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A B S T R A C T   

Whether all obesity-related variants contribute to the onset of obesity or one or a few variants cause obesity in genetically heterogeneous pop-
ulations remains obscure. Here, we investigated the genetic architecture of obesity by clustering the Japanese and British populations with obesity 
using obesity-related factors. In Step-1, we conducted a genome-wide association study (GWAS) with body mass index (BMI) as the outcome for 
eligible participants. In Step-2, we assigned participants with obesity (BMI ≥25 kg/m2) to five clusters based on obesity-related factors. Subse-
quently, participants from each cluster and those with a BMI <25 kg/m2 were combined. A GWAS was conducted for each cluster. 

Several previously identified obesity-related genes were verified in Step-1. Of the genes detected in Step-1, unique obesity-related genes were 
detected separately for each cluster in Step-2. Our novel findings suggest that a smaller sample size with increased homogeneity may provide 
insights into the genetic architecture of obesity.   

1. Introduction 

Obesity is a serious global medical and economic issue that represents a major risk factor for many lifestyle-related diseases, such as 
diabetes, hyperlipidemia, and hypertension [1,2]. The global proportion of individuals with a body mass index (BMI) ≥ 25 kg/m2 is 
reportedly 36.9 % and 38.0 % for men and women, respectively [3]. The pathogenesis of obesity is complex and includes regulation of 
calorie utilization, appetite, and physical activity, including health care availability, socioeconomic status, and underlying genetic and 
environmental factors [4,5]. 

Heritability of BMI has been extensively reported. For instance, in twin studies, BMI heritability ranged from 30 % to 90 % [6–8], 
whereas in genome-wide association studies (GWASs), it was estimated to be 20–30 % [9–12]. Only approximately 6 % has been 
reported based on genome-wide significant loci [9–11]. Although GWASs using BMI as an outcome have identified over 700 associated 
loci [9–15], whether they all contribute to obesity development via the same pathway remains obscure. The association of these 
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genetic variants with obesity may be elucidated by a polygenic model, wherein the effects of each variant are weak yet contribute to 
the onset of obesity [16]. Hence, if the genetic architecture of obesity could be elucidated by a polygenic model, we would expect 
larger sample sizes to correspond to more identified signals, whereas smaller sample sizes would correspond to fewer signals (Fig. S1). 
Moreover, within a genetically heterogeneous population of obesity, if a few variants exhibit a relatively strong influence leading to 
obesity in a portion of the subtypes included therein, then dividing the population with obesity into homogeneous groups can detect 
unique genes in each population, even with a reduced sample size. However, to the best of our knowledge, no GWASs has been 
conducted to divide people with obesity into more homogeneous populations. In a previous study, Traylor et al. demonstrated that 
categorizing patients with a complex disease into more homogeneous subgroups offered more insight into hidden heritability in a 
simulation study [17]. Thus, clustering algorithms for machine learning could reveal novel and more genetically homogeneous 
clusters. 

Despite these circumstances, no studies have examined the genetic architecture of obesity by dividing obese individuals into 
clusters using machine learning techniques. Herein, we investigated the genetic architecture of obesity by dividing individuals with 
obesity into clusters using diverse obesity-related factors and machine learning techniques and conducting GWAS on each cluster 
(cluster-based GWAS) [18,19]. 

2. Materials and methods 

2.1. Resource availability 

The data that support the findings of this study are available from the TMM biobank. However, restrictions apply to the availability 
of these data, which were accessed under the license of the current study. Hence, they are not publicly available. Data are available 
from the authors upon reasonable request and with permission from the TMM Biobank. All inquiries regarding access to data should be 
addressed to TMM Biobank at dist@megabank.tohoku.ac.jp. 

2.2. Experimental model and study participant details 

2.2.1. Population 
This study was conducted in accordance with the guidelines of the Declaration of Helsinki [20]. The protocol was reviewed and 

approved by the Institutional Review Board of the TMM Organization. The main study used data from cohort studies conducted by the 
TMM Birth and Three-Generation Cohort Study (BirThree Cohort Study) and the TMM Community-Based Cohort Study (CommCohort 
Study) [21–23]. The BirThree Cohort and CommCohort Study were conducted in the Miyagi and Iwate Prefectures, Japan. Details of 
the BirThree Cohort and CommCohort Study have been described previously [22,23]. The BirThree Cohort Study was a birth- and 
three-generation cohort study. Pregnant women were registered between July 2013 and March 2017 [22]. Additionally, the family of 
the pregnant women and their partners (biological father) were recruited (including maternal and paternal grandparents, siblings of 
the fetus, and their relatives) [22]. Among the BirThree Cohort Study participants, mothers (n = 22,493), fathers (n = 8,823), and 
grandparents (n = 8058) of the fetus were included in this study. The TMM CommCohort study is a community-based prospective 
cohort study that includes men and women aged >20 years living in Miyagi Prefecture, Northeastern Japan [23]. The Type 1 survey (n 
= 41,097) was conducted at specific municipal health check-up sites. The Type 2 survey (n = 13,855) was conducted at assessment 

Fig. 1. Flow chart of exclusion criteria in this study 
Participant data from each cohort are excluded based on these criteria. 
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centers [23]. 
Participant data were excluded based on the following criteria: withdrawal of consent, failure to return the self-reported ques-

tionnaire, BMI <18.5 kg/m2, missing information on the food frequency questionnaire (FFQ), extreme energy intake (energy intake >
mean ± 3 SD), and duplicate participation in both the BirThree Cohort and the CommCohort Study Type-1 (the data of participation at 
an earlier date were included). Data from eligible participants of the BirThree Cohort Study (n = 23,479), CommCohort Study Type-1 
(n = 34,187), and CommCohort Study Type-2 (n = 12,485) were combined (n = 70,151). In the sub-analysis, a similar analysis was 
conducted using UKB data [24–26] to compare the results with those of the main study. The methods for analyzing the UKB data are 
described in the Supplementary Information. 

2.2.2. Genotyping, imputation, and quality control 
Cohort participants were genotyped using the Affymetrix Axiom Japonica Array (v2) in 19 batches, with 50 plates per batch. 

Details pertaining to the genotyping conducted in TMM have been described previously [27]. Following batch genotyping, samples 
with a call rate <0.95 or samples with unusually high IBD values compared to other samples were excluded. Additionally, variants with 
Hardy–Weinberg equilibrium P-values <1.00 × 10− 5, minor allele frequency <0.01, or missing fraction >0.01 were excluded from 
each batch. A direct genotype dataset in the PLINK BED format was obtained by merging the genotype datasets of the 19 batches. A 
total of 21,541 participants with missing direct genotypic data were excluded. Principal component analysis (PCA) was conducted 
using the pca approx tool in PLINK 2.0 [28] on the direct genotype dataset. An additional 245 participants with >4 SD for principal 
components 1 or 2 were excluded. Finally, 48,365 participants (BirThree Cohort Study: n = 11,674; CommCohort Study Type-1: n =
27,745; and CommCohort Study Type-2: n = 8,946) were included in the analysis (Fig. 1). A plot of the participants (n = 48,365) 
according to principal components 1 and 2 using PCA is depicted in Fig. S2. 

To prepare an imputed genotype dataset, pre-phasing was conducted using SHAPEIT2 [29], along with the Duo tool [30], which 
incorporates information on the relatedness between individuals to increase phasing accuracy. The phased genotypes were subse-
quently imputed with a cross-imputed panel of 3.5KJPNv2 [31] and 1KGP3 [32] using IMPUTE4 [26]. To create the cross-imputation 
panel for 3.5KJPNv2 [31] and 1KGP3 [32], the merge_ref_panels tool in IMPUTE2 was used [33]. Consequently, we obtained an 
imputed genotype dataset in the Oxford BGEN format (https://www.chg.ox.ac.uk/~gav/qctool_v1/#overview). For genotype 
imputation data, those with minor allele frequencies <0.01 and imputation information scores <0.8 were excluded. Finally, 9,868,333 
single nucleotide polymorphisms (SNPs) were included in the GWASs. 

2.3. Quantification and statistical analysis 

2.3.1. Variables 
The following variables related to obesity, which were collected from questionnaires completed by the participants at baseline for 

each cohort, were used for clustering: age, nutrient intake calculated from the FFQ based on frequency of food intake over the past year 
(energy, protein, fat, carbohydrate, sodium, potassium, calcium, magnesium, phosphorus, iron, zinc, copper, manganese, retinol 
equivalents, vitamins [C, D, K, B1, B2, B6, and B12], niacin, folate, pantothenic acid, cholesterol, dietary fiber, lycopene, α-carotene, 
β-carotene, and β-cryptoxanthin), frequency of leisure time physical activity (slow or fast walking, moderate exercise, and strenuous 
exercise; the choices included: no activity, more than once per month, 1–3 times per month, 1–2 times per week, 3–4 times per week, 
and almost every day), time typically spent in physical activity per day (strenuous work, walk, standing, and sitting) according to 
predetermined options (no time, <30 min, >30 min ≤60 min, >1 h ≤ 3 h, >3 h ≤ 5 h, >5 h ≤ 7 h, >7 h ≥ 9 h, >9 h ≤ 11 h, and >11 h) 
sleep duration (<5 h, >5 h ≤ 6 h, >6 h ≤ 7 h, >7 h ≤ 8 h, >8 h ≤ 9 h, and >9 h), difference between weight at age 20 years and current 
weight, smoking (smoked >100 cigarettes since birth; yes or no), alcohol consumption (>1 drink per month, quit, rarely, and unable to 
drink), psychological distress over the past month (total K6 score [Japanese version]) [34,35], and birth weight (unknown; >1,500 g 
≤ 2,000 g; >2,000 g ≤ 2,500 g; >2,500 g ≤ 3,000 g; >3,000 g ≤ 3,500 g; >3,500 g ≤ 4,000 g; and >4,000 g). Additionally, cohort type 
(BirThree Cohort Study, CommCohort Study Type-1, and CommCohort Study Type-2) was added to the variables for clustering. 

The missing variables used for clustering were imputed using the k-nearest neighbor (KNN) algorithm [36]. KNN selects k samples 
close to the missing values in the feature space and inputs the median of the k samples in the case of continuous variables or the most 
frequent category among the k samples in the case of categorical variables. KNN was implemented using the ‘VIM’ package in the R 
software (version 4.1.0) [37]. Based on previous reports [36,38], we set k to 219 as an odd number close to the square root of 48,365 
participants. 

2.3.2. Body mass index 
BMI was computed by dividing the weight (kg) by the squared height (m2) using self-reported height and weight on a questionnaire 

completed by the participants at baseline for each cohort. A BMI >25 kg/m2 was defined as obesity based on the Western Pacific 
Region of the World Health Organization criteria for Asians [39]. 

2.3.3. Cluster analysis 
The k-prototype is a clustering algorithm that combines k-means and k-modes and enables clustering using continuous and cat-

egorical variables [40]. The k-prototype was implemented using the ‘clustMixType’ package in R [41]. The number of clusters was set 
to five. Continuous variables were standardized by subtracting the mean of each variable and dividing it by the SD before clustering. 
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2.3.4. Genome-wide association studies 
The GWASs with BMI as a continuous variable were conducted in two steps. Step-1: GWAS was conducted on all the 48,365 

participants. Step-2:13,067 of the 48,365 participants were separated into five clusters using the k prototype. Thereafter, participants 
in each of the five obesity clusters and those with BMI <25 kg/m2 were combined. A GWAS was conducted for each cluster (Fig. 2). To 
identify associations between autosomal SNPs and BMI, fastGWA with the GCTA software was employed [42]. FastGWA is a linear 
mixed model using a sparse genetic relationship matrix that is reportedly robust for population stratification and familial relationships 
[43]. The top 20 principal components computed from the PCA of the direct genotyping dataset, sex, age, and cohort type (BirThree 
Cohort Study, CommCohort Study Type-1, and CommCohort Study Type-2) were included as covariates. We set the Bonferroni 
genome-wide significance threshold at P < 8.33 × 10− 9 (5.0 × 10− 8/6), as six GWASs were conducted for Step-1 and -2. The detected 
SNPs were annotated using ANNOVAR [44]. Manhattan and quantile-quantile plots were generated using R software. 

3. Results 

3.1. Clustering 

Following the assignment of 13,067 participants with obesity into five clusters, clusters 1–5 contained 628, 3,073, 4,111, 2,468, 
and 2,787 participants, respectively. Table S1 depicts the characteristics of the participants with obesity in each cluster. The variables 
were characterized by mean and standard deviation (SD) for continuous variables and number and percentage for categorical vari-
ables. The participants in Cluster 1 had the highest energy and nutrient intake and a higher frequency of leisure-time exercise. The 
participants in Cluster 2 were characterized by a higher proportion of older women and the highest percentage of non-smokers. The 
participants in Cluster 3 had the lowest energy and nutrient intake. A high proportion of participants did not exercise during leisure 
time or perform their usual physical activities (strenuous work, walking, or standing). The participants in Cluster 4 had the second- 
highest energy and nutrient intake. The participants in Cluster 5 were characterized by the largest proportion of men, the youngest 
age, and the longest time spent standing or sitting, and had the highest proportion of smokers, the highest proportion of alcohol 
drinkers, and the highest score on the psychological distress cale. 

3.2. Gene interpretation 

We observed several genes that satisfied the P < 8.33 × 10− 9 threshold in Step-1 (Fig. 3 and Table S2). Most genes for which 
associations were detected in Step-1 were reportedly associated with obesity. Specifically, LINC01741 [45–47] (Chromosome [Chr] 1), 
CRYZL2P-SEC16B [46,48] (Chr 1), SEC16B [47,47] (Chr 1), TMEM18 [49,50] (Chr 2), BDNF [46,48] (Chr 11), LINC00678 [51,52] (Chr 
11), BDNF-AS [46,48] (Chr 11), FTO [9,10,46,53] (Chr 16), MC4R [54,55] (Chr 18), GIPR [14] (Chr 19), and FBXO46 [51] (Chr 19) 
have been previously associated with BMI. Moreover, KIF18A (Chr 11) has been previously associated with visceral fat [56], PMAIP1 
(Chr 18) with serum IgE measurement [57] and monocyte count [58,59], RSPH6A (Chr 19) with high- and low-density lipoprotein 
cholesterol levels [60], SYMPK (Chr 19) with type 2 diabetes mellitus [61] and total cholesterol levels [51], and FOXA3 (Chr 19) with 
waist-to-hip ratio adjusted for BMI [53]. 

Fig. 2. Details of the cluster based GWAS.  
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Based on the GWAS results in Step-2, several variants detected in Step-1 were observed in separate clusters (Fig. 4 and Table S3). 
Genome-wide associations were not detected in Cluster 1. In Cluster 2, the loci that satisfied this threshold were LINC01741, CRYZL2P- 
SEC16B (Chr 1; intergenic), CRYZL2P-SEC16B, and SEC16B (Chr 1). In Cluster 3, FTO (Chr 16), PMAIP1, and MC4R (Chr 18; intergenic) 
loci were identified. In Cluster 4, BDNF (Chr 11), BDNF-AS (Chr 11), BDNF-AS, LINC00678 (Chr 11), and BDNF, KIF18A (Chr 11) loci 
were identified. Additionally, in Cluster 5, BDNF-AS, LINC00678 (Chr 11), LINC00678 (Chr 11), BDNF-AS (Chr 11), BDNF (Chr 11), and 
KIF18A (Chr 11) loci were identified (Fig. 4). Quantile-quantile plots corresponding to the GWAS results of the main study are depicted 
in Fig. S3. 

In the sub-analysis, the UK Biobank (UKB) data were used for comparison with the main study results. In Step-1, we verified the 
association between the representative obesity-related genes and BMI (Table S4 and Fig. S4). In Step-2, the clustering results for the 
32,779 obese participants revealed that Clusters 1–5 comprised 5,874, 6,497, 6,919, 6,733, and 6756 participants, respectively. The 
characteristics of each cluster are presented in Table S5. In the GWAS results for Step-2, several variants detected in Step-1 were found 
in separate clusters. This was similar to the results of the Tohoku Medical Megabank Project (TMM) cohort analysis (Table S6 and 
Fig. S5). 

4. Discussion 

Herein, we conducted a GWAS on the participants according to their BMI in Step-1. In Step-2, participants with obesity were 
divided into five clusters based on obesity-related factors. A GWAS was conducted for each cluster. Consequently, several genes 
identified in previous studies were verified in Step-1. Of the 18 genes detected in Step-1, LINC01741, CRYZL2P-SEC16B, and SEC16B 
were significantly associated with Cluster 2. FTO, PMAIP1, and MC4R were linked to Cluster 3. BDNF, BDNF-AS, LINC00678, and 
KIF18A were associated with Clusters 4 and 5. A similar phenomenon was observed in the sub-analysis using UKB data, wherein unique 
obesity-related genes were detected in each cluster. 

It is important to consider how the cluster characteristics relate to the variants identified in each cluster. The GWAS results in Step-2 
may be partially elucidated by cluster characteristics. In Cluster 1, significant associations were not detected. This might be due to the 
low number of participants with BMI >25.0 kg/m2 as this cluster contained the fewest participants with obesity. Hence, the detection 
power was insufficient. 

FTO, PMAIP1, and MC4R (intergenic) variants were associated with BMI in Cluster 3. Variants in the FTO region regulate IRX3 and 
IRX5 expression [62]. These promote fat accumulation and cause obesity. Moreover, melanocortin-4-receptors (MC4R), transcribed by 
the MR4C gene, regulate food intake and energy expenditure [63,64]. MC4R in the paraventricular hypothalamus or amygdala 
controls food intake, whereas its expression elsewhere is responsible for energy expenditure [63]. Therefore, the genetic variants in 
FTO and MC4R, which have been reported to increase body fat accumulation and reduce energy expenditure, may partially account for 
the obesity of individuals in Cluster 3 despite low energy intake. 

In Clusters 4 and 5, BDNF and BDNF-AS variants were identified. The participants with obesity in Cluster 4 had the second highest 
energy and nutrient intake, whereas those in Cluster 5 had the highest mean psychological distress score (K6 total score). Brain-derived 
neurotrophic factor (BDNF), which is transcribed by the BDNF gene, promotes the development and growth of nerve cells and has anti- 
obesity effects [65,66]. Furthermore, transcription of the BDNF-AS (antisense RNA) gene regulates BDNF expression [67]. Thus, 
altering BDNF regulation may affect the central nervous system and alter eating behaviors and psychiatric conditions, as observed in 
this cluster. 

In Cluster 2, SEC16B variants were detected. Participants with obesity in this cluster had the highest proportion of women who 
were older and were nonsmokers. Variants of SEC16B may be associated with obesity via the regulation of dietary lipid absorption and 

Fig. 3. Manhattan plot of Step-1 A genome-wide association study (GWAS) using body mass index (BMI) as a continuous variable is conducted on 
48,365 participants. 
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Fig. 4. Manhattan plots of Step-2 We have clustered 13,067 of 48,365 individuals with a body mass index (BMI) ≥ 25 kg/m2 using the k-prototype. 
Subsequently, participants with obesity in each of the five clusters and those with a BMI <25 kg/m2 are combined. A cluster-based genome-wide 
association study (cGWAS) performed according to the five clusters. 
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appetite [68,69]. To the best of our knowledge, no previous study has reported direct connections between the characteristics of 
Cluster 2 participants and SEC16B variants. However, it should be noted that the characteristics of clusters are not always recognizable 
by humans. Given that clustering algorithms extract latent features by combining numerous variables, the resulting clusters are not 
necessarily comprehensible, although they are more homogeneous. Thus, it is essential to define the obscure clusters identified using 
clustering algorithms. 

This study has several strengths. The GWAS results had high validity. Most genes detected in this study were previously reported to 
be associated with BMI. Therefore, the GWAS data were considered appropriate. The TMM and UKB cohorts included diverse obesity- 
related factors. Using these two cohorts, it was possible to cluster the obese population into more homogeneous groups using a rich set 
of obesity-related factors. Sub-analysis replicated the phenomenon, wherein unique obesity-related genes were detected in each 
cluster. This finding supports the hypothesis that obesity comprises an aggregation of heterogeneous subgroups. Our findings suggest 
that dividing obese populations into homogeneous subpopulations would yield fewer genetic variants that could elucidate obesity in 
each subgroup. Although several issues remain to be addressed to elucidate the complete genetic architecture of obesity, this study 
provides important insights into the potential to inform the development of personalized treatments or nutritional support for obesity. 
More specifically, once clusters are identified, a classifier can be created using the cluster numbers as training data, which can then be 
applied to classify obesity into subgroups and verify the effectiveness of obesity treatment according to these subgroups. 

This study had certain limitations. It is unclear whether the selection of variables, algorithms, or number of clusters is optimal. 
Herein, several obesity-related factors were selected. However, the existence of unknown obesity-related factors cannot be ruled out. 
Additionally, the number of clusters in this study was arbitrarily set to five, which should be explored in the future. Obesity was 
assessed at a temporal point; therefore, misclassification may have occurred. Even those who were not obese at the time of mea-
surement have the potential to develop obesity with age. The BMI was computed using height and weight from self-reported ques-
tionnaires in the main study. Previous studies have demonstrated no substantial differences between BMI computed from self-reported 
or measured height and weight, indicating the usefulness of self-reported data [70]. Therefore, it is unlikely that the use of 
self-reported height and weight data significantly distorted our results. However, the impact of self-report bias in this study cannot be 
ruled out, as all data on obesity-related factors, not just weight and height, were collected through self-report questionnaires. Despite 
our best efforts to select similar variables for obesity-related factors in the TMM and UKB, we were unable to perfectly match 
obesity-related factors. This may have made it difficult to replicate the results of this study. Clustering the obese population reduces the 
sample size, leading to lower statistical power. Additionally, we could not assess the heritability of each cluster because of the small 
sample size. In the future, computing heritability in a population with a larger sample size and demonstrating that heritability is 
greater post clustering could provide strong evidence to indicate that obesity is an aggregation of heterogeneous genetic populations. 

5. Conclusion 

Our data suggest that a decreased sample size with increased homogeneity may provide insights into the genetic architecture of 
obesity. 
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