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Abstract: Immune dysfunction has long been reported by medical professionals regarding astro-
nauts suffering from opportunistic infections both during their time in space and a short period
afterwards once back on Earth. Various species of prokaryotes onboard these space missions or
cultured in a microgravity analogue exhibit increased virulence, enhanced formation of biofilms,
and in some cases develop specific resistance for specific antibiotics. This poses a substantial health
hazard to the astronauts confined in constant proximity to any present bacterial pathogens on long
space missions with a finite number of resources including antibiotics. Furthermore, some bacte-
ria cultured in microgravity develop phenotypes not seen in Earth gravity conditions, providing
novel insights into bacterial evolution and avenues for research. Immune dysfunction caused by
exposure to microgravity may increase the chance of bacterial infection. Immune cell stimulation,
toll-like receptors and pathogen-associated molecular patterns can all be altered in microgravity and
affect immunological crosstalk and response. Production of interleukins and other cytokines can
also be altered leading to immune dysfunction when responding to bacterial infection. Stem cell
differentiation and immune cell activation and proliferation can also be impaired and altered by the
microgravity environment once more adding to immune dysfunction in microgravity. This review
elaborates on and contextualises these findings relating to how bacteria can adapt to microgravity
and how the immune system subsequently responds to infection.

Keywords: microgravity; spaceflight; immunology; pathogens; macrophages; bacteria; viruses;
innate immune response; adaptive immune response

1. Introduction

The immune system is influenced by external stressors and adapts accordingly. The
differential immune response under microgravity gives rise to complex immunological
issues [1,2] which will be discussed in this review. For instance, 15 of the 29 Apollo mission
astronauts incurred viral or bacterial infections during their mission or within a week
upon returning to Earth [3]. Many bacteria grown under microgravity experience phys-
iological changes, increased virulence, and differential antibiotic susceptibility amongst
other changes [4–6]. Such changes can work synergistically to cause an increased chance
of infection with a chance of enhancing the potential for a poor prognosis. However,
the microgravity environment may also provide novel insights into different biological
phenomena here on Earth such as T cell exhaustion [7] and T cell ageing [8].

The last century has seen the frontier of space become accessible by human beings.
From Yuri Gagarin’s initial flight into space, through NASA’s (National Aeronautics and
Space Administration) moon landing in 1969, progressing to ventures in space tourism
and planned manned missions to Mars in 2030, space has become an environment that
is habitable for periods of time by humans. As missions to space become longer and
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further away in distance, the time spent in the space environment increases and with it, the
associated health risks [9,10]. One major differential factor from the environment on Earth
is the change in gravity to a near-zero state known as microgravity.

Most research on the effects of microgravity on biology either aims to help provide
insight on how to keep astronauts healthy on prolonged missions into space or to use
microgravity as a research tool to further understand the biology to be beneficial to patients
on Earth. The focus of this paper is to summarise the impact of microgravity on the immune
response to bacterial infection and the individual changes to bacteria and immune cells.

2. Microgravity Simulation and Applications

Microgravity is the condition when objects appear to be weightless. Studies have
been conducted on true microgravity in space since the initial Apollo missions and in
microgravity analogues as early as the 1980s. True microgravity has been regularly investi-
gated onboard SpaceLab, the Russian Mir space station, and the International Space Station
(ISS). As well as experiencing true microgravity, onboard samples and experiments are
subjected to time dislocation, elevated carbon dioxide levels and low dose cosmic radia-
tion [11]. Some of these factors can be synergistic, for instance, radiation induces oxidative
stress in the skeletal system and microgravity increases the oxidative stress-induced [12].
However, resources are limited on these stations and sending samples and consumables
for experiments to these platforms is expensive and requires substantial time to plan and
execute. A solution to this problem is to create an environment analogous to the low-shear
environment created by microgravity on Earth. This has the benefit of being more time and
cost-effective and the microgravity variable can be separated from other space variables
more easily. These microgravity analogues still are subjected to 1 g but create a low-shear
environment through various means as discussed in the following sections. In true mi-
crogravity, the overall net force of gravity is in the range of 10−6 compared to the force of
gravity at the Earth’s surface.

2.1. Microgravity Analogues—The Common Devices

Microgravity creates a low-shear culture environment since convection currents are
absent. By creating a low-shear environment on Earth, low-shear responses of biological
samples can be investigated and used to theorise responses in other low-shear environ-
ments such as microgravity. One method of creating a low-shear environment is the
rotating cell culture system (RCCS) (Figure 1). This bioreactor was designed by NASA
and is commonly used across Europe and the USA via production and distribution from
Synthecon [13,14]. This bioreactor employs solid body rotation around a horizontal axis to
minimise fluid shear forces on the sample whilst keeping it in suspension. This is achieved
through rotation at a precise speed where this phenomenon occurs. Shear force is the
application of a force perpendicular to a surface. The difference in velocity between the
layers in moving liquid result in shear forces being imparted on the liquid and samples
contained within. By rotating the liquid containing vessel at a precise speed, shear forces
can be minimised, hence ‘low-shear’. This needs to be fine-tuned with respect to the weight
of the sample to prevent sedimentation and keep the samples in ‘freefall’ by balancing the
net shear force with gravity on the sample. This creates an analogous environment in the
low-shear environment created by true microgravity.
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Figure 1. The 2D clinostat; this one is known as the Rotating Cell Culture System (RCCS). The particular version illustrated 
in this figure is capable of rotating up to four individual cell culture vessels. These cell culture vessels carry media con-
taining cells in 1 mL, 2 mL, 10 mL, or 50 mL formats. The cell culture vessels come in two varieties, disposable and auto-
clavable. The vessels compose of two Luer Lock syringe ports for small additions or extractions to the growth medium 
and a larger fill port for ease of filling and emptying. The rear of the vessels composes of a gas exchange membrane to 
allow the diffusion of gases. The vessels rotate clockwise at independent or synchronous speeds. 

 
Figure 2. A schematic of how the Random Positioning Machine (RPM) simulates microgravity. 
This schematic is based upon the illustration from Wuest et al. 2017 [16]. The sample in the centre 
of the device is constantly repositioned both in the direction of the x-axis and the y-axis, giving an 
overall net-zero gravity vector. 

2.2. Microgravity Analogues—History of Clinostats and Alternative Methods 
Clinostats rotate samples around one or more axes and were developed in the late 

1800s when gravity was discovered to be a major factor in plant growth [17]. This goes 
back to as early as 1806 and the use of a water wheel to generate altered gravity environ-
ments [17]. Slow rotation around an axis (1–2 rpm) was found in the 1980s to induce ul-
trastructural disturbances not found in the microgravity environment [18]. The first study 
to use a faster rotation with a clinostat was Briegleb in 1992 [19].  

Diamagnetic levitation is another microgravity analogue. This is the use of a high 
gradient magnetic field that can levitate a biological sample [20]. This method, however, 

Figure 1. The 2D clinostat; this one is known as the Rotating Cell Culture System (RCCS). The particular version illustrated
in this figure is capable of rotating up to four individual cell culture vessels. These cell culture vessels carry media containing
cells in 1 mL, 2 mL, 10 mL, or 50 mL formats. The cell culture vessels come in two varieties, disposable and autoclavable.
The vessels compose of two Luer Lock syringe ports for small additions or extractions to the growth medium and a larger
fill port for ease of filling and emptying. The rear of the vessels composes of a gas exchange membrane to allow the diffusion
of gases. The vessels rotate clockwise at independent or synchronous speeds.

The random positioning machine (RPM) (Figure 2) is another common tool for creating
a low-shear environment for the biological samples by creating shear forces away from
the centre where the sample is. Utilizing constant repositioning upon a dual axis, this
instrument causes the overall net influence of gravity to be zeroed at long time scales [15].
Both the RWV and RPM are two examples of a 2D clinostat.
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Figure 2. A schematic of how the Random Positioning Machine (RPM) simulates microgravity. This
schematic is based upon the illustration from Wuest et al. 2017 [16]. The sample in the centre of the
device is constantly repositioned both in the direction of the x-axis and the y-axis, giving an overall
net-zero gravity vector.
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2.2. Microgravity Analogues—History of Clinostats and Alternative Methods

Clinostats rotate samples around one or more axes and were developed in the late
1800s when gravity was discovered to be a major factor in plant growth [17]. This goes
back to as early as 1806 and the use of a water wheel to generate altered gravity envi-
ronments [17]. Slow rotation around an axis (1–2 rpm) was found in the 1980s to induce
ultrastructural disturbances not found in the microgravity environment [18]. The first
study to use a faster rotation with a clinostat was Briegleb in 1992 [19].

Diamagnetic levitation is another microgravity analogue. This is the use of a high
gradient magnetic field that can levitate a biological sample [20]. This method, however,
does not negate phenomena not observed in microgravity, such as convective stirring of
liquid that increases oxygen availability in the samples, which is a major issue in space as
convection is not present [20,21].

Parabolic flight and drop towers are also employed by researchers for short micro-
gravity exposure. During parabolic flight, an aeroplane will fly in parabolic arcs imparting
approximately 30 s of free-fall-per-parabola. The nature of the flight path causes the im-
parted gravitational forces to fluctuate between microgravity during freefall and 1.8 g
during the reversal of the flight path at the bottom of the parabolic flight path. These
short fluctuating periods of microgravity and hyper-gravity have already been used in
immunological research [22,23]. Drop tower samples are dropped from a substantial height
in a capsule covered by either an aerodynamic drag shield or in a vacuum to allow free-fall
at 9.8 m s−2. This enables the samples to experience near weightlessness as they freefall
from a substantial height. NASA, for example, use a 24.1-metre drop tower that enables
2.2 s of microgravity to be experienced.

Microgravity analogues, however, are not an entirely accurate model of orbital micro-
gravity conditions. Gene expression analysis of human renal cortical cells cultured during
spaceflight and in an RCCS on Earth show that 700 more genes with a total of 1600 had
altered expression levels compared to 900 genes with altered expression in the RCCS [24].

3. Prokaryotic Responses to Microgravity

Prokaryotes have evolved and adapted to survive in a plethora of different environ-
mental conditions [25]. Microgravity is a different environmental condition that, due
to advances in technology, is becoming a condition for prokaryotes to adapt to and
can be researched and explored. This area of research could be beneficial for combat-
ting infection during long term manned space missions and may provide novel insights
into prokaryote adaptability and evolution. The following sections review the research
into the prokaryotic response to the low-shear environment created by microgravity and
ground-based analogues.

3.1. Cell Viability and Diversity

The human body itself contains a substantial number of bacteria from the bacteria
covering the skin to the microflora of the gut [26,27]. NASA has set acceptability limits
for bacterial numbers in the air, on surfaces and in water for all space-bound equipment
and vessels.

As shown in Table 1, it is expected that bacteria during spaceflight will survive and
proliferate in microgravity/spaceflight conditions. This is shown by the higher bacterial
acceptability limits for air and surfaces inflight compared to preflight.

Table 1. Bacterial acceptability limits outlined by NASA [28].

Time Taken Air Surface Water

Preflight 300 CFU m−3 500 CFU 100 cm−2 50 CFU mL−1

Inflight 1000 CFU m−3 10,000 CFU 100 cm−2 50 CFU mL−1
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Vessels from different locations unsurprisingly show differences in bacterial popula-
tions. The Russian Mir space station reported the most dominant genera of airborne and
surface bacteria to be Staphylococcus with Sphingomonas and Methylobacterium to be the most
dominant genera in the potable water [29]. When water was collected from the ISS between
2009–2012, it was found the most common organisms were Burkholderia multivorans and
Ralstonia pickettii with air and surface dominance of Bacillus, Micrococcus, and Staphylococcus
species [28]. Overall, the most common phylum was Actinobacteria [30].

3.2. Overview of Previous Studies

The following studies have been undertaken to investigate the effects of a low-shear
environment on bacteria with a few studies also investigating archaea. The first studies
found common responses to spaceflight bacteria with emphasis on the phenotypic re-
sponses including but not limited to: changes in growth rate, resistance to external stresses
and varying effects on bacterial conjugation [14]. Below is a brief summary of the major
studies investigating individual species and strains of bacteria and their critical findings.

3.3. Transcriptomic Changes

To summarise the transcriptomic results from the studies in Table 2, common dysregu-
lated genes have been identified and hypothesised as being altered because of microgravity.

Table 2. Summary of bacterial response in spaceflight and microgravity analogue studies.

Name Low-Shear
Environment Studies Major Findings

Mycobacterium marinum Rotating Cell Culture System [31]

562 genes altered transcription level after short
growth, 328 after long growth periods.

Downregulation of Metabolism.
Increases sensitivity to hydrogen peroxide.

Ralstonia pickettii Spaceflight samples in
Rotating Cell Culture System [30] Increased growth rate

Escherichia coli Rotating Cell Culture System [32–35]

Shorter replication time, increased
survivability in J774 macrophages, increased

resistance to osmotic stress, heat and acid.
Increase in biofilm thickness and biomass.

Salmonella enterica serovar
typhimurium Rotating Cell Culture System [36]

Shorter replication time, increased
survivability in J774 macrophages, increased

resistance to osmotic stress, heat and acid.

Streptococcus mutans Rotating Cell Culture System [37,38] 153 genes upregulated two-fold or more, 94
genes downregulated two-fold or more

Lactobacillus acidophilus Rotating Cell Culture System [39]
Shortened lag phase, increased growth rate,

increased antibiotic resistance, increased acid
and bile resistance.

Bacillus subtilis Spaceflight [40]
55 genes upregulated (biofilm formation

associated genes), 36 genes downregulated
(anaerobic respiration associated genes).

Pseudomonas aeruginosa Spaceflight [41–43] Different biofilm architecture to that formed
under Earth gravity.

Klebsiella pneumoniae Rotating Cell Culture System [44] Enhanced biofilm formation, thicker biofilms,
increased cellulose production.

Vibrio fischeri Rotating Cell Culture System [45] Hfq mutant studies.

Staphylococcus aureus Rotating Cell Culture System
Spaceflight

[46]
[4]

Antibiotic resistance increases. Cell
wall changes.

The global post-transcriptional regulator Hfq is one of the genes that has been identi-
fied to show altered levels of expression across multiple pathogenic species of bacteria in
both microgravity and microgravity analogues [43,45]. This gene is found approximately
in half of all known bacterial genomes and plays an important role in bacterial stress
responses [45]. Hfq is an RNA-binding chaperone protein whose activity regulates bacte-
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rial protein expression via small bacterial RNAs (sRNAs) [47]. The latter regulate many
bacterial processes and have a length usually ranging between 50–500 nucleotides [48].
They act via antisense mechanisms on multiple target mRNAs and exert global effects on
factors such as virulence, stress responses and adaptive metabolic changes [49].

The ferric uptake regulator (Fur) and its homologues; the zinc uptake regulator
(Zur), the manganese uptake regulator (Mur), and peroxide stress defence control reg-
ulator (PerR) [50] are required in some microgravity analogue stress responses in e.g.,
Escherichia coli [51]. Fur is a transcription factor which represses siderophore synthesis in
pathogens by utilising Fe2+ as a corepressor [50]. Many low-shear environment response
genes are found in clusters or operons [36] and upstream of many of these operons is a
Fur binding site. Regulation of the low-shear response via Fur has been shown with a
Salmonella fur mutant which is consistent with Fur transmitting the microgravity analogue
signal [36]. For the acid resistance response to microgravity analogue regulon, fur is found
upstream. When exposed to a low-shear environment, the Salmonella strain used in the
study showed increased acid resistance whereas the Fur mutant strain showed no increase
in acid resistance [36]. This strengthens the hypothesis of the Fur protein regulating a
microgravity stress response regulon; however, more studies are needed.

General stress responses in E. coli and many other bacteria are regulated by the sigma
subunit of RNA polymerase known as RpoS [52,53].

Interestingly, this is not the case for microgravity analogue response in a rotating
cell culture system in Salmonella enterica serovar Typhimurium which adapts in an RpoS-
independent manner to environmental stresses [32].

3.4. Antibiotic Resistance

A major finding of note for bacteria grown under microgravity is the increase and
differences in biofilm formation, architecture, and the development of antibiotic tolerance.

Antibiotic resistance poses a severe health risk both in spaceflight and once the
astronauts return to Earth. Upon return to Earth, an antibiotic-resistant strain may spread
through the population. Furthermore, microgravity is just one factor during spaceflight
that has been shown to increase antibiotic resistance [54]. The bacterial adaptive response,
which is the exposure to a sub-lethal stressor which induces resistance to a lethal level
of the same or different stressor [55], can also be triggered by ionising [56] and non-
ionising radiation [57] found as part of the cosmic radiation [54]. Radiation may cause
changes to antibiotic efflux pumps and sensitivity to chemicals [56]. Antibiotic resistance
profiles (see later) and biofilm formation are not generic responses to extreme environments.
A comparative study of Staphylococcus and Enterococcus isolates from the ISS and the
Antarctic Research Station Concordia were compared and the ISS isolates were found to
be more resistant to the antibiotics tested [58]. This could indicate non-space extreme
environment studies may not be good substitutes or generate comparable data to the study
of the extreme environment of space. However, more comparisons are needed. This could
also mean microgravity and/or other space stressors may trigger the expression of different
genes in the response to extreme environments.

Long term microgravity analogue studies have been performed to simulate long term
manned missions to try and predict antibiotic resistances that could potentially evolve.
One such study used the RCCS for 1000 generations of E. coli over which it became tolerant
to cefuroxime, chloramphenicol, cefalotin, cefuroxime axetil, tetracycline and cefoxitin [59].
Interestingly, after a further 110 generations in Earth gravity conditions, chloramphenicol
and cefalotin resistance was retained. This could be due to an accumulation of mutations.

During spaceflight, and especially on a long-distance manned mission to Mars, there
will be a finite amount and diversity of medications. Especially with the longer manned
missions, there is no feasible way to restock the vessels or send new medications/antibiotics.
Therefore, if a multidrug-resistant strain develops and becomes resistant to the antibiotics
on board the vessel then all the passengers’ lives are at risk as the infection may not
be treatable.
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Additionally, this can also pose a threat to health on Earth. In microgravity, the
bacteria may develop antimicrobial resistances that are different from those that develop in
Earth’s gravity. This could enable widespread infection and disease on return to earth if
the pathogenic bacteria have infected one of the passengers and this has gone unnoticed.

Virulence is defined as the ability of the bacteria to cause disease and can also be
referred to as pathogenic potential [60]. Increases in virulence have been reported in
both analogue and spaceflight microgravity [6,61,62]. With regards to spaceflight, this is
especially of concern due to the constant close contact with other astronauts in the relatively
small space vessel. Increased virulence combined with antibiotic resistance poses a massive
health risk and will greatly increase the dangers of both acute and chronic infections.

3.5. Archaeal Responses to Microgravity

Archaea are distinct from bacteria and are prevalent in extreme environments and are
also a natural component of the microbiota of humans [63]. However, no known pathogenic
archaea exist [63]. Table 3 summarises studies of archaea in a low-shear environment.

Table 3. Response of Archaea to a low-shear environment.

Name Low-Shear
Environment Studies Major Findings

Haloferax mediterranei Rotary Cell
Culture System [64]

Increased resistance to
bacitracin, rifampicin and

erythromycin
Halococcus

dombrowkskii
Rotary Cell

Culture System [64] Reduced cell aggregation

Haloarcula argentinesis
RR10

Rotary Cell
Culture System [65]

Increased production of
ribosomal proteins, became

multi-drug resistant, evidence
of antibiotic efflux pump

Haloarchaea are the most studied area species that live/survive in aqueous environ-
ments i.e., water. Some haloarchaea show an increase in antibiotic resistance which may
be a problem as archaea and bacteria can undergo horizontal gene transfer, especially
from archaea to bacteria [66,67]. Horizontal gene transfer is the acquisition of new genetic
material from another organism, this is a major driver of bacterial pathogen evolution and
antibiotic resistance [68].

The consequences of infection are not solely dependent on the pathogen trying to
infect the host. The immune response is vital in clearing infection and conferring future
immunity. Microgravity has a severe impact on the immune system both as a whole and
on its individual components and will be discussed in the following sections. Additionally,
microgravity and other space stressors such as radiation, sleep deprivation, isolation and
microbial contamination have been shown to suppress immune function [54]. This review
will summarise how the natural defence against pathogens is affected and how the crosstalk
between immune cells and bacterial pathogens is also altered by the microgravity stressor.

4. Immune Cell Responses to Microgravity

The immune system is composed of two different major systems, the innate immune
system and the adaptive immune system. The innate response is commonly referred to
as the non-specific response and usually occurs immediately or within hours after the
appearance of an instigating antigen [69]. The innate immune system consists of physical
barriers such as the skin and mucus and cells such as monocytes, macrophages, neutrophils,
natural killer cells, mast cells, basophils and dendritic cells [70]. The adaptive immune
system is commonly referred to as the acquired immune system and occurs at a later
time point than the innate immune system. The adaptive immune system consists of
lymphocytes known as T-cells and B-cells which specifically target the pathogen and
provide future protection against that pathogen [71]. The following sections of this review
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will outline how both systems are affected by a low-shear environment and how this
impacts on their response to bacterial infection.

Major changes in immune system function occur during spaceflight [72]. Circulating
monocytes, T-cells, B-cells and neutrophils are all increased with a decrease in natural killer
cells [73]. Distribution of peripheral leukocytes is altered with specific subpopulations
showing diminished function [1]. Latent viruses such as herpes reactivate [74,75] and indi-
cate compromised adaptive immune function [1]. Epstein-Barr virus, cytomegalovirus and
VZV (human neurotrophic alpha herpes virus) have also been reported to be reactivated
during spaceflight [73]. Hypoplasia of the spleen can also occur with an increase in periph-
eral blood neutrophils [76,77]. Natural killer cells exhibit lower cell cytotoxicity and there
is also a delayed response to hypersensitivity skin tests [76]. One reason for the inhibition
of natural killer cell toxicity is reduced production of granzyme B and perforin with effects
being reported up to 60 days after spaceflight [78]. B cell activation in microgravity is
still largely unknown but short-term flights have shown no significant changes [76]. This
is an interesting finding as the same study suggests a Th2 shift occurs in microgravity
which may affect immunoglobulin production. Figure 3 shows the normal differentiation
pathways for naïve T cells. However, this is only a hypothesis and due to a decrease in Th1
cytokines being present [76].
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Figure 3. Naïve T cell differentiation after Antigen Presenting Cell (APC) activation. The naïve T cell
differentiates into four different classes of T cell: Th1, Th2, Th17 and the Treg. APC activation causes
the release of the cytokines shown along the lines that signal for which class the naïve T cell will
differentiate into. Once differentiated, the T cells secrete the cytokines shown by the bullet points to
the right [79–81].

Studies of long-term space missions on B cell activation and immunoglobulin produc-
tion is thus far inconclusive [82–85].

Due to the nature of the low-shear environment, motility of immune cells is greatly re-
duced [76]. This combined with reduced monocyte motility and cytoskeletal modifications
may lead to the reduced interactions between monocytes and lymphocytes which has been
shown to be essential for costimulatory signalling [76].
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4.1. Cell Differentiation

Differentiation inhibition has been reported by a plethora of immunological studies in a
low-shear environment created by both microgravity and ground-based analogues [15,86–91].

The reasons for differentiation inhibition have been greatly speculated upon. One
school of thought is that non-differentiated monocytes are suspension cells that become
adherent upon differentiation. Future investigations into whether the low-shear envi-
ronment prevents adherence and therefore the differentiation of the cells could warrant
interesting results.

More recent studies [89] have delved into altered pathways due to low-shear forces to
shed light on the differentiation inhibition problem. RAS/ERK/NF-κB pathway was shown
to be a low-shear regulated pathway, where exogenous ERK and NF-κB activators were able
to counteract the effects of microgravity on macrophage differentiation in both microgravity
and ground-based analogues [89]. This study also verified via qPCR and western blot
that the p53 pathway was also affected by the low-shear environment. This concurs
with older studies which also conclude that altered genetic pathways cause immune cell
differentiation inhibition [92,93]. Furthermore, cell cycle ‘arrest and progression’ proteins
have been shown to be altered. P21 increases 4.1-fold in 20 s of spaceflight microgravity
culture in primary cells and 2.9 times in Jurkat T-cells compared to ground controls. These
results suggest that cell cycle progression is gravity dependent in T-cells and can halt
the progression of differentiation [94]. Additionally, these results were confirmed by
other studies [95].

Differentiation into effector T-cells is also driven via dendritic cells through the produc-
tion of IL-2. The alterations in IL-2 production that mimic T cell exhaustion also provides
an explanation for T cell resistance to differentiation into effector T cells [96].

The surrounding microenvironment provided by the connective tissues can also have
immune-regulatory effects. Mesenchymal stem cells (MSCs) are stromal cells that can
differentiate into connective tissues and are integral to some specific immune responses.
They do this via the production of cytokines and molecules such as but not limited to;
PGE2, nitric oxide, FasL, PD-L1/2, IDO and IL-6 [97]. Culture in a low-shear environment
maintains the undifferentiated state of MSCs [91] as mechanical loading is an important
determining factor for osteogenic differentiation [98]. This may potentially be due to the
downregulation of the master osteogenic transcription factor Runx2 and main osteogenic
differentiation markers ALPL and OMD in long term microgravity analogue culture [87].
Low-shear culture also affects myogenic differentiation [98]. During spaceflight, 1599 genes
have altered expression with important changes being a reduced expression of cell-cycle
genes which leads to cell proliferation inhibition [99].

4.2. Pathogen Recognition

A few co-culture studies have been conducted to investigate how immune cells and
bacteria respond to each other in a low-shear environment. Macrophages co-cultured
with S. enterica serovar Typhimurium showed activation of the stress associated mitogen-
activated protein kinase, kinase 4 in a ground-based analogue [100]. Furthermore, the
bacteria themselves had an augmented invasive potential and increased tumour necrosis
factor-alpha (TNFα) production in infected epithelial cells [100]. The same study also
found increased production of E. coli heat-labile enterotoxin in co-cultures [100]. Finally, it
was also shown by this study that murine macrophages infected with enteropathogenic
E. coli also showed increased production of TNFα [100]. Furthermore, co-cultures have
also shown that in a low-shear environment, monocytes have reduced ability to engulf
E. coli [76]. CD32 and CD64 which are involved in phagocytosis have also been shown to
be reduced in surface expression [101].

Lipopolysaccharides (LPS) are major membrane surface components that are endo-
toxins present in most Gram-negative bacteria with a few rare exceptions and are strong
stimulators of innate immunity [102]. Stimulating immune cells grown in a low-shear
environment with LPS therefore provides insight into how immunological crosstalk oc-
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curs during spaceflight and the response of the immune system to endotoxins. A major
biochemical response after the challenge with LPS is p38 MAP kinase activation via phos-
phorylation [103]. P38 mitogen-activated protein (MAP) kinases are one of four main
sub-groups of MAPs that mediate cellular behaviours in response to external stimuli [104],
which potentially includes microgravity. It was hypothesised that p38 MAP kinase would
be sensitive to microgravity as there are various genes such as PRKCA that are regulated by
p38 MAP kinase and are sensitive to a low-shear environment [105]. However, monocytes
exposed to spaceflight did not show impairment of p38 MAP kinase and actually showed
a slight increase in activation [106]. Caenorhabditis elegans in analogue culture increased
transcriptional expression of three genes that encode the core p38 MAPK pathway and
expression of phosphorylated PMK-1/p38 MAPK [107]. These genes were pmk-1, nsy-1
and sek-1 [107].

Stimulating immune cells with LPS also causes NF-κB (nuclear factor-kappa B) to
translocate from the cell cytoplasm to the nucleus. This translocation is altered in many
cell types in microgravity and analogues [108]. A study on human Jurkat T cells showed
decreased translocation of NF-κB in parabolic flight and ground-based analogues, [109]
and two studies on activated human T cells via RT-qPCR and microarray on whole cell
lysates [110,111] showed suppressed expression of NF-κB gene targets. An interesting
connection can be made between 1g and low-shear environment studies to theorise why
the translocation is altered. NF-κB has been shown to be MyD88 dependent [112] and
furthermore, potential immune blunting of cells due to the low-shear environment causes
suppression of MyD88 [113]. MyD88 encodes for proteins involved in the early uptake of
LPS [113]. This may explain why some studies show inhibition of NF-κB translocation in a
low-shear environment from both microgravity and ground-based bioreactors.

LPS stimulation also elicits ROS (reactive oxygen species) production in macrophages.
This was investigated in a microgravity analogue via Syk phosphorylation [114]. Syk
phosphorylation was significantly reduced in microgravity when macrophages were stim-
ulated by LPS, zymosan or curdlan [114], revealing that ROS production in macrophages is
sensitive to gravitational forces. Other studies confirm this by showing ROS production in
various cell types increases in a microgravity analogue [115]. The study also found that
NF-κB signalling was unaffected by the microgravity analogue which is a later step in the
signalling cascade than Syk phosphorylation, and inconsistent with the studies previously
discussed. This work resulted in the proposal of a hypothesis that during long spaceflights
the immune system may be able to adapt to microgravity effects [114]. Additionally, in
macrophages in a microgravity analogue, TNFα but not IL-1β was suppressed following
stimulation with LPS [116].

LPS is not the only bacteria-derived stimulus of the immunological response to bac-
terial infections. This is due to recent findings suggesting that LPS stimulation may not
be affected by a low-shear environment [117]. LPS and pokeweed mitogen stimulation
both failed to alter levels of TNFα and IL-10 release in whole blood [117]. The overall
findings of this study concluded that the IL-2 and interferon-gamma responses to immune
cell mitogen and antigen stimulation are inhibited by a microgravity analogue whereas
TNFα and IL-10 secretion are greatly influenced by a microgravity analogue [117]. These
results also corroborate the spaceflight sample results [2]. Mitogen stimulated immune
cells showed reduced production of interferon-gamma, IL-10 and TNFα just like the micro-
gravity analogue results. This study additionally showed reduced production of IL-6 and
IL-5 [2]. A major contrast between the findings was that in a microgravity analogue via
a random positioning machine, LPS stimulation did not alter levels of IL-10 production
compared to ground controls whereas during spaceflight IL-10 production was reduced
during LPS stimulation. These variations may be due to differences between microgravity
analogues and true microgravity or it could be as a result of the differing conditions of
space other than microgravity. IL-8 production was also increased during LPS stimulation
in spaceflight which is concurrent with other studies [113]. Transcriptomic analysis of the
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immune cells during spaceflight shows suppression of MyD88, MD-2, and Lbp which are
responsible for encoding [113] proteins that are involved in the early uptake of LPS [113].

The fascinating area of interest arising from comparing these studies is the difference
in interleukin expression upon LPS stimulation depending on whether cells were cultured
in a microgravity analogue or true microgravity. Transcriptomic analysis of LPS stimulated
immune cells grown in a microgravity analogue compared to the spaceflight analysis of
Chakraborty et al. 2014 may be able to add clarity to these different results.

4.3. Cell–Cell Interactions

Cell–cell interactions are severely impacted by microgravity and low-shear analogues.
Dendritic cells play a vital role in recognising pathogens and activating T-cells. Murine
dendritic cells (JAWSII) have recently been cultured in the rotary cell culture system for
2–14 days to determine the impact of microgravitational changes both short term (less
than 72 h) and long term (4–14 days) [118]. Short term culture was shown to enhance the
T-cell activation of dendritic cells through increased expression of surface proteins that are
associated with maturation and interleukin-6 (IL-6) production [118]. Other dendritic cell
studies in the rotary cell culture system have shown that T-cell resistance to activation in a
microgravity analogue mimics T cell exhaustion found in patients suffering from chronic
diseases and/or tumours due to changes in e.g., IL-2 production [96].

Other immune responses are also affected by a low-shear environment; inflammation,
specifically adaptation of the vasculature (release of vasoactive factors [119]), is determined
by the vessel wall state which composes of endothelial cells and mesenchymal stem
cells [120]. Microgravity analogues have been shown to exacerbate the effect of endothelial
cell activation by inflammatory mediators [121]. However, endothelial cell adhesive cascade
molecule expression is not affected by the low-shear environment [121].

4.4. Cytokines

Cytokines are vital to the immune system and immunological crosstalk. They are
small, secreted proteins influencing communication and interaction between cells [122].
The immune response to a pathogen is affected by the low-shear environment which alters
the cytokine profile and consequently the function and proportion of leukocytes [73].

IL-6, which is altered in dendritic cells grown under microgravity, plays an important
regulatory role in both the innate and adaptive immune system and is produced after
stimulation by the majority of nucleated immune cells and plays an important role in the
response to bacterial infection [123]. Studies on interleukin production and associated TLRs
(toll-like receptors) during spaceflight have given inconclusive results [123]. Studies on
samples retrieved after spaceflight has shown that immune cells expressing TLR2 and TLR4
both increase [124] and decrease in expression [125]. IL-6 is one of many cytokines that
have been reported to have altered levels during spaceflight, studies have shown that many
more cytokines exhibit altered levels depending on host health. For instance, astronauts
suffering from latent virus reactivation show elevated levels of IL-1 alpha, IL-4, IL-6, IL-8,
IL-10, IL-12p70, IL-13, interferon-gamma, eotaxin, and IP-10 [126]. This illustrates the
changes in cell signalling in the microgravity environment and begins to reveal the scope of
cytokine changes in this extreme environment [127]. Differences in adaptive reactions (i.e.,
changes in cytokine production) with various cytokines help to show how different parts
of the immune system adapt to spaceflight. IL-4, IL-6, IL-8, and IL-10 adaptive reactions
were found six months after spaceflight whereas IL-2, TNF alpha, and interferon-gamma
adaptive reactions were found after only 12 days of spaceflight [128].

5. Concluding Remarks

Both bacteria and immune cells can be influenced by growth under a low-shear envi-
ronment created by microgravity or an analogue. Bacteria exhibit increased proliferation,
biofilm formation, and virulence gene expression making them an increased health risk,
which when combined with immune dysfunction in microgravity increases the risk of
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opportunistic infection. The impairment of pathogen recognition and immunological
crosstalk impedes and diminishes the immune response from the very early stages of
disease progression. Changes in cytokine expression and production in addition to this
allow for an increased chance of successful disease progression from initial colonization.

Furthermore, impairment of immune cell function reduces the ability of the immune
system to clear an infection, once more promoting chronic disease progression. Pro-
longed immune repression upon return to Earth gravity conditions is also a significant
health concern.

Immune responses in microgravity are an exciting area of research with many unex-
plored avenues yet to be investigated, especially the effects of long-term spaceflight. It has
highlighted many obstacles that will need to be overcome before long manned missions to
other celestial bodies and deep space exploration can occur.

The most important and compelling areas of research going forward should be how
immune cell differentiation is inhibited. Additionally, the immune response to bacterial
stimuli needs to be further elaborated upon to discover as to what extent the recognition of
bacteria and subsequent signalling and host response is inhibited.

With respect to bacteria, the development of bacterial antibiotic tolerance and biofilms
is a major issue that needs to be addressed for long term space flight to be a safer venture.
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