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Numerous epidemiological studies have demonstrated that individuals who have
sustained a traumatic brain injury (TBI) have an elevated risk for developing Alzheimer’s
disease and Alzheimer’s-related dementias (AD/ADRD). Despite these connections,
the underlying mechanisms by which TBI induces AD-related pathology, neuronal
dysfunction, and cognitive decline have yet to be elucidated. In this review, we will
discuss the various in vivo and in vitro models that are being employed to provide
more definite mechanistic relationships between TBI-induced mechanical injury and
AD-related phenotypes. In particular, we will highlight the strengths and weaknesses
of each of these model systems as it relates to advancing the understanding of the
mechanisms that lead to TBI-induced AD onset and progression as well as providing
platforms to evaluate potential therapies. Finally, we will discuss how emerging methods
including the use of human induced pluripotent stem cell (hiPSC)-derived cultures
and genome engineering technologies can be employed to generate better models of
TBI-induced AD.

Keywords: traumatic brain injury, Alzheimer’s disease, in vivo models, in vitro models, pluripotent stem cells,
genome engineering

INTRODUCTION

Alzheimer’s disease (AD) affects over 6 million individuals in the U.S. and has a direct cost estimated
in excess of $355 billion/year (Alzheimer’s Association, 2021). Although a vast majority of late
onset AD (LOAD) cases are sporadic, numerous genetic and environmental risk factors have been
identified that contribute to lifetime risk of developing the disease. In this vein, studies over the
past few decades have also implicated traumatic brain injury (TBI) in the onset and progression
of neurodegenerative diseases later in life (Schofield et al., 1997; Chen et al., 2007; Gardner et al.,
2018). Indeed, it has been generally accepted that in addition to the primary mechanical damage
inflicted, TBI sets in place various secondary injury mechanisms with acute and long-term effects.
In addition, several studies have shown that a large-percentage of TBI patients not only suffer from
short-term cognitive impairment but also experience long-term cognitive decline similar to that
observed in AD patients (Rabinowitz and Levin, 2014). Furthermore, pathologies associated with
AD have been observed in post-mortem brain tissue of TBI patients (Ikonomovic et al., 2004).

Despite these associations between a TBI and AD onset, the mechanisms by which a TBI induces
or augments AD-related neurodegenerative processes are unclear. In this review, we will first
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discuss the various epidemiological and clinical evidence that
exists for TBI-induced AD. Next, we will describe the various
potential mechanisms for TBI-induced AD that have been
suggested by these studies. Finally, we will discuss the emergence
of in vitro models of TBI and speculate about how these
can be used to further elucidate the mechanisms by which
TBI induces AD-related pathology, neuronal dysfunction, and
cognitive decline.

EVIDENCE FOR TRAUMATIC BRAIN
INJURY -INDUCED ALZHEIMER’S
DISEASE

Because cognitive impairment often follows a TBI, the onset
of AD following head trauma has been an active area
of investigation. In this section, we will review the recent
epidemiological, clinical, and animal-based studies that have
investigated this relationship between TBI and AD. In addition,
we will discuss the limitations of these studies as it relates to
providing a definitive mechanistic link between TBI and age-
related progression of AD.

Epidemiological Studies
Broadly speaking, epidemiological studies investigating the link
between TBI and AD have been divided in their conclusions
with some demonstrating an increased risk of AD post-TBI
while others have not identified a significant association (Lye
and Shores, 2000; Dams-O’Connor et al., 2016). With respect
to the studies that support the link between TBI and AD, it
has been reported that TBI approximately doubles the likelihood
of an individual developing AD (Fleminger et al., 2003). In
support of these studies, it has been suggested that after age
and Apolipoprotein (E) genotype, TBI is the strongest risk factor
associated with non-familial, sporadic forms of AD (Daviglus
et al., 2011; Armstrong, 2019). Likewise, TBI has also been
reported to accelerate the age of onset of AD (Nemetz et al., 1999;
Schaffert et al., 2018). However, it should be noted that additional
studies have suggested that several factors might modulate this
risk of TBI-induced AD. For example, the severity of injury has
a significant effect on the likelihood of development of AD with
the reported risk increasing only twofold with moderate TBI but
over fourfold with severe TBI (Guo et al., 2000; Plassman et al.,
2000). Likewise, some studies report an increased AD risk only in
TBI cases with loss of consciousness (Schofield et al., 1997; Guo
et al., 2000).

It also has been suggested that the risk of AD after a TBI
might be sex-dependent with a significant association only found
in men (Fleminger et al., 2003; Weiner et al., 2017). This is
interesting given that women have a higher risk of developing
AD in the absence of head injury (Viña and Lloret, 2010;
Laws et al., 2018; Guo et al., 2022). It has been suggested
that female hormones such as estrogen and progesterone exert
protective effects post-TBI by modulating anti-inflammatory and
antioxidant processes (Vagnerova et al., 2008; Brotfain et al.,
2016; Ma et al., 2019). In the same vein, these same sex-related
hormones may alter AD-related mechanisms post-injury as well.

However, others have suggested that sex-based differences in
clinical outcomes after TBI might be independent of biological-
related mechanisms but rather due to sex differences in injury
type or treatment post-TBI (Ma et al., 2019; reviewed here
Mollayeva et al., 2018). Moving forward, establishing definitive
correlations between sex and TBI-induced AD will require more
extensive, well-controlled studies (Ma et al., 2019).

Finally, as is the case with many epidemiological studies, there
are several limitations that should be noted. For example, many
of the studies cited are retrospective in nature, introducing recall
bias due to which the association between TBI and AD might be
significant (Weiner et al., 2017). Moreover, many of these studies
suffer from the well-documented limitations of diagnosing AD
using only neurophysiological profiling or cognitive examination
(Tarawneh and Holtzman, 2012; Dubois et al., 2016; Weiner et al.,
2017). Perhaps because of these limitations, some prospective
studies have failed to find significant association between TBI
and AD (Katzman et al., 1989; Launer et al., 1999; Mehta et al.,
1999; Lindsay et al., 2002) even in cases with loss of consciousness
(Crane et al., 2016).

Clinical Studies
Clinicopathological studies have demonstrated a link between
TBI and the development of AD-related pathologies such as
the formation of amyloid beta (Aβ) plaques and neurofibrillary
tangles (NFTs) consisting of hyperphosphorylated tau (p-tau).
While amyloid precursor protein (APP) accumulation is a well-
known marker for diffuse axonal injury (DAI) (Gentleman et al.,
1993), a major pathology of TBI, evidence for Aβ accumulation
post-injury first appeared in studies by Clinton et al. (1991)
and Roberts et al. (1991) where Aβ deposits were observed in
one-third of short term survivors of TBI within days of the
injury. Moreover, these deposits were observed up to a few
years after the injury in one-third of TBI survivors (Roberts
et al., 1994). Similarly, Aβ42 containing diffuse Aβ deposits
have been observed acutely after injury (Gentleman et al., 1997).
While Aβ plaques similar to those observed in AD patients have
been reported in a few long-term survivors of TBI (Johnson
et al., 2012), some studies report a lack of dense mature plaques
in short-term (Ikonomovic et al., 2004) as well as long-term
survivors of TBI (Chen et al., 2009). It has been suggested that
clearance of Aβ deposits post injury by the enzyme neprilysin
might explain this lack of Aβ plaques in long-term TBI survivors
(Chen et al., 2009). Similarly, although the enzymes involved
in the amyloidogenic processing of APP such PS1 and BACE1
were found to colocalize with Aβ in damaged axons, plaque
formation was not observed even years after the injury (Uryu
et al., 2007). Overall, although the evidence for Aβ plaques post-
injury is unclear, these studies demonstrate increased amyloid
burden in TBI patients.

Repetitive mild TBI in in athletes (Stern et al., 2019), boxers
(McCrory et al., 2007) and veterans (McKee et al., 2013) has been
identified as a risk factor for the development of a tauopathy,
known as chronic traumatic encephalopathy (CTE). On the other
hand, the effect of a single TBI on tau pathology is yet to be
understood (Collins-Praino and Corrigan, 2017). In fact, NFTs
have been only rarely, if at all, reported in acute survivors of TBI
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(Smith et al., 2003; Ikonomovic et al., 2004) although alterations
in tau immunoreactivity even in the absence of NFTs have been
observed and warrant further studies. For instance, after injury,
accumulation of cis-p tau, the conformation of p-tau prone
to aggregation and found in NFTs in AD patients, has been
reported (Albayram et al., 2017). In contrast to studies focused
on acute effects of injury, NFTs, tau deposition and white matter
degeneration have been reported in long-term survivors of TBI as
indicated by immunohistochemical studies (Johnson et al., 2012,
2013). Tau deposits in long-term survivors of TBI have also been
correlated with onset of neuropsychiatric conditions later in life
(Takahata et al., 2019).

Overall, while clinical studies have provided important
evidence for the connection between TBI and subsequent
AD onset, the majority of these studies are focused on the
examination of post-mortem tissue which only provide an
endpoint of the disease. As such, it is difficult to establish
temporal relationships between the initial TBI and formation
of AD-related pathologies. Recently, progress has been made
in the use of biomarkers and advanced imaging techniques to
determine such connections. For example, amyloid PET imaging
in long-term survivors of TBI revealed amyloid pathology in
patients after brain trauma albeit in a pattern different from
those observed in AD patients (Scott et al., 2016). As it relates
to tauopathy, PET scans have revealed tau deposition in long-
term survivors of TBI (Gorgoraptis et al., 2019). Along similar
lines, cleaved tau in cerebrospinal fluid (CSF) and total tau in
interstitial fluid (ISF) have been observed to increase post-injury
and have been suggested as biomarkers for TBI (Gabbita et al.,
2005; Marklund et al., 2009).

Animal Models of Injury
Because of the limitations of epidemiological and clinical
studies, animal models have been employed to identify potential
mechanistic links between TBI and the development of AD.
Broadly speaking, these studies have employed various AD
transgenic mouse models (e.g., 3xTg, APP/PS1, Tg2576, PS19,
APP knockin) in the context of numerous injury systems [e.g.,
controlled cortical impact (CCI), midline fluid percussion injury
(mFPI), lateral fluid percussion injury (LFPI), closed head impact
model of engineered rotational acceleration (CHIMERA)]. These
studies are too numerous to review here but have been
summarized in Table 1. Instead, we highlight some of the key
studies that demonstrate a link between TBI and AD.

With respect to amyloid-related phenotypes, increased APP
immunoreactivity, a marker of axonal damage has been observed
in the white matter in rats acutely (Ciallella et al., 2002) as well
as chronically (Pierce et al., 1998; Acosta et al., 2017) (up to
1 year) post-injury. It is important to note that the temporal
and spatial pattern of APP immunoreactivity in the gray matter,
however, seem to vary depending on the mode of injury as well
as its severity (Bramlett et al., 1997). For instance, in a rat CCI
model, increased APP immunoreactivity was observed in gray
matter 6 months post-injury (Acosta et al., 2017) whereas in an
FPI model, the immunoreactivity increased transiently in the
striatum but remained elevated at the site of injury up to 1
month (Bramlett et al., 1997). Similarly, in a rat mFPI model

APP immunoreactivity was observed to increase acutely in the
hippocampus but decrease by 7 days post-injury which could be
attributed to the cell death observed at this time point (Murakami
et al., 1998). Several transgenic mouse models of AD that express
human APP, such as 3x-Tg and APP/PS1 have shown acute intra-
axonal Aβ accumulation (Tran et al., 2011b). APP/PS1 mice have
also shown to accumulate extracellular Aβ deposits (Tajiri et al.,
2013), but not Aβ plaques due to focal injury (Collins et al.,
2015). Critically, age at injury also appears to affect the extent of
these deposits (Nakagawa et al., 2000; Cheng et al., 2018). Despite
increased APP expression, only increased Aβ (Hoshino et al.,
1998) but not plaques have been reported in rodent models most
likely due to the differences in rodent and human Aβ species.
Diffuse Aβ plaques, however, were observed in a pig model with
gyrencephalic brains similar to humans rather than lissencephalic
brains as present in rodents upon DAI (Smith et al., 1999a).

As it relates to tauopathies, while repetitive injury models
have been utilized to understand tau pathologies after injury,
the effect of a single injury is yet to be elucidated. Presence of
tau oligomers as well as tau phosphorylation has been reported
in rat FPI (Hoshino et al., 1998; Hawkins et al., 2013), CCI
(Acosta et al., 2017) and mouse blast injury (Huber et al., 2013)
models as well as in tau transgenic mouse models (Tran et al.,
2011b). Similar to studies that suggest an Aβ independent tau
pathology in AD (reviewed here (van der Kant et al., 2020),
tau phosphorylation due to injury in 3xTg mice has also been
suggested to be independent of Aβ pathology (Tran et al., 2011a).

Despite the utility of animal studies, the inherent complexities
and multi-cellular nature of the in vivo environment have made
it difficult to make definitive mechanistic links between TBI-
induced cellular injury and AD-related phenotypes as well as
tease apart cell-autonomous vs. cell-non autonomous aspects
of such relationships. Similarly, because animal models do not
recapitulate all aspects of the human disease (Duff and Suleman,
2004; Seok et al., 2013; Warren et al., 2015), it is questionable
to what degree these findings in animal models will translate to
the human condition. In the future, the use of complimentary
human-based systems will be necessary to confirm findings made
using animal models.

POTENTIAL MECHANISMS FOR
TRAUMATIC BRAIN INJURY -INDUCED
ALZHEIMER’S DISEASE

Despite the limitations of epidemiological, clinical, and animal-
based studies, these investigations have suggested some potential
mechanisms by which TBI can lead to AD onset and age-related
progression. In this section, we will summarize some of these
hypothesized mechanisms (Figure 1).

Amyloid Beta(Aβ)
The amyloid cascade hypothesis posits that Aβ deposition is
central to the pathogenesis of AD and might be due to either the
increased production of amyloidogenic Aβ or due its aberrant
clearance (reviewed here Selkoe and Hardy, 2016). Aβ peptides
are generated from APP which is a transmembrane protein
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TABLE 1 | Summary of AD phenotypes observed in animal models of injury.

Animal model Type of
transgenic animal

TBI model TBI induced at Time post-injury Key conclusions References

Mouse 3x-Tg CCI 5–7 months 24 h, 7 days ↑ Aβ and p-tau Tran et al., 2011a

Tau P301L CCI 6 months 24 h ↑p-tau Tran et al., 2011b

APP/PS1 Weight drop 12–16 months 72 h ↑Neuronal loss
↑microglial reactivity

Lecca et al., 2019

APP/PS1 CHIMERA 6 or 13 months 14 days Transient ↑Aβ deposit in young mice,
↓Aβ deposit in old mice

↑microglial reactivity in old WT mice ↓
in APP/PS1 mice

Cheng et al., 2018

APP/PS1 CHIMERA 5.7 months 8 months ↑Microglial and astrocytic reactivity
No changes in Aβ or tau levels

Cheng et al., 2019

APP/PS1 Focal (needle)
injury

3 or 9 months 24 h, 7 days No changes in Aβ plaque due to injury
↑Microglial reactivity and

↓Synaptophysin at 24 h, recovered by
7 days in both WT and APP/PS1 mice

Collins et al., 2015

APP/PS1 CCI 3 months 16 weeks ↓Aβ deposition Miszczuk et al., 2016

APP/PS1 CCI 3 months 2, 6 weeks ↑Aβ deposits ↑neuronal loss Tajiri et al., 2013

APP/PS1 CCI 8 months 9 h-2 months ↑Inflammation at 2 months post-injury Webster et al., 2015

hTau FPI 2 months 3 days, 135 days ↓Microglial reactivity Kokiko-Cochran et al., 2017

PDAPP CCI 2 year 1, 9, 16 weeks ↓In Aβ deposits ↑neuronal loss at 16
weeks

Nakagawa et al., 2000

PDAPP CCI 3–4 months 2 weeks ↑Cognitive dysfunction Brody and Holtzman, 2006

PDAPP CCI 4 months 2, 5, 8 months ↓In Aβ deposits ↑neuronal loss at 5–8
weeks

Nakagawa et al., 1999

TgArcSwe CCI, mFPI 3 months 12, 24 weeks ↑Aβ deposits ↑ reactive astrocytes Zyśk et al., 2019

R1.40 LFPI 2 months 3, 120 days ↓Inflammation at 3 dpi ↑ at 120 dpi Kokiko-Cochran et al., 2015

Non-transgenic
(BALB/c)

mFPI 3 months 7, 30 days LPS challenge 30 dpi ↑inflammation
and cognitive deficits

Muccigrosso et al., 2016

Non-transgenic
(C57BL/6)

CCI 3 months ↑Microglial mGluR5 expression which
when inhibited ↓neuronal loss

Byrnes et al., 2012

Non-transgenic
(C57BL/6)

Weight drop 3 months 4 h–30 days ↑γ-Secretase expression in astrocytes
and microglia

Nadler et al., 2008

Rat Non-transgenic
(Sprague-Dawley)

CCI 2 months 3 h–4 weeks ↑APP Ciallella et al., 2002

FPI 1–30 days Transient/delayed ↑APP Bramlett et al., 1997

Compression 1–21 days ↓APP in injury periphery ↑ in white
matter

Lewén et al., 1995

Pig Rotational
acceleration

4 months 1–10 days ↑Diffuse Aβ deposits ↑tau Smith et al., 1999a

CCI, Controlled Cortical Impact; FPI, Fluid Percussion Injury; mFPI, Midline Fluid Percussion Injury; LFPI, Lateral Fluid Percussion Injury; CHIMERA, Closed-Head Impact
Model of Engineered Rotational Acceleration; 3x-Tg, Triple-Transgenic; APP, Amyloid Precursor Protein; PS1, Presenilin-1; hTau, Humanized Tau; PDAPP, PDGF-Driven
Human APP; TgArcSwe, Transgenic with Arctic mutation and Swedish mutation.

with an extracellular N-terminus and intracellular C-terminus.
APP can be cleaved by the amyloidogenic pathway leading to
Aβ peptide formation or by the non-amyloidogenic pathway.
In the non-amyloidogenic pathway, α-secretase cleaves APP to
form soluble APPα (sAPPα) and a membrane-bound C-terminal
fragment called C83 (Kojro and Fahrenholz, 2005; LaFerla et al.,
2007). In the amyloidogenic pathway, β-secretase cleaves APP
to form soluble APPβ (sAPPβ) and a 99 amino acid C-terminal
fragment called C99 which is further cleaved by y-secretase to
form Aβ peptides of varying lengths and a membrane-bound APP
intracellular domain (AICD). γ-secretase cleaves C83 formed by
α-secretase cleavage to generate 3kDa protein called p3 (Haass
et al., 1993) and a membrane-bound AICD. AICD formed by

γ-secretase cleavage of C99 could be internalized and further
cleaved by caspases to form toxic species (C31). Aβ peptides,
predominantly Aβ42 are prone to aggregation (Kim and Hecht,
2005) and might form amyloid fibrils that accumulate to form
senile plaques (Jarrett et al., 1993; Younkin, 1998). The exact
species that is toxic to neurons is still unknown, although, several
in vitro studies point toward Aβ oligomers being neurotoxic
(Lambert et al., 1998; Hartley et al., 1999).

Diffuse axonal injury observed in TBI is marked by APP
upregulation. Increased levels of Aβ40 as well as of Aβ42 and of
Aβ deposits as a result of amyloidogenic processing of APP have
been observed in animal models post injury (Hoshino et al., 1998;
Smith et al., 1999a; Tran et al., 2011a; Tajiri et al., 2013). Various
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FIGURE 1 | Potential Mechanisms for TBI-Induced AD. À Diffuse axonal injury that results from TBI can lead to upregulation of APP as well as increased
amyloidogenic processing of APP to pathogenic Aβ40 and Aβ42. In addition, axonal degeneration could also lead to the extracellular release of Aβ. Á Injury can also
result in calcium influx in neurons. In turn, this can result in activation of caspases that induce the amyloidogenic processing of APP through elevated BACE1
availability. Â Injury-induced cytokine release (IL-1) by astrocytes can also result in Ã the upregulation of APP expression and an associated increase in its
amyloidogenic progressing through upregulation of BACE and PS1. Ä Along similar lines, microglial activation and production of IL-6, IL-1 and TNFα can increase
APP transcription, upregulation of PS1, and increased amyloidogenic APP processing. Å TBI also can modulate Aβ clearance by neprilysin generated by microglia
leading to aberrant clearance of Aβ. Æ Cell injury can also elevate FYN tyrosine kinase activity leading to increased tau phosphorylation as well as activation of the
NMDAR subunit NR2B, thereby modulating synaptic plasticity and increasing excitotoxic vulnerability. Ç IL-6 upregulation post-injury can also lead to tau
hyperphosphorylation through elevated MAPK-p38 signaling. Figure was generated with the assistance of Biorender.

mechanisms of Aβ generation and accumulation have been
posited-persistent axonal damage after a single injury might be
a continual source of Aβ formation. Degeneration of these axons
could release Aβ into the extracellular space. The accumulation of
APP, BACE1 and PS-1 might also be due to the impaired axonal
transport observed in DAI as suggested by a rodent peripheral
nervous system (PNS) injury model (Cribbs et al., 1996; Chen
et al., 2004). In fact, targeting these enzymes including BACE
and γ-secretase has been shown to reduce neuronal cell loss
post-injury (Loane et al., 2009).

APP expression could also be upregulated upon cytokine
induction (IL-1) by neurons and glia observed post-injury
(Goldgaber et al., 1989; Ciallella et al., 2002). Oxidative stress-
induced upregulation of BACE and γ-secretase could also be
speculated to contribute to the amyloidogenic processing of
APP post-TBI (Tamagno et al., 2002). Activation of caspases
due to calcium influx in neurons could also contribute to the
amyloidogenic cleavage of APP potentially through increasing
BACE availability (Walker et al., 2012). On the other hand, it is

unclear if upregulation of APP post-injury has neuroprotective
effects with cognitive outcomes declining upon knocking out
APP (Corrigan et al., 2012a) or if it has no effect at all
(Murai et al., 1998).

Excitotoxicity is a major secondary injury mechanism in TBI.
N-methyl-D-aspartate receptor (NMDAR) activation post-injury
has been shown to shift APP processing to the amyloidogenic
pathway from non-amyloidogenic, potentially contributing to
increased Aβ (Lesné et al., 2005). Upregulation of Aβ clearing
enzyme neprilysin has also been observed in TBI patients who
didn’t display Aβ plaque pathology indicating the possibility of
Aβ clearance by neprilysin (Chen et al., 2009) and potentially
an imbalance between the generation and clearance of Aβ in
plaque formation. Recent studies indicate that promoting the
non-amyloidogenic processing of accumulated APP by soluble
APP alpha (sAPPα) administration (Corrigan et al., 2012b),
increasing ABCA1 levels (Loane et al., 2011) and inhibiting c-JNK
(Rehman et al., 2018) reduced Aβ pathology further suggesting a
role for Aβ accumulation in AD pathogenesis post-TBI.
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Tau
Tau is a microtubule associated protein expressed in neurons
whose primary function is to stabilize microtubules. It has
six isoforms characterized by the number of tubulin binding
domains (R) in the C-terminal and the presence of one
or two or the absence of a 29-amino acid insert (N). Tau
undergoes phosphorylation in at least 80 different sites, such as
Thr231, Ser404 that allow it to detach from microtubules (Buée
et al., 2000). Its phosphorylation depends upon the activity of
various kinases such as MAPK (Drewes et al., 1992), CDK5
(Baumann et al., 1993) and GSK3β (Mandelkow et al., 1992)
and phosphatases such as PP2A (Wang et al., 2013). Pathological
hyperphosphorylation of tau leads to its oligomerization and
formation of paired helical fragments that form the core of
neurofibrillary tangles in AD. Furthermore, tau pathology has
also been observed to spread across cells in a prion-like manner
(Clavaguera et al., 2015).

Tau localizes mainly in axons, although low levels are present
in dendrites as well (Ittner et al., 2010). Tau has been shown to
associate with FYN tyrosine kinase in dendrites allowing FYN to
phosphorylate and activate the NMDAR subunit NR2B, thereby
regulating synaptic plasticity as well as potentially rendering
neurons vulnerable to excitotoxicity (Salter and Kalia, 2004; Ittner
and Götz, 2011). This has been speculated to contribute to Aβ

induced toxicity in neurons in AD with FYN kinase inhibition
suggested as a potential therapeutic for AD (Nygaard et al., 2014).
FYN inhibition in a repetitive injury model has been shown to
reduce tau phosphorylation and memory deficits (Tang et al.,
2020) indicating a potential route for tau phosphorylation and
pathology post-injury (Schumann et al., 2008; Rubenstein et al.,
2017).

Tau pathology has been observed to spread to the contralateral
hemisphere post-injury in a tau transgenic mouse model
(Edwards et al., 2019). Prion-like transmission of tau pathology
has also been observed in uninjured rodents upon injection of
tau oligomers or brain homogenates from rodent models of
injury (Gerson et al., 2016; Zanier et al., 2018). A reduction in
phosphatases observed in rat injury models could also contribute
to tau hyperphosphorylation (Arun et al., 2015). Additionally,
tau phosphorylation post- injury has been suggested to alter
the microglia and macrophage mediated inflammatory response
hinting at a link between tau pathology and inflammation post-
injury (Kokiko-Cochran et al., 2017).

Inflammation
Chronic inflammation is a major component of AD pathology
(Kinney et al., 2018). Recent GWAS studies in fact identify a
number of immune responsive genes as risk factors for AD
(Efthymiou and Goate, 2017). Inflammation has been shown
to exacerbate Aβ and tau pathology as well as play a key
role in neurodegeneration (Barroeta-Espar et al., 2019; Griciuc
and Tanzi, 2021). While the inflammatory response to TBI
is mediated by a number of cell types, we will focus on the
microglial and astrocytic contribution.

Studies indicate that microglia phagocytose Aβ at the earlier
stages of the disease contributing to its clearance but remain

chronically activated marked by a decrease in their phagocytic
capacity (Hickman et al., 2008; Yang et al., 2011). Such prolonged
activation is linked to a chronic inflammatory response marked
by impaired Aβ clearance, secretion of cytokines and reactive
oxygen species (ROS) (Meda et al., 1995; McDonald et al., 1997).
However, since markers for microglial activation have not been
clearly established, there is some controversy on the nature of
microglia surrounding Aβ plaques in AD post-mortem brains
with reports of activated/reactive and of senescent microglia
being present (Streit et al., 2009).

In brain trauma, microglia respond to injury by acutely
elevating pro- and anti-inflammatory cytokine levels and by
phagocytosing Aβ generated as a result of injury; in fact, microglia
containing Aβ have been found in TBI patients (Chen et al., 2009;
Mannix and Whalen, 2012). Acute release of pro-inflammatory
cytokines have been shown to have neuroprotective effects
(Penkowa et al., 2000). However, chronic activation of microglia
has been observed in long-term survivors of TBI (Johnson et al.,
2013) as well as in animal models of injury (Loane et al.,
2014a) with the existence of primed microglia with exacerbated
responses to immune challenges post-injury observed in a rodent
model (Muccigrosso et al., 2016). Persistent microglial activation
is hypothesized to contribute to neurodegeneration post-injury
(Kokiko-Cochran et al., 2015). Upregulation of NADPH oxidase
(NOX) enzymes that generate ROS post-injury (Loane et al.,
2014a) could alter microglial activation by polarizing them to an
M1-like state promoting neurodegeneration (Kumar et al., 2016).

Microglial activation and secretion of IL-6, IL-1, and TNFα

by microglia and astrocytes have been suggested to increase APP
transcription and y-secretase activity leading to amyloidogenic
processing of APP (Sheng et al., 2003; Lee et al., 2008; Breunig
et al., 2013). Additionally, upregulation of PS-1 in astrocytes
and microglia has been observed in an animal model of injury
(Nadler et al., 2008), suggesting glial role in Aβ processing.
Moreover, Aβ accumulation post-injury has been shown to
modulate microglial activation, with chronic activation observed
in AD transgenic but not wild type (WT) mice after injury
(Kokiko-Cochran et al., 2015). Upregulation of cytokines such as
IL-6 (Kumar et al., 2015) reported after TBI could also lead to tau
hyperphosphorylation, potentially through MAPK-p38 signaling
(Quintanilla et al., 2004).

Additionally, metabotropic glutamate receptor activation in
microglia has been suggested to decrease microglial activation
as well as neuronal loss in a mouse model of injury (Byrnes
et al., 2012; Loane et al., 2014b). However, the timing of
inhibiting microglial activation might be important since a
recent study suggests that inhibition of chronic microglial
activation increases neurodegeneration post-injury in TBI
patients (Scott et al., 2018).

IN VITRO MODELS OF TRAUMATIC
BRAIN INJURY

Work with various model systems has allowed for the
identification of several potential mechanisms by which TBI
exerts its risk modifying effects as it relates to AD onset. As
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discussed previously each of these model systems has numerous
limitations which make it difficult to dissect the mechanistic
links between TBI and AD. As such, accessible in vitro models
are needed to complement these existing model systems. In this
section, we will review currently existing in vitro TBI models as it
relates to mode of injury (e.g., transection, compression, stretch,
blast, shear, microfluidic) and cell types (e.g., primary tissue,
dissociated primary cells, immortalized cells lines, pluripotent
cells) employed (Table 2). In addition, we will speculate how
these models can be utilized in the future to study TBI-
induced AD.

Modes of Injury
Due to the heterogeneous nature of the type of injury that is
induced in animal models, correlations between injury intensity
and frequency with cellular phenotypes have been difficult
to precisely ascertain (DeWitt et al., 2018). In this vein,
various in vitro injury paradigms have been engineered which
eliminate the complexities associated with in vivo experiments by
minimizing confounding variables and facilitating a more direct
investigation of the effects of mechanical insult. Here, we will
discuss how each of these modes of injury recapitulate various
aspects of a TBI. In addition, the limitations of each of these
injury paradigms will be summarized.

Transection
Transection models involve utilizing stylets (Tecoma et al.,
1989), blades (Chuckowree and Vickers, 2003) or rotating scribes
(Mukhin et al., 1997) to introduce cuts in cultures, typically
transecting axons. Although simple, the injury caused by these
models are not often reproducible or controllable in terms of
the biomechanical force involved. Moreover, they mimic primary
axotomy in TBI, which occurs only in a small proportion of
all TBI cases. Nonetheless, these models have lent insight into
axonal regeneration post-injury (Chuckowree and Vickers, 2003),
apoptotic cell death in mixed cultures (Shah et al., 1997) and
calcium influx (Mandolesi et al., 2004) or proteomic changes
(Lööv et al., 2013) following injury.

Compression
Compression injury models involve weight drop or pistons to
compress 3-D, organoid or organotypic slice cultures (Tang-
Schomer et al., 2014). Closed loop models allowing for
reproducible injury have been developed (Cullen et al., 2011; Bar-
Kochba et al., 2016). Additionally, these systems allow for live
cell imaging. Importantly, controlling the piston size allows for
the injury of various regions of the culture and study the effects
in surrounding regions. However, the strain field is difficult
to characterize with techniques to do so only being developed
recently (Bar-Kochba et al., 2016).

Stretch
Stretch injury models involve culturing neurons on a flexible,
deformable substrate (e.g., silicone) and stretching the substrate
along one (uniaxial; Pfister et al., 2003) or both (biaxial;
Morrison et al., 2006) directions using pneumatic systems. These
models recapitulate DAI pathology and have shown axonal

varicosities, axonal transport disruption and apoptotic cell death
as observed in animal models or in clinical studies (DeRidder
et al., 2006; Monnerie et al., 2010; Tang-Schomer et al., 2012).
Additionally, these models allow for the culture of organotypic
slice cultures, although typically 2-D cultures are utilized in
these models. Moreover, these systems can be combined with
multi-electrode array (MEA) systems to allow for the monitoring
of electrophysiological changes post-injury (Kang et al., 2014).
A disadvantage of these systems is that the applied strain is not
uniform throughout the substrate and is not well characterized
(Morrison et al., 2011).

Blast
Blast injury devices employ high pressure waves using
compressed gas delivered via a shock-tube (Effgen et al.,
2012) or using focused ultrasound (Lai et al., 2020) to mimic
shock waves, particularly a transient increase in pressure due
to a blast in 3-D cultures or organotypic slice cultures (Effgen
et al., 2014; Zander et al., 2017). These have been used to
study blood brain barrier disruption (Hue et al., 2013) and
electrophysiological changes post-injury (Vogel et al., 2015). One
limitation of these systems, though, is that the construction of
these devices might be cost-prohibitive.

Shear
Shear stress models introduce shear stress either by moving one
portion of the culture rapidly while its parallel surface is held fixed
(LaPlaca et al., 2005) or by utilizing fluid shear stress by placing
a rotating plate over cultures (LaPlaca and Thibault, 1997). Use
of 3-D cultures in these models allows for complex-co-culture
systems (Cullen et al., 2007). Critically, deformation due to shear
stress is a major component of TBI and, thus, these systems
uniquely mimic that aspect of the in vivo injury.

Microfluidic Platforms
More recently, microfluidic platforms to injure cells are also
being employed to study axonal transport (Magdesian et al.,
2012), hyperexcitability (Nagendran and Taylor, 2019), and
mitochondrial damage (Dollé et al., 2014) post-injury. These
devices typically culture cells in a microfluidic device patterned
such that the neuronal cell bodies are restricted to one
compartment and the axons are directed along a channel;
some models also allow for culturing organotypic slice cultures
on flexible substrates. Axotomy or injury is introduced by
vacuum aspiration (Taylor et al., 2005), stretching the flexible
substrate (Dollé et al., 2013) or compressing cultures using
polydimethylsiloxane (PDMS) pads (Hosmane et al., 2011).
Microfluidic platforms allow us to restrict the injury to specific
regions of the cell (Shrirao et al., 2018). However, these
systems require complex fabrication techniques as the pneumatic
systems that often drive the compression/stretch require precise
connections with the microfluidic chambers.

Cells Utilized in in vitro Injury Models
Various cell and tissue types exist for the in vitro modeling
of TBI. These cell types offer several advantages over their
in vivo counterparts. For example, these cell types allow for a
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TABLE 2 | Summary of in vitro injury model studies with key injury phenotypes observed in these models highlighted.

In vitro injury
model

Cells/Tissue used Key conclusions/Injury phenotype Observed References

Compression Primary rat neurons Increased glutamate release and neuronal activity
Transient changes in membrane permeability

Cullen et al., 2011; Tang-Schomer
et al., 2014; Bar-Kochba et al., 2016

Shear Primary rat neurons Cell death and loss of neurites observed with high
shear rates

LaPlaca et al., 2005

Primary rat neuron and astrocyte co-culture Astrocyte response to injury depends on injury
severity-astrocytic hypertrophy and GFAP
immunoreactivity observed

Cullen et al., 2007

Transection Primary rat neurons Acute increase in calcium influx post-injury Mandolesi et al., 2004

Altered dendrite numbers and length in interneurons Brizuela et al., 2017

Apoptotic cell death observed post-injury Shah et al., 1997

Stretch Primary rodent neurons Increased calcium influx, disrupted axonal transport Iwata et al., 2004; Lusardi et al., 2004;
Li et al., 2019

Cell line (NT2), primary rodent neurons Axonal swelling observed, no primary axotomy but
delayed elastic response observed after injury

Smith et al., 1999b; Tang-Schomer
et al., 2010

Primary rodent neurons Transient increase in membrane permeability Geddes et al., 2003

Primary human neurons, hiPSC-derived neurons Apoptotic and/or necrotic cell death observed Sherman et al., 2016;
Rosas-Hernandez et al., 2019

Organotypic slice cultures, primary rodent neurons Synaptic dysfunction and NMDAR activation
observed

Tavalin et al., 1995; DeRidder et al.,
2006; Cater et al., 2007

higher degree of control as specific cell types can be interrogated
individually or combined at reproducibly defined ratios. In this
vein, analysis of such cultures allows for the dissection of TBI-
induced AD related phenotypes that are exerted through cell-
autonomous vs. –non-autonomous mechanisms. In addition,
injury with in vitro cell preparations allows for a greater ease-
of-use than in vivo models which require technically complex
surgical procedures. Finally, these in vitro cell types are amenable
to a greater level of genetic and pharmacological manipulation
than in vivo models. Despite these advantages, each of these
cell preparations have inherent limitations that we will highlight
in this section.

Primary Tissue Preparations
Acute preparations of rodent tissue (∼400 µm or less in
thickness) can be isolated and subjected to injury within a
few hours of isolation. These slices could be isolated from
animals irrespective of their age, thereby allowing us to utilize
mature cells in in vitro models. Additionally, these preparations
preserve the native architecture of the tissue. However, the
isolation procedure in itself could confound the injury response
(Morrison et al., 2011).

On the other hand, organotypic slice cultures, isolated
typically from rodent hippocampus are cultured for days before
being used in an injury platform (often used in blast, stretch
and compression models). Similar to acute preparations, these
cultures retain the 3-D architecture and complexity of in vivo
tissues. However, these slice cultures are generally isolated
from younger animals, slowing down the maturation of the
cells when cultured.

Dissociated Primary Cells
Primary cells enzymatically isolated from rodent tissue are used
in several in vitro models (Shah et al., 1997; LaPlaca et al., 2005;

Cullen et al., 2011; Bar-Kochba et al., 2016). These allow us
to study cell-type specific responses to TBI as well as allow
for complex co-culture models. Depending on the method, the
isolation procedure introduces some mechanical damage prior
to the in vitro injury. This is specifically an issue in case of
cultures that utilize microglia that are transcriptionally different
when isolated and cultured. Additionally, these cells are typically
isolated from embryonic tissue and require long periods before
maturation (Morrison et al., 2011). In addition, primary cell
sources rapidly lose disease phenotypes upon ex vivo culture and
are not amenable to genetic modification.

Immortalized Cell Lines
Various immortalized cell lines of various subtypes (e.g.,
neuronal-like, microglial, endothelial) and origins (e.g., human,
mouse, rat) have been used extensively in conjunction with
in vitro injury models (Smith et al., 1999b; Triyoso and Good,
1999; Pfister et al., 2003; Salvador et al., 2018; Li et al., 2019;
Yin et al., 2020). The main advantage of these cell lines is
their accessibility and extensive characterization. However, one
major limitation of immortalized cells is that they might not
represent the phenotypic maturity of their in vivo counterparts
or display the same functional properties (Gordon et al., 2013;
Carter and Shieh, 2015). In addition, immortalized cell lines
often have abnormal karyotypes with unknown dosage at key
disease-relevant genes (Ouellette et al., 2000).

Human Induced Pluripotent Stem Cells
Advances in cellular reprogramming have enabled the generation
of in vitro central nervous system (CNS) disease-in-a-dish models
that can be used to investigate the molecular mechanisms
of disease origins as well as interrogate potential therapeutic
interventions (Goldstein et al., 2015; Ghaffari et al., 2018). In
particular, human induced pluripotent stem cells (hiPSCs), which
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can be derived from the reprogramming of somatic cells, can
differentiate into all of the neural lineages and supporting cell
types that comprise the CNS (Hong and Do, 2019). As such,
hiPSC-derived cell types have been recently used in stretch and
blast models of injury (Sherman et al., 2016; Lai et al., 2020),
providing the ability to study TBI in a more relevant human
system. However, hiPSC-derived cells resemble fetal neurons in
nature, require prolonged differentiations to generate certain
cell types and exhibit a lot of variability across clones and
differentiations (Dolmetsch and Geschwind, 2011).

Use of in vitro Models to Study the Potential
Mechanisms Linking Traumatic Brain Injury and
Alzheimer’s Disease
Although in vitro models have been used extensively to
interrogate the effects of TBI on neural cell phenotypes, only
recently have these systems been applied to investigate the
molecular and cellular mechanisms that might induce the onset
of AD post-TBI. For example, Wu et al. (2020) used mouse
hippocampal slice cultures in conjunction with a weight drop
model to interrogate the TBI-induced AD-related pathologies.
Interestingly, the authors observed that injury induced a
marked increase in APP cleavage. Mechanistically, the authors
determined that injury induces increased delta-secretase (AEP)
expression which mediates APP fragmentation and subsequent
neuronal cell death.

Several studies have also used in vitro platforms to investigate
the potential mechanisms by which cell injury can lead to
tau-related pathologies. For example, in one such study a
stretch model employing rodent hippocampal cells was used
to investigate the effect of injury on tauopathy (Braun et al.,
2020). This study revealed that mechanical stretching of cultured
neurons resulted in tau mislocalization to dendritic spines which
results in subsequent synaptic dysfunction. Critically, the authors
identified a strong relationship between injury dynamics and
the extent of tau mislocalization. Finally, through the use of
pharmacological inhibitors the authors showed that the injury-
induced synaptic deficits due to tau hyperphosphorylation were
mediated likely by GSK3β and CDK5, kinases that phosphorylate
tau and whose expression has been observed to be upregulated in
AD brains (Yamaguchi et al., 1996; Blalock et al., 2004).

Collectively, these studies set a strong precedent for using
in vitro models for the identification of possible mechanisms
linking TBI and AD. In the future, given the utility of
neurons, astrocytes, and microglia differentiated from patient
derived hiPSCs in various culture formats, these cells could be
utilized in in vitro injury models to investigate the mechanisms
of TBI-induced AD. In one such study, a high-intensity
focused ultrasound was used to induce mechanical injury
in 3-D hiPSC-derived cortical organoids. Remarkably, injured
organoids displayed increased levels of pathologically associated
phosphorylated tau (Lai et al., 2020). In addition, injury disrupted
nucleocytoplasmic transport in a manner similar to that observed
in AD (Eftekharzadeh et al., 2018). Finally, a more recent
study that used hiPSC-derived neurons in the context of a
stretch-based model demonstrated that injury reduced APP
axonal transport as well increased the accumulation of axonal

amyloidogenic fragments (Chaves et al., 2021). Moving forward,
given that phenotypes such as elevated Aβ peptides and tau
hyperphosphorylation are readily observed in AD hiPSC lines
(Israel et al., 2012; Kim et al., 2015; Jones et al., 2017), future
studies could employ these cell lines to investigate the effect
of cell injury on the induction or augmentation of AD-related
molecular, biochemical, and cellular changes.

FUTURE DIRECTIONS: ROLE OF SEX
AND GENETIC FACTORS

There is emerging evidence that sex can have a significant
influence on TBI risk and related clinical outcomes (Gupte et al.,
2019; Ma et al., 2019). The potential genetic, biochemical, and
environmental causes for these sex-specific differences have been
reviewed elsewhere (Gupte et al., 2019; Ma et al., 2019). On the
other hand, there is a paucity of research related to investigating
the mechanisms by which TBI-induced AD can be influenced by
sex. Interestingly, while AD is more prevalent among females,
the clinical outcomes associated with TBI appear to be worse
in males (Viña and Lloret, 2010; Laws et al., 2018; Gupte et al.,
2019; Ma et al., 2019; Guo et al., 2022). Thus, future studies that
employ in vivo and in vitro models might be able to identify
the molecular underpinnings of sex-based differences. Indeed,
several studies have used hiPSC-based models of other diseases
to identify the role of sex in disease onset and progression (Huo
et al., 2019; Lock et al., 2021; Paci et al., 2021). In the same regard,
moving forward similar study designs could be employed to
determine the presence and mechanisms of sex-based differences
in TBI-induced AD.

In addition to age at injury and injury severity, the
pathological consequence of TBI can be influenced by a variety
of genetic factors (Wilson and Montgomery, 2007; Dardiotis
et al., 2010; Bennett et al., 2016; Kurowski et al., 2019). As it
relates to TBI-induced AD, polymorphisms in Apolipoprotein
E (APOE) appear to be the most prominent risk-modifying
genetic factor. APOE is a cholesterol transport lipoprotein that
is primarily secreted by astroglial cells in the CNS. Broadly
speaking, APOE has three main isoforms (E2, E3, and E4)
of which APOE4 has been reported to increase the risk as
well as decrease the median age of AD onset whereas APOE2
has been demonstrated to mitigate the onset and age-related
progression of AD (Bales et al., 1997; Castellano et al., 2011). The
role of APOE in modulating AD-related phenotypes has been
reviewed extensively elsewhere (Liu et al., 2013). Briefly, APOE
isoforms have been shown to differentially clear Aβ and affect
its aggregation (Bales et al., 1997; Castellano et al., 2011) as well
as modulate tau phosphorylation and immune responses in AD
(LaDu et al., 2001; Brecht et al., 2004).

Despite the strong evidence linking APOE isoforms to
modulation of AD onset and age-related progression, the role
of APOE polymorphism in influencing AD-related outcomes
post-TBI remains unclear. For example, several studies have
indicated that clinical outcomes worsen in APOE4 individuals
post-injury with Aβ deposition being observed more frequently
(Nicoll et al., 1995; Friedman et al., 1999). Confirmatory work
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with a transgenic AD mouse model demonstrated that in ApoE4
animals injury induced Aβ plaque formation whereas only
diffuse Aβ deposits were observed in ApoE3 or ApoE knockout
mice indicating a role for ApoE4 in Aβ aggregation (Hartman
et al., 2002). On the other hand, in a 3xTg AD mouse model
crossed with human ApoE (ApoE2, 3 and 4 isoforms), increased
APP immunoreactivity, but similar levels Aβ40 or Aβ42, were
observed acutely after injury in 3xTg-ApoE4 mice compared
to mice with other ApoE genotypes (Bennett et al., 2013).
However, injury outcomes have been reported to worsen with
time in human ApoE4 expressing mice so evaluation of Aβ and
tau pathology at further time points are required (Sabo et al.,
2000). Interestingly, a recent transcriptomic study addressing
this question observed no ApoE isoform specific changes in
the transcriptome post-injury in human ApoE expressing mice
(Castranio et al., 2017). However, the isoform specific effects
may also be brain-region dependent (Ezra et al., 2003) with gene
expression changes observed in an isoform-dependent manner
to a larger extent in the hippocampus (Crawford et al., 2009).
Some epidemiological studies have found no additional risk in
developing AD conferred by ApoE4 after TBI with one study
indicating age-dependent effects of ApoE in determining injury
outcome (Teasdale et al., 2005) suggesting the need for further
studies elucidating the role of ApoE in determining injury
outcome as well as in mediating neurodegenerative processes
post-injury (O’Meara et al., 1997; Chamelian et al., 2004).

As it relates to the use of in vitro models, recent studies have
demonstrated the utility of hiPSC-based platforms combined
with powerful gene editing techniques such as CRISPR/Cas9 in
investigating the contribution of genetic risk factors to disease
onset and progression. With respect to APOE, isogenic hiPSCs
to investigate the mechanisms by which APOE4 increases and
APOE2 decreases AD risk (Lin et al., 2018; Wang et al., 2018;
Brookhouser et al., 2021; Martens et al., 2021; Sienski et al.,
2021) can be used in conjunction with in vitro injury models
to determine the combinatorial effect of APOE isoforms and
cell injury on the manifestation of AD-related phenotypes. In
addition, numerous genome-wide association studies (GWAS)
studies have identified several risk factors associated with
altered probability of AD onset (Bettens et al., 2010). In fact,
some of these genes, such as BDNF, IL-1, and p53, have
also been identified to influence clinical outcomes post-TBI
(Dardiotis et al., 2010; Cortes and Pera, 2021; Zeiler et al.,
2021). In addition, many of the genetic risk factors that affect

clinical outcomes post-TBI play critical roles in pathways (e.g.,
inflammation, microglia activation, neurotransmitter synthesis,
synaptic formation) that are dysregulated in AD (Dardiotis
et al., 2010; Cortes and Pera, 2021; Zeiler et al., 2021). Moving
forward, hiPSC-based isogenic models employed with in vitro
injury systems can be used to investigate the influence of these
additional genetic risk factors on the development of AD-related
pathologies post-injury.

CONCLUSION

While there is some conflicting evidence for TBI-induced AD
in epidemiological studies, clinical studies and animal models
suggest a strong link between the two. Pathologies observed
in AD including Aβ deposition, hyperphosphorylated tau and
persistent inflammation have been observed in a fraction of
TBI patients as well as in animal models. The mechanisms
underlying the development of such pathologies are yet to
be elucidated—injury induced amyloidogenic processing of
APP, dysregulation of kinases phosphorylating tau and chronic
inflammation mediated by microglia are some of the major
avenues currently being explored. While transgenic rodent
models have lent valuable insight into these mechanisms, several
in vitro models developed to mimic aspects of traumatic injury
could be leveraged to further probe the link between TBI and AD.
Nonetheless, as the famous statistician George Box stated “All
models are wrong, but some are useful.” Thus, moving forward
researchers could utilize the complementary strengths of in vivo
and in vitro systems to address the underlying causes of TBI-
induced AD and identify potentially novel therapeutic targets.
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