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Dynamic response of the nonlocal 
strain-stress gradient in laminated 
polymer composites microtubes
Mohammad Amin Oyarhossein1, As’ad Alizadeh2, Mostafa Habibi3*, Mahmoud Makkiabadi4, 
Mohsen Daman5, Hamed Safarpour5 & Dong Won Jung6*

This study presents the frequency analysis of a size-dependent laminated polymer composite 
microtube using a nonlocal strain-stress gradient (NSG) model. By applying energy methods (known 
as Hamilton’s principle), the motion equations of the laminated micro tube composites are developed. 
The thermodynamic equations of the laminated microtube are based on first-order shear deformation 
theory (FSDT), and a generalized differential quadrature method (GDQM) is employed to find the model 
for the natural frequencies. The results show that by considering C-F boundary conditions (BCs) and 
every even layers’ number in lower value of length scale parameter, the frequency of the structure drops 
by soaring this parameter. However, this matter is inverse in its higher value. Eventually, the ply angle’s 
influences, nonlocality as well as length scale element on the vibration of the laminated composite 
microstructure are investigated.

Reinforced laminated composites with graphene nanoplatelets (GPL) reinforcement are increasingly used in var-
ious applications due to its outstanding features, namely high tensile strength, high modulus, and lightweight1–38. 
Based on an experimental study, Rafiee et al.39 showed that the reinforced structures with GPL have better behav-
iors in comparison with them reinforced with multi-walled carbon nanotubes (MWCNT). Moreover, a consid-
erable number of studies13,23–25,27–33,40–50 claimed that considering the GPL reinforcement in the epoxy matrix 
provides a significant improvement in the thermo-electro-mechanical properties37,51,52 and dynamic responses 
of the nanostructures19,51–55, based on this matter present work is a momentous field of study. Recently, the 
reinforcement is used in many applications such as sensor and actuator56,57. It is notable that when the size of 
a structure is changed from macro to nano/micro-scale the size-dependent effect should be considered using 
nonclassical theories58–60. Nonlocal strain-stress gradient (NSG) theory is one of those useful theories for esti-
mating the mechanical behaviors of the micro/nano structures58–60. The wave responses of a beam with NSG 
theory is presented by Lim et al.58. Also, the size-dependent effect on the dynamic response of the nanobeams 
using a nonlocal theory is investigated in refs. 59,60. Besides, refs. 27,34,61–79 investigated the stability/instability 
analysis of the complex micro/nanostructures with the aid of analytical and numerical methods. In the scope 
of electro-mechanics of the shell with a piezo material, Shojaeefard et al.73 dealt with frequency analysis for dif-
ferent boundary conditions on a rotary cylindrical piezoelectric nanoshell surrounded by an elastic foundation. 
Also, they used the GDQ method for solving the problems. Electro-dynamical behavior of conical nanotubes 
applying moderately thin theory and a size-dependent theory has been studied by Dehkordi et al.80. Flex electric 
effects on the frequency of the nano-smart tube have been carried out in that paper. Arefi81 employed nonlo-
cal elasticity theory and FSDT for investigation bending of double-curved size-dependent piezoelectric shells. 
Transverse loads and voltage are applied in that nano model surrounded by Pasternak and Winkler elastic foun-
dations. They also examined the nonlocality, voltage, viscoelastic parameters on the electro-mechanic behaviors 
of the piezo nanostructure82. Razavi et al.83 published a paper about modeling a nanoshell made of functionally 
graded piezoelectric materials. They illustrated the impacts of dimensional parameters on the frequency of the 
mentioned nano model. Ninh and Bich84 demonstrated the nonlinear dynamic behavior of the electrically FG 
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nano cylindrical shells in the thermal conditions. An FG shell reinforced with a carbon nanotube is taken into 
account in the inner and outer surfaces surrounded by piezo layers. Fang et al.85 engaged with thick theory and 
electro-mechanic model to study the nonlinear frequency of a size-dependent shell surrounded by a piezo layer. 
They studied the frequency curves of the nanoshell. Eftekhari et al.86 presented the dynamics of an FG cylindrical 
shell reinforced with carbon nanotube and the structure surrounded by PIAC in an orthotropic elastic medium 
and thermal site. They in this work applied an exact method along with DQ solution to figure out the equations 
and impacts of the electromagnetic field and a wide range of patterns of CNT ratio on dynamics of the system 
is presented. Vinyas87 encountered with FE modeling for frequency analysis of a plate which this structure has 
an MEE property. He considered moderately thick theory for modeling the problem. He emphasized that CNT 
pattern and volume of the reinforcement have a significant impact on the free vibration of the structure. Zhu et al.88  
did a study on the free vibration of a PIAC nano cylindrical shell, and by employing the perturbation method, 
they solved the governing equations. They investigated the impact of surface energy on the dynamics of the nano 
smart structure. Fan et al.89 researched dynamics of a conic small scale structure. A couple of piezoelectric layers 
surrounded outer and inner layers of a conical CNTRC. It should be noted that this kind of structure can be used in 
the complex smart structures such as37,51,52. An intelligent controller equipped with a fast fault diagnosis method not 
only can guarantee the stability of a dynamic system but also it can predict or diagnose any fault in any complicated 
system90. For the first time, the presented study investigates the vibration analysis of a laminated composite micro-
tube taking into consideration NSGT and exact values of nonlocalities and length scale parameters. The dynamic 
equations of the laminated microtube are based on FSDT and GDQM is implemented to solve these equations and 
obtain the natural frequency of the current model. Eventually, the current study has been made into the influences of 
the different types of the laminated parameters on the mechanical stability of the laminated composite microstruc-
ture employing continuum mechanics model.

Mathematic Model
In Fig. 1, a laminated composite microtube with consideration of thermal effects is sketched, where R is the radius 
of the tube’s middle surface and h is the thickness of the microtube. Also, θ  is the ply angle of each layer. The mate-
rial of the microstructure is considered as a laminated composite.

NSG model.  The fundamental equation can be expressed as follows due to the NSG model35,91–93:

μ ε− ∇ = − ∇t C l(1 ) (1 ) (1)ij ijck ck
2 2 2 2

where, θ∇ = ∂ ∂ + ∂ ∂x R/ /2 2 2 2 2 2, tij, Cijck, and εck respectively are the NSG stress, elasticity tensors, and strain. 
The tensor of NSG stress can be defined as follows35:

σ σ= − ∇t (2)ij ij ij
(1)

here σij and σij
(1) presents the components of primary and micro size stresses, respectively. The l and µ are constant 

values standing for the higher-order strain gradient stress and non-invariant influence. Recent experimental 
researches also demonstrated the calibrated values of the size-dependent factors. The strain tensor could be writ-
ten as:

ε = +u u1
2

( ) (3)ij i j j i, ,

where, ui stands for the elements of the displacement vector. Due to the Eq. (2), the relation between stress and 
strain of the mentioned structure would be presented as94:

Figure 1.  The geometry of a laminated composite microtube.
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Equation (4) defines temperature changes as well as thermal expansion as ∆T  and α, respectively. In the case of 
laminated composites, the elements of the tensor of elasticity are defined as the orthotropic material’s lessened 
elastic constants of the Lth layer, and the next equations express the mentioned relations94:
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The aforementioned equations express the relation between stress and strain components for the Lth orthotropic 
lamina referred to as the lamina’s principal material axes x, θ, and z. In Eq. (5), Qij  components are expressed by 
the following equations:
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Displacement field.  FSDT enables us to define the displacement field of a laminated microtube as following 
equations:

θ θ ψ θ
θ θ ψ θ
θ θ

= +
= +
=

θ

U z t u z z t
V z t v z z t
W z t w t

(x, , , ) (x, , ) (x, , )
(x, , , ) (x, , ) (x, , )
(x, , , ) (x, , ) (7)

x

As well as that, θu x t( , , ), θv x t( , , ) along with θw x t( , , ), respectively demonstrate the displacements of the 
neutral surface in x and θ axes. ψ θx t( , , )x  as well as ψ θθ x t( , , ) illustrate the cross section rotations around θ and 
x- directions. By inserting Eq. (7) into Eq. (3), the strain tensor’s components can be obtained by the following 
equations:
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Governing equations and boundary conditions.  The motion equations, along with the possible BCs 
related to the mentioned structure would be extracted applying energy methods (Hamilton principle) Based on 
FSDT and the NSG model by the following equation:

∫ δ δ− Π =K dt( ) 0
(9)t

t
s

1

2

here, K illustrates the kinetic energy, Πs defines strain energy and the work done by forces imposed can be shown 
as Πw. For a usual micro tube exposed to the high level of temperature situation, it is suggested that the tempera-
ture distributes through its thickness.

Based on NSG model, Eq. (10) defines the strain energy35:
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And also, the strain energy can be defined as the following equation due to the NSG model35:

∭ ∭ ∬σ ε σ ε δ δε σ δεΠ = + ∇ ⇒ Π = +( )dV t dV LdS1
2 0 (11)
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The components of the Eq. (11) and governing equations of the laminated microtube are given in the appendix.

Solution Method
One of the best numerical methods which are well known for its accuracy and convergence is the Differential 
quadrature method (DQM)95,96. In this method, it is essential which the numbers of seed should be opti-
mal19,26,97–99, which means that due to increasing the computational charge, too many seeds are not applicable, 
employing the few seeds, however, would lead to a negative impact on the accuracy of the results. At first, this 
method encounters its users with a limitation in which they could not use too many seeds owning to the algebraic 
weighting function. Shu100,101 improve the basic model of DQM with the aid of an explicit formula and decom-
position technique so that he renamed the modified method to GDQ. GDQM is employed to find the solutions 
of governing equations beneath various boundary conditions. The flow chart of the aforementioned solution 
method is presented in Fig. 2.

With a view of this method estimated r-th defined by f(x) as follow:
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f x
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n and Cij called the number of seed and weighting coefficients in order which the second one computes as below:

Material 
properties E1 E2 G12 G13 G23 α1 α2 ν

Values 140 GPa 10 GPa 7 GPa 7 GPa 7 GPa − . × − K0 3 10 /6 × − K28 10 /6 0.078

Table 1.  The material properties of AS/3501 graphite-epoxy layers94.

Figure 2.  The flow chart of GDQM.
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Figure 3.  The grid point numbers’ effects on the convergency of the results for the nondimensional frequency 
of the laminated composites microtube for different boundary conditions when L/R = 10, h/R = 0.1, 
μ = = .l nm0 1 .

h/R n
ref. 103 
(l = 0)

Present 
research 
(l = 0)

ref. 103 
(l = h)

Present 
research 
(l = h)

0.02

1 0.1954 0.1954 0.1955 0.1954

2 0.2532 0.2527 0.2575 0.2573

3 0.2772 0.2758 0.3067 0.3062

0.05

1 0.1959 0.1954 0.1963 0.1958

2 0.2623 0.2588 0.2869 0.2854

3 0.3220 0.3140 0.4586 0.4545

Table 2.  Evaluation of three vibrational modes of isotropic homogeneous microtube (various thickness values 
are considered).
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As well as these higher-order weight coefficients are as follows:
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In the present research investigation, a seeds can be expressed as follows due to’ non-uniform set is chosen 
along x and θ excess:
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The freedom degrees can be taken into consideration as follows:

l(nm)

Figure 4.  The effects of l and even layers number on the vibration of the structure under the boundary 
condition of C-C.

l(nm)
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Figure 5.  The effects of l and even layers number on the vibration of the structure under the boundary 
condition of C-S.
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Reorganizing the quadrature analogs of boundary conditions along with field equations into the generalized 
eigenvalue problem’s fabric obtain:
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Figure 7.  The effects of l and even layers’ number on the vibration of the structure under the boundary 
condition of C-F.
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Figure 6.  The effects of l and even layers number on the vibration of the structure under the boundary 
condition of S-S.
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where the subscripts d and b pertained to the grid points’ domain and boundary, respectively. As well as this, the 
displacement vector is shown by δ. Equation (18), however, may be changed to a fundamental problem of 
eigenvalue:
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As well as this, dimensionless natural frequency and dimensionless temperature difference are defined as bellow:
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Figure 8.  The effects of l and odd layers number on the vibration of the structure under the boundary condition 
of C-C.
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Figure 9.  The effects of l and odd layers number on the vibration of the structure under the boundary condition 
of C-S.
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Result and Discussion
In this paper, the laminated composite micro tube’s material properties are given in Table 1. The most prominent 
superiority of AS/3501 composite compared with conventional composites are their higher stiffness and strength 
as well as less density102.

Convergencey.  Achieving a higher degree of results accuracy in the GDQ solution method is strongly 
dependent on adequate grid point numbers. The convergence has been conducted for a range of materials along 
with various boundary conditions (Clamped-Clamped (C-C), Clamped-Simply (C-S), Simply-Simply (S-S), and 
Clamped-Free (C-F)). At the same time, this would be observed that the stiffness of microtube under C-C bound-
ary conditions is much more than the microtube under C-F boundary conditions leading to a lower nondimen-
sional critical temperature. According to Fig. 3, twenty grid points are adequate for the convergence of the results 
presented.

Validation.  For validating the results presented in this study with other research papers, Table 2 evaluates 
outcomes for the micro tube’s nondimensional frequency and the outcomes presented by ref. 103, for different 
geometrical parameters. Besides, the results disclose that the decrease of nondimensional length scale element 

Figure 10.  The effects of l and odd layers number on the vibration of the structure under the boundary 
condition of S-S.

l(nm)

Figure 11.  Effects of l and odd layers’ number on the vibration of the structure under boundary conditions of 
C-F.
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(h/l) may result in a drop in the natural frequency. The mentioned formulation, however, is validated by those 
available in the literature. Table 2 illustrates a decent agreement between the presented outcomes and reference.

length scale Influences on the frequency of the laminated composite microstructure.  Figures  
4–11 illustrate the influence of the various angles of symmetric laminate, the number of layers and length scale 
element on the frequency for a range of boundary conditions. The proposed structure is a laminated composite 
microtube with R = 1 nm and h = R/10. The small scale factors are suggested to be µ = 0.55 nm, l = 0.35 nm in 
the relevant models35.

Even–layered laminates’ comparison.  According to Figs. 4–7, for C-C, C-S as well as S-S boundary conditions, 
increasing the length scale parameter, the figures presented to demonstrate a similar behavior in the all men-
tioned cases. By rising the element of length scale, the frequency of the microstructure increases. These figures 
present that, by boosting the even layers’ number of the laminated composite, the frequency of the structure 
increases. Such increases are considerable for C-C boundary conditions and boost the stability of such structures. 
The difference between Figs. 4–6 are that the dimensionless frequency parameter of the C-C boundary  
condition is more than C-S and S-S boundary conditions. This is because, in the case of the C-C boundary  
condition, the microstructure stability would be enhanced. Also, a new result is presented in the boundary 

Figure 13.  The effects of μ and even layers number on the vibration of the structure under the boundary 
condition of C-S.

Figure 12.  The effects of μ and even layers number on the vibration of the structure under the boundary 
condition of C-C.
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condition of C-F in Fig. 7. For this regard it may be observed, the effect of length scale factor on the frequency is 
much more changeable. Moreover, for every even layer number, in lower value of length scale factor 

≤ ≤ . ≤ ≤ . ≤ ≤ .l l l(0 0 0183, 0 0 0278, 0 0 04)for four layers forsix layers for eight layers , by raising the value of length 
scale factor, the frequency of the structure drops but in higher value ≥ .l( 0 0183,for four layers  

≥ . ≥ .l l0 0278, 0 04)for six layers for eight layers  of length scale parameter, this matter is inverse. Besides, this figure 
shows that even layers’ number effect on the frequency, change in l=0.872 nm. So, for length scale parameter less 
than 0.872 nm, whenever the composite layers increase, the frequency increases as well, while for > .l nm0 872  the 
reverse is true.

Odd–layered laminates’ comparison.  The dimensionless frequency respect to the length scale factor for var-
ious odd layers’ numbers of the laminated composite and S-S, C-S, C-C along with C-F boundary conditions 
are depicted in Figs. 8–11. It is observed that rising the length scale factor causes the frequency of the system to 
increase. It is clear from Figs. 8–11, because of increasing stiffness of structure with rising odd layers’ number, the 
variation of frequency with an increase of odd layers’ number decreases. As mentioned earlier, the dynamic stabil-
ity can be enhanced if the length scale factor increases. This enhancement is more significant in the C-C boundary 
condition. The difference between these figures is that the effects of odd layers’ numbers on the vibration of the 
structure with C-F boundary conditions are much less than in comparison with other boundary conditions. For 

Figure 14.  The effects of μ and even layers number on the vibration of the structure under the boundary 
condition of S-S.

Figure 15.  Effects of μ and even layers number on the vibration of the structure under the boundary condition 
of C-F.
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more comprehensive, the odd layers’ number indeed has a positive effect on the frequency of the microtube with 
C-F boundary condition, but this effect is minimal and can be ignored.

Influences of the nonlocal parameter on the frequency of the laminated composite microstruc-
ture.  Figures 12–19 demonstrate the impact of the angles’ different symmetric laminate, layers number as well 
as nonlocality on the vibration for different boundary conditions.

Even–layered laminates’ comparison.  Regarding Figs. 12–15, for C-C, C-S, S-S, and C-F boundary conditions, 
increasing the nonlocal parameter, all figures demonstrate similar mechanical behavior. By rising the nonlocal 
parameter, the frequency of the micro-scaled structure drops. These figures present that, by boosting the even lay-
ers’ number of the laminated composite, the frequency of the microstructure increases. The mentioned increment 
is considerable for C-C boundary conditions and enhances the stability of the structure. For more comprehensive, 
increasing even layers’ numbers indeed has a positive effect on the frequency but, nonlocality has an inverse 
influence on the frequency. The difference between Figs. 12–15 is that the dimensionless fundamental vibration 
mode of the C-C boundary condition is more than other boundary conditions. This means the C-C boundary 

Figure 16.  The effects of μ and odd layers number on the vibration of the structure under C-C boundary 
conditions.

Figure 17.  The effects of μ and odd layers number on the vibration of the structure under C-S boundary 
conditions.

https://doi.org/10.1038/s41598-020-61855-w


13Scientific Reports |         (2020) 10:5616  | https://doi.org/10.1038/s41598-020-61855-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

condition improves the structure stability. As mentioned earlier, increasing layers’ numbers have a direct effect 
on the frequency so, and this positive point is much more significant than when the boundary condition is C-F. 
As a new result for literature, increasing even layers’ numbers play a prominent role in the stability of the C-F 
laminated composite microtube.

Odd–layered laminates’ comparison.  The dimensionless frequency versus the nonlocal parameter for different 
odd layers number of the laminated composite and S-S, C-S, C-C, and C-F boundary conditions are depicted in 
Figs. 16–19. It can be illustrated that increasing the nonlocal parameter causes the frequency of the system to 
decreases. It is clear from Figs. 16–19, because of increasing stiffness of structure with rising odd layers’ number, 
the variation of frequency with increasing of odd layers’ number increases. As mentioned earlier, by increasing 
the nonlocal parameter, the dynamic stability is boosted. This enhancement is more significant in the C-C bound-
ary condition. The difference between these figures is that the effects of odd layers’ numbers on the frequency of 
the structure with C-F boundary conditions are much more than in comparison with other boundary conditions.

Conclusion
The present research work investigated the stability of a small-scaled laminated composite microtube using 
the NSG model. The governing motion equations pertained to the laminated composite microtube have been 
obtained by employing energy methods, and GDQM enabled us to solve the obtained equations. The current 
investigation evaluated dynamic stability analysis of a laminated composite microtube considering continuum 
mechanics for the first time. Ultimately, by employing the mentioned continuum theory, this study has been made 

Figure 19.  The effects of μ and odd layers number on the vibration of the structure under C-F boundary 
conditions.

Figure 18.  The effects of μ and odd layers number on the vibration of the structure under S-S boundary 
conditions.
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into the impact of the various kinds of laminated composite microtube parameters on the vibrational character-
istics of the microstructure. The most prominent results obtained in the current paper can be found as follows:

	 1.	 For C-F boundary condition and every even layers’ number, in the lower values of length scale parameter, 
as this factor increases, the fundamental frequency of the structure decreases but in higher values of length 
scale factor this matter becomes inverse.

	 2.	 For the C-F boundary condition and even layers’ number, the impact of the length scale factor on the natu-
ral frequency is more changeable.

	 3.	 The more the length scale values and the layers’ number increase, the more structure’s frequency becomes 
for C-C, C-S as well as S-S boundary conditions and every even and odd layers’ number.

	 4.	 The odd layers’ number has a positive effect on the frequency of the microtube with C-F boundary condi-
tion, but this effect is minimal and can be ignored.

Appendix
The strain energy variation can be derived as the following equations:
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Governing motion equations for a microtube due to the FSDT as well as NSG model are presented inserting Eqs. 
(10), (11) into Eq. (9) and integrating as follows:
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