5%CO2 and 95% air for 24 h. Subsequently, the origin
culture medium was removed, and different concentrations (2,
4, 8, 16, 32, and 64mM) of HMZ and HMF were added.
Three duplicate wells were set for each concentration. The cells
were further incubated for 24 and 48 h, respectively. Then,
10 µL of CCK-8 solution was added into each well for 2 h,
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and the absorbance was read at 450 nm on a microplate reader
(Multiskan, Thermo, USA).

Annexin V and Propidium Iodide (PI)
Double-Staining Assay
The Annexin V-FITC apoptosis detection kit was used to
measure the percentage of apoptotic cells in flow cytometry
(FACS Calibur Becton Dickinson, USA) (14). Two milliliters of
each cell suspension (9 × 105 cells/well) were cultured in 6-
well plates. When the confluence reached 90%, the cells were
treated with HMF (0, 2, 4, 8, and 16mM) and HMZ (0, 4, 8, 16,
and 32mM) for 48 h and then harvested with trypsin (without
EDTA). Subsequently, each cell suspension was centrifuged and
washed with cold PBS twice. Then, the cells were suspended with
400 µL of binding buffer to a final density of 1 × 106 cells/well,
incubated with 5µL of Annexin V and 1µL of PI for 5min in the
dark, and subjected to flow cytometry assay.

Effect of Concentration on the Absorption
of HMZ in Caco-2 Cells
HMZ absorption was evaluated according to de Oliveira et
al. with slight modifications (32). Briefly, Caco-2 cells were
inoculated in 6-well plates at the density of 2 × 104 cells/well
(2mL) and cultured until 90% confluence at 37◦C with 5% CO2.
Then, the cells were washed thrice with 1mL of HBSS. Another
1mL of HBSS was added for further culture for 30min. Ten
microliters of HMZ solution (pH 7.4) at concentrations of 1–
100µMwere added separately and cultivated for 2 h to allow the
adduct solution to be absorbed by cells under certain condition
(37◦C, 5% CO2/95% air). The treated solution was transferred
into Eppendorf tubes for HPLC analysis. The control of each

sample under different concentrations was the respective sample
without incubation, and each of the absorption rate of the adduct
by Caco-2 cells was calculated as follows:

Absorption rate (%) =
S1 − S2

S1
× 100% (1)

where S1 is the peak area of the control, and S2 is the peak area of
the sample incubated for 2 h.

Statistical Analysis
All experiments were repeated thrice. Data analysis was
performed using Microsoft Excel, SPSS 22.0.0.1 (SPSS, Inc.,
Chicago, IL), and MestReNova software (version 12.0). The
results were expressed as means± standard deviation.

RESULTS AND DISCUSSION

Structural Elucidation of HMZ
The retention time (Rt) of HMZ was 19.54min with
purity over 95% according to the HPLC chromatogram
(Supplementary Figure 1A). The UV spectrum displayed the
absorption maxima at 334 nm, which exhibited a bathochromic
shift compared with those of ZGR (276 nm) and HMF (284 nm)
(Supplementary Figure 1B).

Based on the structural characteristic of HMF and ZGR, an
aldol condensation reaction was supposed to occur between
HMF and ZGR with proline as a catalyst to generate HMZ
(Figure 1A). In the MS spectrum (data not shown), the adduct
exhibited a deprotonated molecular ion at m/z 301 [M – H]−

(calculated for C17H17O5, 301.1), which was consistent with
that of the suggested structure (C17H18O5). This molecular

FIGURE 1 | The (A) reaction pathway and (B) MS/MS spectrum of HMZ.
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TABLE 1 | 1H and 13C NMR data of HMZ, ZGR, and HMF (δ in ppm, J in Hz).

Position HMZa ZGRb HMFc

1H 13C 1H 13C 1H 13C

1 7.24 d (15.8) 128.8 9.33 s 180.5

2 6.63 d (15.8) 123.2 2.12 s 29.5

3 – 199.4 – 207.8

4 2.89 30.1 2.80–2.83 t (6.6) 30.0

5 2.89 43.5 2.70–2.74 t (6.9) 44.9

1’ – 133.2 – 137.9

2’ 6.71 s 111.3 6.64–6.66 dd (2,8) 112.6

3’ – 146.6 – 150.8

4’ – 144.0 – 140.0

5’ 6.81 d (8.0) 114.5 6.80 d (8.0) 122.5

6’ 6.68 d (8.0) 120.9 6.69 d (2.0) 120.2

7’ 3.85 s 56.0 3.84 s 55.7

2” – 151.0 – 151.8

3” 6.58 d (3.3) 116.9 7.40 d (3.6) 126.8

4” 6.36 d (3.3) 110.6 6.55 d (3.1) 110.9

5” – 157.0 161.3

6” 4.63 s 57.7 4.57 s 56.0

aMeasured at 400 (1H) and 100 (13C) MHz in CDCl3.
bReferred to Agarwal et al. (33), cReferred to Chen et al. (34).

Overlapped signals were reported without designating multiplicity.

ion yielded two prominent peaks at m/z 165 and 123 in the
MS/MS spectrum (Figure 1B). Specifically, the fragment ion at
m/z 165 [M – C8H9O2]

− indicated the mass loss of 3-methoxy-
4-hydroxybenzyl moiety, then subsequent α-scission of ketone
yielded the ion at m/z 123 [M – C8H9O2 – C2H2O]

−. Thus, the
structure of HMZ was tentatively identified.

Subsequently, the structure of HMZ was entirely determined
by the 1D and 2D NMR data, and the detailed assignment
of H and C signals was listed in Table 1. The 1H NMR
spectrum (Supplementary Figure 2) showed the signals of 7
olefinic protons (δH 7.24, 6.63 [each 1H, d, J = 15.8Hz]; δH
6.81, 6.68 [each 1H, d, J = 8.0Hz]; 6.71 (1H, s); 6.58, 6.36
[each 1H, d, J = 3.0Hz]), one methoxy group (δH 3.85, 3H, s),
and one oxygenated methylene (δH 4.63, 2H, s). The 13C NMR
spectrum (Supplementary Figure 3) displayed 17 carbon signals,
including one carbonyl (δC 199.4) and 12 unsaturated carbons
(δC 157.0, 151.0, 146.6, 144.0, 133.2, 128.8, 123.2, 120.9, 116.9,
114.5, 111.3, 110.6). A detailed analysis of the 1D NMR data
(Table 1) showed high similarities to those of HMF and ZGR.
These results suggested that HMZ was an adduct between HMF
and ZGR.

A further comparison of the data of HMZ with those of
HMF and ZGR showed the following differences: the signal
of a methyl connected with carbonyl and that of an aldehyde
group were absent, two additional olefinic carbons (δC 128.8,
123.2) appeared, and some chemical shift changes (δC 199.4
in HMZ vs. δC 208.5 in ZGR; δC 157.0, 151.0, 116.9 in HMZ
vs. δC 161.6, 152.3, 123.3 in HMF) occurred. These differences
implied that the methyl, which was connected with the carbonyl
(C-3) in ZGR, reacted with the aldehyde group of HMF to

FIGURE 2 | The key 1H-1H COSY and HMBC correlations of HMZ.

generate a double bond (C-1/C-2) to link the two residues. In
the HMBC spectrum (Supplementary Figure 7), the observed
correlations between H-1 (δH 7.26)/H-2 (δH 6.63) and C-3 (δC
199.4) confirmed that the double bond was directly connected
with the carbonyl (C-3). The large coupling constant of H-1 and
H-2 (J = 15.8Hz) indicated the E geometry of C-1 and C-2.
Thus, the exact structure of the adduct was determined as shown
in Figure 2. The adduct was determined as a new compound
with the systematic name of 1-furyl-5-(3

′

-methoxy-4
′

-hydroxy)-
phenyl-3-pentanone.

Effects of Different Reaction Parameters
on HMF Elimination and HMZ Formation
Here, the reduction of HMF by ZGR and the formation of
their adduct were investigated at different conditions, including
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FIGURE 3 | The effects of different (A) reaction times, (B) temperatures, and (C) molar ratios on elimination of HMF and formation of HMZ. Error bars represented the

standard deviation of the average of three replicates.

reaction time, temperature, and molar ratio. Standard curves
for the quantitative analyses of HMF (50–450µg/mL, r2 =

0.9999, n = 3) and HMZ (50–500µg/mL, r2 = 0.9999, n = 3)
were established.

As depicted in Figure 3A, the amount of HMF decreased
and the concentration of HMZ increased with the prolongation
of reaction time. Over 99% of HMF was depleted, and HMZ
concentration reached 0.52 mg/mL after incubation for 3 h.
Figure 3B showed the effect of reaction temperature on HMF
reduction and HMZ formation. The remaining proportion of
HMF dramatically decreased with the increase in temperature.
In comparison, the amount of HMZ initially increased as the
temperature increased but then decreased when the temperature
was over 50◦C. It was concluded that HMF elimination and
HMZ formation were remarkably affected by temperature, and
HMZ appeared to degrade when the temperature was over
50◦C (Supplementary Figure 8). Thermal treatment-induced
degradation could be also found in other substances, such
as pyrethroid, which underwent hydrolysis, reduction or
oxidation to yield lower molecular weight compounds (35).
Figure 3C showed the influence of the molar ratio on the

reduction of HMF. HMF could be remarkably trapped by
ZGR when the ZGR/HMF ratio increased (1:2 to 2:1), and
the elimination rate could reach as high as 99% when the
ratio was ≥2:1. Additionally, a higher molar ratio promoted
the accumulation of HMZ. Hence, based on the above results,
the optimized condition for HMF elimination was the reaction
time of 3 h, the temperature of 40◦C, and the ZGR/HMF
ratio of 2:1.

Stability of HMZ in Simulated in vitro

Digestion
Adduct formation might be accompanied by adduct ingestion,
while the stability of HMZ during the digestion process was
not clear. Thus, the amount of HMZ was measured after
mimic digestion in the oral, gastric, and intestinal phases to
evaluate its stability in in vitro digestion process. The content
of HMZ decreased by 7.14, 14.19, and 24.06% after digestion
in SSF, SGF, and SIF (Supplementary Figure 9), respectively.
In addition, three new peaks with small peak areas (Rt =

12.49, 12.82, and 13.56min) in the HPLC chromatograph could
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FIGURE 4 | Effects of HMF and HMZ at different concentrations on cell viability after 24 and 48 h. Different letters indicated significant differences (P < 0.05).

FIGURE 5 | Effects of HMF and HMZ at different concentrations on apoptosis in Caco-2 cells after 48 h.

be observed in the intestinal stage as digestion progressed
(Supplementary Figure 10). But regrettably, these new peaks
could not be characterized with current data. While, few peaks
could be observed in the other two digestive environments.
The reason might be that the content of decomposition

products in the oral and gastric phases was below the
detection limit of HPLC. The results indicated that the
stability of HMZ was of moderate level because 75.94% of
the adduct was remained after undergoing three different
digestion conditions.
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Effects of HMF and HMZ on the Viability
and Apoptosis of Caco-2 Cells
In order to evaluate the cytotoxicity of HMF and HMZ
against Caco-2 cells, a combination of the CCK-8 method and
Annexin V/PI staining assay was applied and the results were
shown below.

In general, cells incubated with HMF and HMZ for 24 and
48 h displayed decreased viability in concentration- and time-
dependent manners (Figure 4). The viability of Caco-2 cells
decreased from 90.24 to 40.89% after exposure to 2–64mMHMF
for 24 h, while that of Caco-2 cells decreased from 94.54 to
40.22% in the HMZ treated group under the same condition.
Similar results could be observed when the incubation time was
prolonged to 48 h: the percentages of viable cells were from 86.65
to 30.27% in the HMF group and from 89.95 to 30.64% in the
HMZ group. The IC50 values of HMZ were 41.47 ± 5.33 and
25.39 ± 3.12mM after incubation for 24 and 48 h, respectively,
whereas those of HMF were 35.39 ± 4.03 and 19.17 ± 2.10mM.
This CCK-8 analysis demonstrated that HMZ did not display
obvious lower cytotoxicity to Caco-2 cells than that of HMF.

Apoptosis was commonly accompanied by some
characteristic biochemical changes, such as the exposure of
phosphatidylserine (Annexin V positive) on the cell membrane
and the increase in cell membrane permeability that allowed
the nucleic acid to be stained by PI (36). Therefore, Annexin
V/PI double-staining assay was applied to measure apoptosis,
and the apoptotic effects of HMF and HMZ on Caco-2 cells
were determined by flow cytometry. As seen in Figure 5, HMF
and HMZ induced apoptosis in Caco-2 cells dose-dependently,
which manifested as an increase in the number of apoptotic
cells (Annexin V+/PI– and Annexin V+/PI+). It was noticed
that exposure to HMF at 2–16mM for 48 h induced 64.52% of
normal Caco-2 cells apoptosis, whereas exposure to HMZ at
4–32mM resulted in ∼52.10% of cell apoptosis. Meanwhile,
compared with the control (8.54%), both HMF (43.40–64.52%)
and HMZ (35.90–45.20%) displayed obvious cytotoxicity to
Caco-2 cells after exposure at 4–16mM for 48 h. Consistent with
the analysis of the CCK-8 assay, the reduction of viable cells
induced by HMZ was observed. In this sense, the cytotoxicity of
HMZ toward Caco-2 cells should be noted, and that of HMZ to
other cells was also worth studying.

Effect of Concentration on HMZ
Absorption in Caco-2 Cells
According to the HPLC analysis (Supplementary Table 1), a
positive correlation was observed between the concentration
of HMZ and its absorption by Caco-2 cells. While, the HMZ
absorption rate by Caco-2 cells initially increased when the
HMZ concentration increased from 1 to 4µM, but declined
at higher HMZ concentrations. The percentages of absorption
rate were 60.74, 71.38, 56.11, and 34.71% for 1, 4, 20, and
100µM, respectively. Although the uptake of HMZ by Caco-2
cells increased with the increase in concentration, it was observed
that the absorptivity decreased at higher molar concentrations.
It had been well-elucidated that compounds either lipophilic
or hydrophilic could be absorbed via active and passive
transport routes (37). Moreover, several intestinal efflux and

uptake transporters expressed in Caco-2 cells were found to
be responsible for regulating the permeation of the substrate
during absorption, which would be also some factors to affect the
absorption process (38).

CONCLUSION

In summary, HMF could be eliminated by ZGR through the
formation of an adduct via aldol condensation with proline as
a catalyst. This process was not reported previously. In this
work, the structural elucidation of the adduct by HPLC, MS, and
NMR data, along with the investigation of the effects of different
reaction conditions, namely, reaction time, temperature, and
molar ratio, on HMF elimination and HMZ formation, were
carried out. Besides, the stability of the adduct (HMZ) after in
vitro digestion, as well as its absorption and cytotoxicity in Caco-
2 cells, were evaluated. The results demonstrated that HMZ was
stable at a moderate level. Although compared with HMF, HMZ
did show a certain toxic effect against Caco-2 cells, its effect on
other cells remained to be studied. Overall, this study provided
new data on ketones in food materials that could contribute to
the elimination of HMF.
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