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Abstract: A different type of MnO2-induced oxidative cyclization of dihydrotriazines has been
developed. These dihydrotriazines are considered as a “formal” Schiff’s base. This method provided
easy access to naphthofuro-fused triazine via the C-C/C-O oxidative coupling reaction. The reaction
sequence comprised the nucleophilic addition of 2-naphthol or phenol to 1,2,4-triazine, followed by
oxidative cyclization. The scope and limitations of this novel coupling reaction have been investigated.
Further application of the synthesized compound has been demonstrated by synthesizing carbazole-
substituted benzofuro-fused triazines. The scalability of the reaction was demonstrated at a 40 mmol
load. The mechanistic study strongly suggests that this reaction proceeds through the formation of
an O-coordinated manganese complex.

Keywords: oxidative cyclization; manganese(IV) oxide; 1,2,4-triazine; phenols; cross-coupling

1. Introduction

In organic synthesis, C−H functionalization in the presence of transition metal cat-
alysts has become one of the fundamental methods, and has had a massive impact on
synthetic organic chemistry, medicinal chemistry, and material science [1–8]. In this context,
cross dehydrogenative coupling (CDC) reactions have gained much interest in the last
decade [9–15] among all types of C-H functionalization/activation reactions. This type
of coupling reaction allows the construction of a C-C bond or C-X bond directly from
C-H-containing substrates in the presence of an oxidant via the formal removal of a H2
molecule. In addition, these methods avoid the prefunctionalization of starting materials,
which makes the synthetic routes straightforward and more efficient. For CDC reactions,
various transition metals such as Pd, Cu, Ag, Rh, and Ru have been extensively studied due
to their high efficiency. However, the exploration of manganese catalysis in CDC reactions
is in high demand due to its low price, ready availability, sustainability, nontoxicity, and
environmentally friendly properties [16]. Simple manganese salts were sensibly employed
in the CDC reaction due to their ability to undergo the reaction in a radical way.

Benzofuro-fused N-heterocycles are considered as common structural motifs in biologi-
cally active compounds, drug candidates and fluorescence materials (Figure 1). For example,
benzofuro [2,3-b]pyridine, in particular Elbfluorene I, and its derivatives are important cyclin-
dependent kinase inhibitors [17–20], the benzofuro [3,2-d]pyrimidine derivative Amuvatinib
II is a multitarget tyrosine kinase inhibitor [21–24], and benzofuro[2,3-b]pyrazine III was
designed as a deep-blue fluorescent emitter [25].
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derivatives [41–47] (Scheme 1c), as well as the intermolecular tandem C-C/C-O cross-cou-
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Figure 1. Representative benzofuro-fused N-heterocycles.

Considering the importance of this moiety, several methods have been developed for
developing benzofuro-fused N-heterocycles such as pyridine, pyrimidine and pyrazine
derivatives. The first synthetic approach comprises the annulation of the heterocyclic ring
to a benzofuran core (Scheme 1a) [26–34]. Alternatively, other approaches include the
intramolecular cyclization (C-C bond formation) of arylhetaryl ethers [35–40] (Scheme 1b)
or the intramolecular cyclization (C-O bond formation) of 2-hetaryl-substituted phenol
derivatives [41–47] (Scheme 1c), as well as the intermolecular tandem C-C/C-O cross-
coupling reaction of prefunctionalized substrate [48–50] to form a furan ring fused between
the benzene and mono/diazine ring. However, these approaches usually require multistep
synthesis, harsh reaction conditions, and the use of transition metal catalysts or special
reagents and conditions.
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of this work.

On the other hand, it is worth mentioning that information about the synthetic and
applied data of benzofuro-fused triazines is lacking in the literature. To date, only a few
studies have investigated the synthesis of benzofurotriazine derivatives. In 1988, Eid et al.
reported the synthesis of naphthofuro[2,3-e][1,2,4]triazine in a 33% overall yield via the
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annulation of the triazine core to naphthofuran-1,2-dione [51]. The reaction was carried out
in four steps. Later, Seitz and Richter reported that the intramolecular [4+2]-cycloaddition
of 2-(tetrazinyloxy)benzonitrile led to the formation of benzofuro[3,2-e][1,2,4]triazine
derivatives [52]. Neunhoeffer et al. synthesized benzofuro[2,3-e][1,2,4]triazine at 26%
yield using the tandem SN

H-SN
ipso reaction of resorcinol and 1,2,4-triazine with a good

leaving group [53]. Unfortunately, these methods represent the only examples of benzo-
furotriazine derivatives, and provide poor yields of the desired products. At the same time,
1,2,4-triazines represent readily accessible and cheap building blocks for the construction
of pyridine [54–62], pyrimidine [63,64] or pyrazine [59,65,66] cores via the sequence of
Diels-Alder/retro-Diels-Alder reactions.

In a continuation of our research on CDC reactions in triazines [54,67] and diazines [68],
herein, we are pleased to report an unusual synthesis of benzofuro-fused 1,2,4-triazines
via the sequence of C-C/C-O CDC reactions of 1,2,4-triazines with 2-naphthols or phenols
(Scheme 1d). The reaction proceeded through the formation of 1,4-dihydrotriazine, followed
by oxidative cyclization.

2. Results and Discussion

Based on retrosynthetic analysis of benzofurotriazine (Scheme 1d), we assume that
5,6-unsubstituted triazine and α-unsubstituted phenol are the best building blocks for
the construction of the desired molecule through a sequence of C-C/C-O cross-coupling
reactions. Earlier, our [67,69,70] and other [70,71] research groups demonstrated that 5,6-
unsubstituted 1,2,4-triazines may be used in a two-step CDC reaction with various aromatic
C-nucleophiles via the formation of 1,4-dihydrotriazine derivatives as intermediates, fol-
lowed by aromatization to bi(het)aryl products. As mentioned above, the prefunctionalized
azine is required for C-O cross-coupling reaction [53]. On the other hand, it is well known
that the phenolic Schiff’s bases readily undergoes intramolecular oxidative cyclization in the
presence of various oxidizing agents, in particular, hypervalent iodine compounds [72–75],
lead(IV) acetate [76–78], or manganese salts such as Mn(OAc)3

.2H2O [78,79] and MnO2 [80].
We hypothesized that 1,4-dihydrotriazines containing 2-hydroxyaryl moiety can be consid-
ered as a “formal” phenolic Schiff’s base (Scheme 2).
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Based on this hypothesis, we have focused our attention on the oxidative cyclization
of dihydrotriazines easily obtainable from triazine and naphthol. For example, the reaction
of readily available 3-methylthio-1,2,4-triazine 1a and naphthol 2a yields dihydrotriazine
3aa (Scheme 3), which was used for the initial screening of the optimal conditions. Us-
ing standard oxidizing agent, such as phenyliodonine(III) diacetate, phenyliodonine(III)
bis(trifluoroacetate) or Pb(OAc)4, for the oxidative cyclization of the phenolic Schiff’s base,
only a complex mixture was isolated from the reaction. Surprisingly, when using MnO2
for the oxidation of the “formal” Schiff’s base 3aa, the desired oxidative coupling product
naphthofurotriazine 4aa was formed in one step. At the same time, the side product 5aa
was also observed in the reaction (Scheme 3). After comprehensive screening (Please
see Supporting Information for details, Section S6), we found that the vigorous stirring
(1500 rpm) of 3aa in CHCl3 at 50 ◦C in the presence of 3 equiv. of γ-MnO2 [81] provided
the naphthofurotriazine 4aa in an almost quantitative yield after 3 h (Table 1, entry 1).
Besides γ-MnO2, other manganese salts such as Mn(OAc)3

.2H2O, Mn(OAc)2.4H2O and
MnCl2, Mn(acac)2 were not so effective for this reaction, or provided 4aa in very poor
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yields (Table 1, entries 3-6), except MnO2 impregnated with nitric acid [82], which af-
forded 4aa in a good yield (Table 1, entry 2). One may assume that Mn(OAc)3 has low
oxidative potential in organic media [83] compared to MnO2. Other alternative oxidants
such as Ag2O, DTBP and DDQ led to low yields (Table 1, entries 7-9), and p-chloranil
exclusively provided compound 5aa in a high yield (Table 1, entry 10). The use of other
solvents such as 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), EtOH, DCE or benzene clearly
gave worse results (Table 1, entries 11-14). By increasing the temperature, the yield of
4aa was decreased (Table 1, entry 15). In contrast, lower conversion was observed at room
temperature (Table 1, entry 16). Carrying out the reaction in the presence of a decreased
amount of MnO2 (Table 1, entry 17) had negative effects on the efficiency of the reaction.
In contrast, using 5 equiv. of MnO2 increased the yield of the side product 5aa (Table 1,
entry 18). At the same time, all attempts were unsuccessful to cyclize 5aa to 4aa.
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Scheme 3. Synthesis and oxidation of dihydrotriazine 3aa.

Table 1. Optimization of the reaction conditions 1.

Entry Conditions 4aa (%) b 5aa (%) b

1 Using 3 equiv. of γ-MnO2 >99 trace
2 HNO3@γ-MnO2 instead of γ-MnO2 75 trace
3 Mn(OAc)2.4H2O instead of γ-MnO2 - -
4 MnCl2 instead of γ-MnO2 - -
5 Mn(acac)2 instead of γ-MnO2 - -
6 Mn(OAc)3.2H2O instead of γ-MnO2 29 5
7 Ag2O instead of γ-MnO2 60 -
8 DTBP instead of γ-MnO2 35 15
9 DDQ instead of γ-MnO2 39 43

10 p-Chloranil instead of γ-MnO2 - 89
11 HFIP instead of CHCl3 89 trace
12 EtOH instead of CHCl3 66 trace
13 DCE instead of CHCl3 85 trace
14 Benzene instead of CHCl3 90 trace
15 Performed at 60 ◦C 94 4
16 Performed at 25 ◦C 91 3
17 Using 2 equiv. of γ-MnO2 85 3
18 Using 5 equiv. of γ-MnO2 90 6

1 Conditions: 3aa (0.2 mmol), solvent (4 mL), 3 h. b 1H NMR yield using 1,3,5-trimethoxybenzene as an
internal standard.

In order to study the applicability of the proposed oxidative coupling reaction, we
synthesized a series of starting dihydrotriazines 3. It was observed that our earlier proposed
method [54] of the nucleophilic addition of 5,7-dimethoxycoumarins to 1,2,4-triazines with
some modifications allowed us to prepare a series of compounds 3 using a variety of
3-S-substituted 1,2,4-triazines 1 and 2-naphthols 2 (Scheme 4). In all cases, the reaction
proceeded with high regioselectivity to give compounds 3 in good to high yields. When
methoxy- or hydroxy-substituted 2-naphthols 2b-e were involved in the reaction with
1,2,4-triazine, the best yields were achieved in the presence of BF3

.OEt2 under refluxed
conditions in methanol.
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With the optimized reaction conditions and a set of dihydrotriazines 3 in hand, we then
examined the applicability and scope of this MnO2-induced oxidative cyclization reaction
of dihydrotriazines 3. At first, the scope of the reaction was studied with respect to different
S-substituents in the dihydrotriazine core, and the results are summarized in Scheme 5. The
naphthofuro-fused triazine 4aa was isolated in a 95% yield under optimal reaction condi-
tions after recrystallization from MeCN. Other 3-alkylthio-substituted triazine derivatives
3ba-3da and 3fa also underwent oxidative cyclization, producing only the desired cyclic
product 4 in good to high yields. Moreover, 3-(but-2-yn-1-yl)- and 3-allylthio derivatives
3ea and 3ga smoothly transformed to 4ea and 4ga in 70% and 78% yields, respectively.
However, in the case of phenylthio-substituted derivative 3ha, a 5:1 mixture of 4ha and
5ha was isolated. Next, an investigation of this coupling reaction on 3-methylthiotriazine
adducts 3ab-3ag showed that the naphthyl ring substituted with various functional groups
at different positions afforded the corresponding products with good to excellent yields.
For example, bromo-, hydroxy-, methoxy- and cyano-substituted adducts 3ab-3ag under-
went oxidative cyclization with high regioselectivity to give only naphthofuro[3,2-e]triazine
derivatives 4 in up to 91% yields (Scheme 5).

Encouraged by these results, we then investigated the oxidative cyclization reac-
tion of triazine not bearing S-substituents (Scheme 6). In particular, 3-phenyl and 3-(4-
methoxyphenyl) (PMP) derivatives 3ia and 3ja prepared under standard conditions (MsOH,
AcOH) underwent MnO2-induced oxidative cyclization to afford cyclic products 4ia and
4ja, respectively, as minor products with up to 28% yield. In contrast, 3-methyltriazine 1k
smoothly reacted with 2-naphthol 2a in AcOH without the addition of MsOH, leading to
the corresponding adduct 3la, which was oxidized in the presence of MnO2 to generate the
desired 4la as a major product in a 48% overall yield. Similar to triazine 1k, 3-benzyltriazine
1l was also involved in the same cascade reaction to give the mixture of 4ka and 5ka in
a ratio of 1:1. In addition, we were pleased to find that the oxidative cyclization of 3ma
bearing the N-morpholinyl group in a triazine core produced the respective oxidative
product 4ma in a 75% yield. Actually, the adduct 3ma was synthesized in situ by the
interaction between triazine 1m and 2-naphthol 2a in the presence of BF3

.OEt2 under reflux
in methanol.
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Further, we explored the reactivity of p-substituted phenols in these sequence reactions.
Unfortunately, all attempts to prepare the starting materials (3) under standard conditions
(MsOH, AcOH, rt) failed, and only starting materials 1 and 2 were isolated from the
reactions. However, we found that the use of trifluoroacetic acid (TFA) as the activator
and medium at room temperature could allow the formation of unstable compounds 3ah
and 3ai by the nucleophilic addition of phenol to the triazine core. These two compounds
(3ah and 3ai) underwent the oxidative cyclization reaction, giving benzofuro[3,2-e]triazine
4 in lower to moderate yields. At the same time, biaryl by-products 5ah and 5ai were
also isolated.

For further assessing the synthetic utility of the method, we performed the addition
and coupling reaction sequence again at the gram scale. Thus, under slightly optimized
conditions, we synthesized compound 4ad from triazine 1a and naphthol 2d at 40 mmol
loading in an 85% yield via two steps (Scheme 4).

The thiomethyl group is a versatile moiety for coupling reactions. In triazines,
the thiomethyl group may be easily substituted with aryl boronic acids [84,85] or tri-
alkyl(aryl)stannanes [86] using Liebeskind–Srogl coupling [87]. To demonstrate the syn-
thetic potential of benzofuro-annulated triazines, we performed the substitution of the
thiomethyl group with an aryl substituent. The reaction of triazine 4aa with 4-carbazolyl-
phenylboronic acid 6 provided the corresponding coupling product 7 in a 73% yield
(Scheme 7a).
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Furthermore, a thiomethyl group can easily be oxidized with mCPBA to afford the
methylsulfonyl group, which can be substituted with various nucleophiles [88–90]. Treat-
ment of the synthesized compound 4aa with mCPBA gave the corresponding sulfonyl
derivative 8 at an 85% yield. After that, we successfully synthesized carbazole-substituted
naphthofuro-fused 1,2,4-triazine 9 via the subsequent replacement of the sulfonyl group in
8 with carbazole in the presence of sodium hydride (Scheme 7b). It is worth mentioning that
these types of carbazole-substituted triazine derivatives have potential uses in biological
fields [91,92] and OLED applications [93].

To gain some mechanistic insights into this oxidative cyclization, we first carried out
several control experiments. When (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) or
butylated hydroxytoluene (BHT) was added to the oxidative cyclization of 3aa under the
standard reaction conditions (Scheme 8a), the desired product 4aa was obtained in a yield
up 81%, suggesting that radicals may not be involved in the catalytic cycle, in contrast to
the earlier published cyclization of the Schiff’s base in the presence of Mn salt [78,79]. The
slight decrease in yield is probably due to the deactivation of manganese oxide under the
reducing action of TEMPO and BHT. In addition, a high yield of 4aa was achieved, even
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when performing the reaction under a N2 atmosphere, demonstrating that aerobic oxygen
is not the oxidizing agent in this transformation (Scheme 8a).
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Subsequently, in order to get some information about possible reaction intermediates,
we carried out the oxidative cyclization of 3aa under various conditions. After several
trials, we managed to isolate one of the possible intermediates, 4aa′, in the presence of
MnO2 impregnated with nitric acid [82] in CH2Cl2 at room temperature (Scheme 8b). The
structure of the intermediate 4aa′ was supported by NMR and HRMS data. The 1H NMR
spectrum comprises two dihydrotriazine proton doublets at 5.69 and 5.66 ppm with an
SSCC (spin–spin coupling constant) of 10.8 Hz. Another intermediate 4aa′′ was detected
by 1H NMR analysis (Please see Supporting Information for details, Section S6) in the
crystallized reaction mixture when the reaction was carried out in the presence of a twofold
excess of MnO2 (Scheme 8c). We ascribed the structure of dihydrotriazine to this compound
since a single proton resonance at the sp3 carbon is observed in the 1H NMR spectrum.

After summarizing these preliminary mechanistic studies, a plausible reaction mecha-
nism of the oxidative cyclization has been postulated (Scheme 9). The reaction may proceed
through two different pathways: path a and path b. In path a, the reaction starts with the
formation of an O-coordinated complex A, which agrees well with the oxidation of alcohol
to aldehyde in the presence of MnO2 [94]. Then, complex A undergoes intramolecular nu-
cleophilic addition to generate an intermediate 4aa′ with the elimination of Mn(II) species
detected by an EPR experiment (Please see Supporting Information for details, Section S6).
Then, the quick tautomerization of 4aa′ leads to the intermediate 4aa′′, which is aroma-
tized with the second equivalent of MnO2, as well as with 1,4-dihydropyridine [95–98] or
1,4-dihydrotriazine [71,99], to give the final product 4aa. On the other hand, if we consider
path b, at the first step, MnO2 may coordinate with the nitrogen atom of the triazine core,
leading to N-coordinated complex B, which is also aromatized with the formation of biaryl
product 5aa. Thus, the formation of the final product depends on the position of the initial
coordination of the manganese dioxide, through which the reaction can proceed through
the regular aromatization of dihydrotriazine (path A) or through the path of oxidative
cyclization (path A).
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(B) Regular aromatization.

In order to rationalize the regioselectivity of pathways of the products’ formation
(4 vs. 5) we have performed a series of DFT calculations of the electron density of HOMO
and HOMO-1 in the compounds 3aa, 3fa, 3ha and 3ia (Figure 2). The results show that the
electron density on the oxygen atom of the hydroxyl group is comparable with the one on
the nitrogen of the triazine core in compounds 3aa and 3ha. However, the larger energy
gap between HOMO and HOMO-1 of 3aa compared with the energy gap in 3ha increased
the regioselectivity of the formation of O-coordinated manganese ester. In the case of
compound 3ia, the localization of the orbitals on the triazine N2 nitrogen (HOMO-1) was
higher than those on the phenol oxygen (HOMO). So, the reaction proceeds partially via
the aromatization of dihydrotriazine, rather than through oxidative cyclization. As follows
from Figure 2, the important role of the alkylthio group is that it reduces the electron density
at the nitrogen atom of dihydrotriazine, which leads to a reaction at the phenolic oxygen
atom. Therefore, these results suggest that MnO2 may coordinate with either oxygen or
nitrogen atoms, depending on the delocalization of the electron density of HOMO and
HOMO-1 on the corresponding oxygen or nitrogen atom, and the energy gap between
these orbitals.
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3. Materials and Methods

General Information: All commercially available chemicals were used without fur-
ther purifications. 1H NMR (400 MHz) and 13C NMR (101 MHz) spectra were registered on
a Bruker DRX-400 Avance spectrometer with DMSO-d6 or CDCl3 as the solvent at ambient
temperature. Chemical shifts are reported in ppm, and coupling constants are given in Hz.
Data for 1H NMR are recorded as follows: chemical shift (ppm), multiplicity (s, singlet;
d, doublet; t, triplet; q, quartet; quin, quintet; sex, sextet; m, multiplet; br s, broad signal),
integration and coupling constant (Hz). High-resolution mass spectra were recorded on an
Agilent UHPLC/MS Accurate-Mass Q-TOF 1290/6545. EPR spectra were obtained using
a Bruker Elexsys E500 CW-EPR spectrometer (modulation amplitude was set as 0.3 mT).
The simulation of the EPR spectra was performed using the package EasySpin 5.2 soft-
ware [100]. Molecular geometry optimization and the calculation of energies of molecules
were carried out in the gas phase using the B3LYP DFT functional [101] with a 6-311 + G
(d, p) basis set [102] according to [103] in Gaussian09 [104]. The plots of electron densities
of molecular orbitals were obtained using the GaussView 6.0 software [105]. X-ray analysis
for compound 5fa was executed on an Xcalibur 3 diffractometer (MoKα radiation, graphite
monochromator, 295(2) K, ϕ- andω-scanning with a step of 1◦). Thin-layer chromatogra-
phy (TLC) was performed on a silica gel-coated glass slide (Merck, Silica gel G for TLC).
Column chromatography was carried out on silica gel (60 Å, 0.035−0.070 mm). Images of
1H and 13C NMR spectra are provided on pages S26–S81 of the Supplementary Materials.

3.1. Synthesis of S-substituted 3-thio-1,2,4-triazines 1a-f

S-substituted 3-thio-1,2,4-triazines 1a-f were prepared from the corresponding salt of S-
substituted isothiosemicarbazide (2 mmol) and glyoxal solution according to the following
procedure [106].

A solution of 40% glyoxal (8 mmol, 1160 mg) and NaHCO3 (5 mmol, 420 mg) in ice
water (40 mL) was added to a solution of S-substituted isothiosemicarbazide hydrogen
iodide (2 mmol) dissolved in ice water (40 mL). The reaction mixture was stirred for 15 min;
during that time, the evolution of gas (CO2) was observed. The reaction mixture was
left in the fridge overnight and the aqueous solution was extracted with chloroform. The
combined organic layer was washed with 10% oxalic acid, dried over anhydrous Na2SO4,
filtered, and concentrated in vacuo to obtain oil or a solid triazine compound.

3.1.1. Synthesis of 3-(phenylthio)-1,2,4-triazine 1h

Compound 1h was prepared via the oxidation of 1a with mCPBA using a modified
procedure [107] followed by the treatment of compound 1a′ with thiophenol.

mCPBA (11.6 g, 77%, 52 mmol) and anhydrous Na2SO4 (4.0 g) were successively
added to DCM (60 mL); the mixture was stirred for 15 min and then filtered and the
filter cake was washed with 10 mL of DCM to obtain a clear dichloromethane solution of
mCPBA. A dichloromethane solution of 3-methylthio-1,2,4-triazine 1a (3.0 g, 23.6 mmol)
was added to this dichloromethane solution of mCPBA at−10 ◦C with stirring. The reaction
mixture was allowed to heat to ambient temperature and then stirred for an additional
3 h. Dichloromethane was evaporated under reduced pressure to obtain a dry mixture of
3-(methylsulfonyl)-1,2,4-triazine 1a′ and m-chlorobenzoic acid. The mixture was dissolved
in pyridine (40 mL) and thiophenol (5.3 mL, 5.72 g, 52 mmol) was added after. After
24 h the mixture was evaporated in vacuo, and the residue was treated with a mixture of
dichloromethane and aqueous NaHCO3. The organic layer was evaporated, yielding pure
compound 1h.

3.1.2. Synthesis of 3-phenyl- and 3-(4-methoxyphenyl)-1,2,4-triazines 1i and 1j

Compounds 1i and 1j were prepared according to the published procedure [108]. The
spectroscopic data for compound 1i are in agreement with the literature [109].
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3.1.3. Synthesis of 3-methyl- and 3-benzyl-1,2,4-triazine 1k and 1l

Compounds 1k and 1l were prepared according to the known procedure [110]. The
spectroscopic data of compounds 1k are in agreement with the published data [110].

3.1.4. Synthesis of 4-(1,2,4-triazin-3-yl)morpholine 1m

Compound 1m was prepared according to the published procedure [111].

3.2. General Procedure for the Synthesis of Dihydrotriazines 3
3.2.1. Method A

To a stirred solution of triazine 1a-j (1 mmol, 1 equiv.) and 2-naphthol 2a,f,g (1 mmol,
1 equiv.) in acetic acid (4 mL), we added a methanesulfonic acid (195 µL, 3 mmol, 3 equiv.).
The resulting mixture was stirred at room temperature for 1-5 h. The progress of the reaction
was monitored using TLC. After the completion of the reaction, the reaction mixture was
diluted with water (20 mL), neutralized with aq. NaHCO3 solution and extracted with
AcOEt (3 × 10 mL). The combined organic phase was dried over anhydrous Na2SO4,
filtered, and concentrated under reduced pressure. The residue was purified by silica gel
chromatography or recrystallization from the corresponding solvent to afford product 3.

3.2.2. Method B

To a stirred solution of triazine 1a (1 mmol, 1 equiv.) and 2-naphthol 2b-e (1 mmol,
1 equiv.) in methanol (4 mL) we added BF3

.OEt2 (985 µL, 8 mmol, 8 equiv.) and the
resulting mixture was refluxed for 5 h. After cooling the methanol was evaporated under
reduced pressure, and the residue was dissolved in AcOEt (10 mL) and washed with 5% aq.
NaHCO3 solution (50 mL). The organic layer was dried over anhydrous Na2SO4, filtered,
and evaporated under reduced pressure. The crude product was recrystallized from MeCN
to obtain the product 3ab-3ae.

3.3. General Procedure for the Synthesis of Naphthofuro-Fused Triazines 4

To a stirred solution of 3 (0.2 mmol, 1 equiv.) in CHCl3 (3 mL), MnO2 (52 mg, 0.6 mmol,
3 equiv.) was added in one portion. The resulting mixture was stirred at 50 ◦C for 3 h. The
completion of the reaction was monitored by TLC. The reaction mixture was then cooled
to room temperature; the MnO2 was filtered and the filter cake was washed with CHCl3
(3 × 10 mL). The combined organic phase was concentrated under reduced pressure. The
residue was purified by chromatography on silica gel or recrystallization to afford the pure
product 4.

3.3.1. 10-(Methylthio)naphtho[1′,2′:4,5]furo[3,2-e][1,2,4]triazine 4aa

Pale yellow needles after recrystallization from MeCN. Yield 51 mg, 95%; m.p. 185–187 ◦C.
1H NMR (CDCl3): 8.78–8.66 (m, 1H, H-1), 8.20–8.06 (m, 1H, H-5), 7.97–7.86 (m, 1H, H-4),
7.76–7.52 (m, 3H, H-2, H-3, H-6), 2.79 (s, 3H, SCH3); 13C NMR (CDCl3): 169.8, 160.0, 158.6,
143.7, 137.0, 130.5, 129.6, 129.2, 128.7, 126.7, 124.7, 112.7, 112.6, 14.8. Anal. Calcd. For
C14H9N3OS: C, 62.91; H, 3.39; N, 15.72%; found: C, 62.96; H, 3.47; N, 15.79%.

3.3.2. 10-(Ethylthio)naphtho[1′,2′:4,5]furo[3,2-e][1,2,4]triazine 4ba

Pale yellow needles after recrystallization from MeCN. Yield 47 mg, 84%; m.p. 141–143 ◦C.
1H NMR (CDCl3): 8.97–8.88 (m, 1H, H-1), 8.28–8.21 (m, 1H, H-5), 8.06–7.99 (m, 1H, H-4),
7.87–7.75 (m, 2H, H-2, H-6), 7.70–7.62 (m, 1H, H-3), 3.44 (q, 2H, J = 7.3 Hz, SCH2), 1.56 (t,
3H, J = 7.3 Hz, CH3); 13C NMR (CDCl3): 169.6, 160.1, 158.7, 143.9, 137.0, 130.6, 129.6, 129.3,
128.9, 126.8, 124.8, 112.9, 112.7, 26.1, 14.4. Anal. Calcd. For C15H11N3OS: C, 64.04; H, 3.94;
N, 14.94%; found: C, 64.12; H, 3.99; N, 14.85%.

3.3.3. 10-(Butylthio)naphtho[1′,2′:4,5]furo[3,2-e][1,2,4]triazine 4ca

Pale yellow needles after recrystallization from MeCN. Yield 53 mg, 85%; m.p. 121–123 ◦C.
1H NMR (CDCl3): 8.83–8.75 (m, 1H, H-1), 8.20–8.12 (m, 1H, H-5), 7.99–7.92 (m, 1H, H-4),



Molecules 2022, 27, 7105 12 of 22

7.79–7.55 (m, 3H, H-2, H-3, H-6), 3.45–3.33 (m, 2H, SCH2), 1.96–1.83 (m, 2H, SCH2CH2),
1.68–1.53 (m, 2H, SCH2CH2CH2), 1.08–0.97 (m, 3H, CH3); 13C NMR (CDCl3): 169.8, 160.1,
158.7, 143.9, 137.1, 130.6, 129.6, 129.4, 128.9, 126.8, 124.9, 113.0, 112.8, 31.4, 31.3, 22.3, 13.9.
Anal. Calcd. For C17H15N3OS: C, 66.00; H, 4.89; N, 13.58%; found: C, 66.09; H, 4.82;
N, 13.50%.

3.3.4. 10-((Cyclobutylmethyl)thio)naphtho[1′,2′:4,5]furo[3,2-e][1,2,4]triazine 4da

Yellow needles after recrystallization from MeCN. Yield 57 mg, 89%; m.p. 154–156 ◦C. 1H
NMR (CDCl3): 8.81–8.76 (m, 1H, H-1), 8.17 (d, 1H, J = 9.0 Hz, H-5), 7.98–7.93 (m, 1H, H-4),
7.78–7.72 (m, 1H, H-2), 7.70 (d, 1H, J = 9.0 Hz, H-6), 7.63–7.57 (m, 1H, H-3), 3.53–3.44 (m,
2H, SCH2), 2.90–2.80 (m, 1H, CH-1′), 2.29–2.18 (m, 2H, CH2-3′), 1.98–1.83 (m, 4H, CH2-2′,
CH2-4′); 13C NMR (CDCl3): 169.7, 160.0, 158.7, 143.8, 137.0, 130.6, 129.6, 129.3, 128.8, 126.7,
124.8, 112.8, 112.7, 37.9, 34.7, 28.0, 18.2. Anal. Calcd. For C18H15N3OS: C, 67.27; H, 4.70; N,
13.07%; found: C, 67.35; H, 4.78; N, 13.12%.

3.3.5. 10-(But-2-yn-1-ylthio)naphtho[1′,2′:4,5]furo[3,2-e][1,2,4]triazine 4ea

Brown powder after purification by chromatography on silica gel using n-hexane-ethyl
acetate (10:1). Yield 45 mg, 70%; m.p. 163–165 ◦C. 1H NMR (CDCl3): 8.88–8.83 (m, 1H, H-1),
8.22 (d, 1H, J = 9.0 Hz, H-5), 8.02–7.97 (m, 1H, H-4), 7.82–7.77 (m, 1H, H-2), 7.74 (d, 1H,
J = 9.0 Hz, H-6), 7.67–7.61 (m, 1H, H-3), 4.15 (q, 2H, J = 2.5 Hz, SCH2), 1.84 (t, 3H, J = 2.5 Hz,
CH3); 13C NMR (CDCl3): 168.4, 160.1, 158.8, 143.9, 137.3, 130.6, 129.8, 129.8, 128.9, 126.9,
124.9, 112.9, 112.7, 79.5, 73.7, 21.0, 3.9. Anal. Calcd. For C17H11N3OS: C, 66.87; H, 3.63; N,
13.76%; found: C, 66.80; H, 3.60; N, 13.86%.

3.3.6. 10-(Benzylthio)naphtho[1′,2′:4,5]furo[3,2-e][1,2,4]triazine 4fa

Yellow needles after recrystallization from MeCN. Yield 63 mg, 90%; m.p. 161–163 ◦C. 1H
NMR (CDCl3): 8.82–8.73 (m, 1H, H-1), 8.17 (d, 1H, J = 9.1 Hz, H-5), 7.97–7.93 (m, 1H, H-4),
7.78–7.72 (m, 1H, H-3), 7.70 (d, 1H, J = 9.1 Hz, H-6), 7.26–7.56 (m, 3H, H-2, Ph), 7.38–7.32 (m,
2H, Ph), 7.30–7.25 (m, 1H, Ph), 4.66 (m, 1H, SCH2); 13C NMR (CDCl3): 169.0, 160.2, 158.8,
143.9, 137.2, 137.1, 130.6, 129.7, 129.4, 129.4, 128.9, 128.7, 127.6, 126.8, 124.9, 112.9, 112.7,
36.1. Anal. Calcd. For C20H13N3OS: C, 69.95; H, 3.82; N, 12.24%; found: C, 69.85; H, 3.76;
N, 12.20%.

3.3.7. 10-(Allylthio)naphtho[1′,2′:4,5]furo[3,2-e][1,2,4]triazine 4ga

Pale yellow powder after recrystallization from MeCN. Yield 46 mg, 78%; m.p. 126–128 ◦C. 1H
NMR (CDCl3): 8.83–8.74 (m, 1H, H-1), 8.17 (d, 1H, J = 9.1 Hz, H-5), 7.99–7.93 (m, 1H, H-4),
7.78–7.72 (m, 1H, H-3), 7.70 (d, 1H, J = 9.1 Hz, H-6), 7.64–7.57 (m, 1H, H-2), 6.13 (ddt, 1H,
3J = 6.9 Hz, 3J(cis) = 10.0 Hz, 3J(trans) = 17.0 Hz, CH-2′), 5.47 (dd, 1H, 3J(trans) = 16.9 Hz,
J = 1.2 Hz, CH-3a′), 5.22 (d, 1H, 3J(cis) = 10.0 Hz, CH-3b′), 4.06 (d, 2H, 3J = 6.9 Hz, SCH2);
13C NMR (CDCl3): 168.9, 160.1, 158.7, 143.8, 137.1, 133.1, 130.6, 129.7, 129.3, 128.8, 126.8,
124.8, 118.7, 112.9, 112.7, 34.5. Anal. Calcd. For C16H9N3OS: C, 65.97; H, 3.11; N, 14.42%;
found: C, 65.90; H, 3.18; N, 14.50%.

A mixture of 4ha and 5ha was separated by silica gel chromatography using n-hexane-
ethyl acetate (17:1) to isolate 4ha and n-hexane-ethyl acetate (10:1) to give 5ha.

3.3.8. 10-(Phenylthio)naphtho[1′,2′:4,5]furo[3,2-e][1,2,4]triazine 4ha

Yellow powder. Yield 46 mg, 70%; m.p. 196–198 ◦C. 1H NMR (CDCl3): 8.58–8.53
(m, 1H, H-1), 8.22–8.17 (m, 1H, H-5), 8.00–7.95 (m, 1H, H-4), 7.83–7.77 (m, 2H, Ph), 7.75–7.67
(m, 2H, H-3, H-6), 7.64–7.58 (m, 1H, H-2), 7.56–7.50 (m, 3H, Ph); 13C NMR (CDCl3): 170.0,
160.3, 158.8, 144.0, 137.2, 135.8, 130.6, 129.7, 129.6, 129.5, 129.3, 129.2, 128.8, 126.8, 124.8,
113.0, 112.7. Anal. Calcd. For C19H11N3OS: C, 69.29; H, 3.37; N, 12.76%; found: C, 69.20; H,
3.45; N, 12.70%.
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3.3.9. 1-(3-(Phenylthio)-1,2,4-triazin-5-yl)naphthalen-2-ol 5ha

Yellow powder. Yield 9 mg, 14%; m.p. 149–151 ◦C. 1H NMR (CDCl3): 11.01 (s, 1H,
OH), 9.51 (s, 1H, H-6′), 8.09–8.03 (m, 1H, H-8), 7.84 (d, 1H, J = 9.0 Hz, H-4), 7.82–7.76 (m,
1H, H-5), 7.75–7.67 (m, 2H, Ph), 7.59–7.51 (m, 4H, Ph, H-7), 7.44–7.37 (m, 1H, H-6), 7.07 (d,
1H, J = 9.0 Hz, H-3); 13C NMR (CDCl3): 172.3, 160.8, 155.7, 146.2, 136.2, 136.0, 130.8 (2C),
130.3, 129.5, 129.2, 128.7, 126.9, 124.7, 123.2, 119.7, 108.9. Anal. Calcd. For C19H13N3OS: C,
68.86; H, 3.95; N, 12.68%; found: C, 68.77; H, 3.90; N, 12.60%.

A mixture of 4ia and 5ia was separated by chromatography using n-hexane-ethyl
acetate (15:1) to give 4ia and n-hexane-ethyl acetate (8:1) to give 5ia.

3.3.10. 10-Phenylnaphtho[1′,2′:4,5]furo[3,2-e][1,2,4]triazine 4ia

Pale yellow solid. Yield 12 mg, 21%, m.p. 189–191 ◦C. Rf = 0.54 (ethyl acetate:hexane,
1:1). 1H NMR (CDCl3): 9.09–8.99 (m, 1H, H-1), 8.75–8.64 (m, 2H, Ph), 8.24–8.14 (m, 1H,
H-5), 8.03–7.94 (m, 1H, H-4), 7.86–7.73 (m, 2H, H-2, H-6), 7.66–7.52 (m, 4H, H-3, Ph); 13C
NMR (CDCl3): 161.5, 160.8, 158.5, 143.9, 136.7, 135.7, 131.2, 130.7, 129.6, 129.3, 129.1, 129.0,
128.5, 126.7, 124.9, 113.7, 112.8. Anal. Calcd. For C19H11N3O: C, 76.76; H, 3.73; N, 14.13%;
found: C, 76.83; H, 3.70; N, 14.19%.

3.3.11. 1-(3-Phenyl-1,2,4-triazin-5-yl)naphthalen-2-ol 5ia

Yellow solid. Yield 31 mg, 52%, m.p. 204–206 ◦C. Rf = 0.39 (ethyl acetate:hexane, 1:1).
1H NMR (DMSO-d6): 12.45–12.16 (br s, 1H, OH), 9.77 (s, 1H, H-6′), 8.56–8.47 (m, 2H, Ph),
8.21–8.11 (m, 1H, H-8), 7.95 (d, 1H, J = 9.0 Hz, H-4), 7.90–7.83 (m, 1H, H-5), 7.67–7.55 (m,
4H, H-6, Ph), 7.49–7.42 (m, 1H, H-7), 7.28 (d, 1H, J = 9.0 Hz, H-3); 13C NMR (DMSO-d6):
161.3, 160.3, 155.9, 148.3, 135.8, 134.2, 132.4, 131.0, 129.6, 129.3 (2C), 128.7, 128.4, 124.7, 123.1,
119.6, 109.4. Anal. Calcd. For C19H13N3O: C, 76.24; H, 4.38; N, 14.04%; found: C, 76.32; H,
4.45; N, 14.12%.

A mixture of 4ja and 5ja was separated by silica gel chromatography using n-hexane-
ethyl acetate (17:1) to isolate 4ja and n-hexane-ethyl acetate (7:1) to give 5ja.

3.3.12. 10-(4-Methoxyphenyl)naphtho[1′,2′:4,5]furo[3,2-e][1,2,4]triazine 4ja

Pale yellow solid. Yield 18 mg, 28%; m.p. 205–207 ◦C. Rf = 0.53 (ethyl acetate:hexane,
1:1). 1H NMR (CDCl3): 9.05–8.99 (m, 1H, H-1), 8,64 (d, 2H, J = 8.8 Hz, Ph), 8.19 (d, 1H,
J = 9.0 Hz, H-5), 8.02–7.94 (m, 1H, H-4), 7.85–7.78 (m, 1H, H-3), 7.76 (d, 1H, J = 9.0 Hz, H-6),
7.66–7.58 (m, 1H, H-2), 7.08 (d, 2H, J = 8.8 Hz, Ph), 3.93 (s, 3H, OCH3); 13C NMR (CDCl3):
162.3, 161.4, 160.6, 158.4, 143.9, 136.5, 130.7, 130.1, 129.5, 129.3, 129.1, 128.3, 126.7, 124.9,
114.3, 113.7, 112.8, 55.6. Anal. Calcd. For C20H13N3O2: C, 73.38; H, 4.00; N, 12.84%; found:
C, 73.30; H, 3.92; N, 12.94%.

3.3.13. 1-(3-(4-Methoxyphenyl)-1,2,4-triazin-5-yl)naphthalen-2-ol 5ja

Yellow solid. Yield 31 mg, 47%; m.p. 178–180 ◦C. Rf = 0.41 (ethyl acetate:hexane, 1:1).
1H NMR (DMSO-d6): 12.33–12.08 (br s, 1H, OH), 9.59 (s, 1H, H-6′), 8.38 (d, 2H, J = 8.7 Hz,
Ph), 8.09–8.01 (m, 1H, H-8), 7.87–7.81 (m, 1H, H-4), 7.80–7.72 (m, 1H, H-5), 7.54–7.45 (m,
1H, H-7 or H-6), 7.39–7.30 (m, 1H, H-6 or H-7), 7.22–7.13 (m, 1H, H-3), 7.03–6.95 (d, 2H,
J = 8.7 Hz, Ph), 3.83 (s, 3H, OCH3); 13C NMR (DMSO-d6): 162.5, 156.8, 154.1, 151.0, 135.1,
132.6, 132.2, 131.6, 129.1, 128.4, 128.0, 127.8, 127.6, 123.4, 123.1, 118.1, 113.9, 55.7. Anal.
Calcd. For C20H15N3O2: C, 72.94; H, 4.59; N, 12.76%; found: C, 72.83; H, 4.65; N, 12.70%.

3.3.14. 6-Methoxy-10-(methylthio)naphtho[1′,2′:4,5]furo[3,2-e][1,2,4]triazine 4ab

Yellow powder after recrystallization from MeCN. Yield 48 mg, 80%; m.p. 183–185 ◦C.
1H NMR (CDCl3): 8.55–8.51 (m, 1H, H-4 or H-1), 7.71–7.66 (m, 1H, H-1 or H-4), 7.55–7.50
(m, 1H, H-3 or H-2), 7.79–7.50 (m, 1H, H-2 or H-3), 7.32 (s, 1H, H-5), 4.13 (s, 3H, OCH3),
2.78 (s, 3H, SCH3); 13C NMR (CDCl3): 169.9, 159.9, 149.9, 145.0, 143.3, 131.2, 127.6, 126.9,
126.8, 124.3, 123.6, 114.1, 113.3, 56.5, 14.8. Anal. Calcd. For C15H11N3O2S: C, 60.59; H, 3.73;
N, 14.13%; found: C, 60.67; H, 3.65; N, 14.04%.
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3.3.15. 2-Methoxy-10-(methylthio)naphtho[1′,2′:4,5]furo[3,2-e][1,2,4]triazine 4ac

Yellow powder after recrystallization from MeCN. Yield 50 mg, 84%; m.p. 219–221 ◦C.
1H NMR (CDCl3): 8.22–8.19 (m, 1H, H-1), 8.14–8.10 (m, 1H, H-4), 7.88 (d, 1H, J = 8.9 Hz,
H-4), 7.57 (d, 1H, J = 8.9 Hz, H-3), 7.27–7.22 (m, 1H, H-3), 4.06 (s, 3H, OCH3), 2.81 (s, 3H,
SCH3); 13C NMR (CDCl3): 169.6, 161.0, 160.2, 159.4, 144.1, 136.8, 131.0, 125.7, 118.8, 112.0,
109.8, 104.2, 96.3, 55.8, 14.8. Anal. Calcd. For C15H11N3O2S: C, 60.59; H, 3.73; N, 14.13%;
found: C, 60.50; H, 3.66; N, 14.10%.

3.3.16. 10-(Methylthio)naphtho[1′,2′:4,5]furo[3,2-e][1,2,4]triazin-2-ol 4ad

According to the general procedure, in the mixture of CHCl3:EtOH (4:1) as solvent,
4ad was obtained as yellow powder after recrystallization from EtOH. Yield 38 mg, 68%;
m.p. 282–284 ◦C. 1H NMR (DMSO-d6): 10.61 (s, 1H, OH), 8.30 (d, 1H, J = 8.9 Hz, H-6),
8.03–7.97 (m, 2H, H-1, H-4), 7.70 (d, 1H, J = 8.9 Hz, H-4), 7.57 (d, 1H, J = 8.9 Hz, H-3),
7.19–7.14 (m, 1H, H-3), 2.76 (s, 3H, SCH3); 13C NMR (DMSO-d6): 168.0, 159.9, 159.1, 159.1,
144.0, 137.4, 131.6, 130.2, 124.4, 118.4, 110.5, 108.9, 106.5, 14.1. Anal. Calcd. For C14H9N3O2S:
C, 59.35; H, 3.20; N, 14.83%; found: C, 59.25; H, 3.15; N, 14.75%.

3.3.17. 3-Methoxy-10-(methylthio)naphtho[1′,2′:4,5]furo[3,2-e][1,2,4]triazine 4ae

Yellow powder after recrystallization from MeCN. Yield 49 mg, 82%; m.p. 214–216 ◦C.
1H NMR (CDCl3): 8.83 (d, 1H, J = 8.9 Hz, H-1), 8.13 (d, 1H, J = 9.0 Hz, H-5), 7.74 (d, 1H,
J = 9.0 Hz, H-6), 7.47 (dd, 1H, J = 8.9 Hz, J = 2.5 Hz, H-2), 7.33 (d, 1H, J = 2.5 Hz, H-4), 3.98
(s, 3H, OCH3), 2.83 (s, 3H, SCH3); 13C NMR (CDCl3): 169.7, 160.2, 158.3, 157.6, 143.9, 135.9,
132.2, 126.3, 123.8, 121.7, 113.1 (2C), 108.2, 55.6, 14.9. Anal. Calcd. For C15H11N3O2S: C,
60.59; H, 3.73; N, 14.13%; found: C, 60.65; H, 3.82; N, 14.10%.

3.3.18. 3-Bromo-10-(methylthio)naphtho[1′,2′:4,5]furo[3,2-e][1,2,4]triazine 4af

Yellow powder after recrystallization from toluene. Yield 53 mg, 75%; m.p. 244–246 ◦C.
1H NMR (CDCl3): 8.86 (d, 1H, J = 8.7 Hz, H-1), 8.23 (d, 1H, J = 1.8 Hz, H-4), 8.19 (d, 1H,
J = 9.1 Hz, H-5), 7.92 (dd, 1H, J = 8.7 Hz, J = 1.8 Hz, H-2), 7.85 (d, 1H, J = 9.1 Hz, H-6), 2.85
(s, 3H, SCH3); 13C NMR (CDCl3): 170.2 160.3, 158.7, 143.6, 136.0, 133.0, 132.0, 131.5, 127.5,
126.6, 120.8, 114.1, 113.2, 14.9. Anal. Calcd. For C14H8BrN3OS: C, 48.57; H, 2.33; N, 12.14%;
found: C, 48.50; H, 2.26; N, 12.06%.

3.3.19. 10-(Methylthio)naphtho[1′,2′:4,5]furo[3,2-e][1,2,4]triazine-3-carbonitrile 4ag

Yellow solid after recrystallization from MeCN. Yield 54 mg, 91%; m.p. 283–285 ◦C.
1H NMR (CDCl3): 9.09 (d, 1H, J = 8.5 Hz, H-1), 8.44 (d, 1H, J = 1.5 Hz, H-4) 8.33 (d, 1H,
J = 9.1 Hz, H-5), 7.99 (dd, 1H, J = 8.5 Hz, J = 1.5 Hz, H-2), 7.96 (d, 1H, J = 9.1 Hz, H-6), 2.85
(s, 3H, SCH3); 13C NMR (CDCl3): 170.7, 160.4, 159.8, 143.3, 136.8, 134.9, 130.9, 130.6, 129.9,
126.3, 118.6, 115.1, 113.4, 110.7, 14.9. Anal. Calcd. For C15H8N4OS: C, 61.63; H, 2.76; N,
19.17%; found: C, 61.72; H, 2.86; N, 19.22%.

3.3.20. Synthesis of 10-alkyl naphtho[1′,2′:4,5]furo[3,2-e][1,2,4]triazines 4ka and 4la

To a stirred solution of corresponding triazine 1k or 1l (1 mmol, 1 equiv.) in acetic
acid (4 mL), 2-naphthol 2a (144 mg, 1 mmol, 1 equiv.) was added. Then the mixture was
stirred at room temperature for 5 h, concentrated under reduced pressure, dissolved in
CHCl3 (10 mL) and washed with saturated aq. NaHCO3 solution (10 mL). The organic
layer was dried over anhydrous Na2SO4 and filtered. To the organic phase, MnO2 (261 mg,
3.0 mmol, 3 equiv.) was added in one portion and the mixture was stirred at 50 ◦C for 3 h.
The reaction mixture was then cooled to room temperature. MnO2 was filtered and washed
with CHCl3 (3 × 10 mL). The combined organic phase was concentrated under reduced
pressure to give a mixture of 4 and 5, which was separated by chromatography on silica gel
using a mixture of n-hexane-ethyl acetate as the eluent.

A mixture of 4ka and 5ka was separated by chromatography on silica gel using
n-hexane-ethyl acetate (25:1) to isolate 4ka and n-hexane-ethyl acetate (8:1) to give 5ka.
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3.3.21. 10-Methylnaphtho[1′,2′:4,5]furo[3,2-e][1,2,4]triazine 4ka

Yellow solid. Yield 113 mg, 48%; m.p. 190–192 ◦C. Rf = 0.46 (ethyl acetate:hexane, 1:1).
1H NMR (CDCl3): 8.98–8.92 (m, 1H, H-1), 8.24–8.17 (m, 1H, H-5), 8.04–7.98 (m, 1H, H-4),
7.84–7.72 (m, 2H, H-2, H-6), 7.68–7.59 (m, 1H, H-3), 3.08 (s, 3H, CH3); 13C NMR (CDCl3):
164.4, 160.6, 158.4, 144.0, 136.7, 130.7, 129.5, 129.3, 129.0, 126.7, 124.9, 113.4, 112.8, 23.9. Anal.
Calcd. For C14H9N3O: C, 71.48; H, 3.86; N, 17.86%; found: C, 71.39; H, 3.93; N, 17.92%.

3.3.22. 1-(3-Methyl-1,2,4-triazin-5-yl)naphthalen-2-ol 5ka

Pale yellow solid. Yield 45 mg, 19%; m.p. 168–170 ◦C. Rf = 0.25 (ethyl acetate:hexane
1:1). 1H NMR (DMSO-d6): 10.46 (s, 1H, OH), 9.44 (s, 1H, H-6′), 8.01–7.96 (m, 1H, H-4),
7.92–7.85 (m, 1H, H-8 or H-5), 7.73–7.67 (m, 1H, H-5 or H-8), 7.45–7.29 (m, 3H, H-3, H-6,
H-7), 2.85 (s, 3H, CH3); 13C NMR (DMSO-d6): 166.2, 156.4, 153.8, 150.2, 132.3, 132.1, 128.3,
127.9, 127.4, 123.3, 123.2, 118.1, 113.8, 23.6. Anal. Calcd. For C14H11N3O: C, 70.87; H, 4.67;
N, 17.71%; found: C, 70.77; H, 4.72; N, 17.80%.

A mixture of 4la and 5la was separated by chromatography on silica gel using n-
hexane-ethyl acetate (17:1) to give 4la, and n-hexane-ethyl acetate (10:1) to give 5la.

3.3.23. 10-Benzylnaphtho[1′,2′:4,5]furo[3,2-e][1,2,4]triazine 4la

Pale yellow solid. Yield 109 mg, 35%; m.p. 226–228 ◦C. Rf = 0.57 (ethyl acetate:hexane,
1:1). 1H NMR (DMSO-d6): 8.89–8.82 (m, 1H, H-1), 8.49 (d, 1H, J = 9.0 Hz H-5), 8.25–8.20
(m, 1H, H-4), 8.06 (d, 1H, J = 9.0 Hz H-6), 7.93–7.87 (m, 1H, H-3 or H-2), 7.74–7.69 (m, 1H,
H-2 or H-3), 7.49–7.44 (m, 2H, Ph), 7.37–7.32 (m, 2H, Ph), 7.27–7.22 (m, 1H, Ph), 4.62 (s, 2H,
CH2); 13C NMR (DMSO-d6): 165.0, 160.2, 158.0, 143.9, 138.1, 137.0, 130.2, 129.5 (2C), 129.0
(2C), 128.3 (2C), 128.1, 126.4 (2C), 123.7, 112.9, 112.5, 42.7. Anal. Calcd. For C20H13N3O: C,
77.16; H, 4.21; N, 13.50%; found: C, 77.25; H, 4.30; N, 13.57%.

3.3.24. 1-(3-Methyl-1,2,4-triazin-5-yl)naphthalen-2-ol 5la

Pale yellow solid. Yield 110 mg, 35%; m.p. 155–157 ◦C. Rf = 0.34 (ethyl acetate:hexane,
1:1). 1H NMR (DMSO-d6): 10.55 (s, 1H, OH), 9.49 (s, 1H, H-6′), 8.01–7.94 (m, 1H, H-4),
7.90–7.84 (m, 1H, H-8 or H-5), 7.63–7.55 (m, 1H, H-5 or H-8), 7.43–7.22 (m, 8H, H-3, H-6,
H-7, Ph), 4.47 (s, 2H, CH2); 13C NMR (DMSO-d6): 167.9, 156.7, 154.0, 150.6, 137.7, 132.6,
132.0, 129.2, 128.5, 128.3, 128.0, 127.3, 126.6, 123.4, 123.1, 118.0, 113.5, 43.0. Anal. Calcd. For
C20H15N3O: C, 76.66; H, 4.83; N, 13.41%; found: C, 76.75; H, 4.74; N, 13.48%.

3.3.25. 10-Morpholinonaphtho[1′,2′:4,5]furo[3,2-e][1,2,4]triazine 4ma

To a stirred solution of 4-(1,2,4-triazin-3-yl)morpholine 1m (1 mmol, 1 equiv.) and
2-naphthol 2a (1 mmol, 1 equiv.) in methanol (4 mL) BF3

.OEt2 (370 µL, 3 mmol, 3 equiv.)
was added dropwise, and the resulting mixture was refluxed for 3 h. After cooling to room
temperature the methanol was evaporated under reduced pressure, and the residue was
dissolved in CHCl3 (10 mL) and washed with aq. NaHCO3. Then, the organic layer was
dried over Na2SO4 and filtered. To the resulting solution MnO2 (261 mg, 3 mmol, 3 equiv.)
was added in one portion and the mixture was stirred at 50 ◦C for 3 h. The reaction mixture
was cooled to room temperature. MnO2 was filtered and washed with CHCl3 (3 × 10 mL).
The combined organic phase was concentrated under reduced pressure, and the residue
was crystallized from MeCN to afford pure 4ma. Yellow powder. Yield 225 mg, 75%; m.p.
230–232 ◦C. 1H NMR (CDCl3): 8.87–8.82 (m, 1H, H-1), 8.19 (d, 1H, J = 9.1 Hz, H-5), 8.02–7.96
(m, 1H, H-4), 7.80–7.73 (m, 1H, H-3), 7.70 (d, 1H, J = 9.1 Hz, H-6), 7.65–7.58 (m, 1H, H-2),
4.07–4.00 (m, 4H, morpholine), 3.95–3.88 (m, 4H, morpholine); 13C NMR (CDCl3): 161.1,
158.9, 157.7, 144.2, 136.0, 130.5, 129.3, 129.3, 129.2, 126.3, 124.6, 113.5, 113.0, 67.0, 45.1. Anal.
Calcd. For C17H14N4O2: C, 66.66; H, 4.61; N, 18.29%; found: C, 66.75; H, 4.54; N, 18.36%.

3.3.26. Synthesis of Benzofuro-Fused Triazines 4ah and 4ai

To a solution of triazine 1a (127 mg, 1 mmol) in TFA (4 mL), a corresponding phenol
2h or 2i (1 mmol) was added, and the resulting mixture was stirred at room temperature
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for 24 h. The completion of the reaction was monitored by TLC. Then, the reaction mixture
was concentrated under reduced pressure. The residue was dissolved in CHCl3 (10 mL)
and washed with 5% aq. NaHCO3. The organic layer was dried over Na2SO4 and filtered.
MnO2 (52 mg, 0.6 mmol, 3 equiv.) was added to the resulting solution in one portion
and the mixture was stirred at 50 ◦C for 3 h, cooled to room temperature, and MnO2
was filtered and the filter cake washed with CHCl3 (3 × 10 mL). The combined organic
phase was concentrated under reduced pressure. The residue was purified by silica gel
chromatography to afford the pure product, using n-hexane-ethyl acetate (80:1) to afford
4ah or 4ai and n-hexane-ethyl acetate (40:1) to give 5ah or 5ai.

3.3.27. 6,8-Di-tert-butyl-3-(methylthio)benzofuro[3,2-e][1,2,4]triazine 4ah

Yellow powder. Yield 167 mg, 51%; m.p. 105–107 ◦C. Rf = 0.67 (ethyl acetate:hexane,
1:1). 1H NMR (CDCl3): 8.08 (d, 1H, J = 1.8 Hz H-5), 7.78 (d, 1H, J = 1.8 Hz, H-7), 2.79
(s, 3H, SCH3), 1.57 (s, 9H, C(CH3)3), 1.41 (s, 9H, C(CH3)3); 13C NMR (CDCl3): 169.1, 160.7,
155.8, 148.6, 144.2, 136.1, 130.3, 118.8, 118.0, 35.4, 35.0, 31.7, 29.8, 14.8. Anal. Calcd. For
C18H23N3OS: C, 65.62; H, 7.04; N, 12.75%; found: C, 65.72; H, 7.10; N, 12.82%.

3.3.28. 2,4-Di-tert-butyl-6-(3-(methylthio)-1,2,4-triazin-5-yl)phenol 5ah

Pale yellow powder. Yield 67 mg, 20%; m.p. 113–115 ◦C. Rf = 0.64 (ethyl acetate:hexane,
1:1). 1H NMR (CDCl3): 12.73 (s, 1H, OH), 9.50 (s, 1H, H-6′), 7.69 (d, 1H, J = 2.3 Hz, H-5),
7.57 (d, 1H, J = 2.3 Hz, H-3), 2.75 (s, 3H, SCH3), 1.46 (s, 9H, C(CH3)3), 1.35 (s, 9H, C(CH3)3);
13C NMR (CDCl3): 170.1, 160.0, 156.0, 141.8, 141.6, 139.0, 130.9, 121.2, 113.0, 35.5, 34.6, 31.5,
29.5, 14.1. Anal. Calcd. For C18H25N3OS: C, 65.22; H, 7.60; N, 12.68%; found: C, 65.31; H,
7.51; N, 12.74%.

3.3.29. 6-(tert-Butyl)-3-(methylthio)benzofuro[3,2-e][1,2,4]triazine 4ai

Yellow powder. Yield 30 mg, 11%; m.p. 136–138 ◦C. Rf = 0.64 (ethyl acetate:hexane,
1:1). 1H NMR (CDCl3): 8.23 (d, 1H, J = 1.8 Hz, H-5), 7.88 (dd, 1H, J = 1.8 Hz, J = 8.9 Hz, H-7),
7.61 (d, 1H, J = 8.9 Hz, H-8), 2.78 (s, 3H, SCH3), 1.42 (s, 9H, C(CH3)3); 13C NMR (CDCl3):
169.3, 161.0, 157.2, 149.0, 144.1, 133.5, 120.6, 118.5, 112.8, 35.3, 31.6, 14.8. Anal. Calcd. For
C14H15N3OS: C, 61.52; H, 5.53; N, 15.37%; found: C, 61.59; H, 5.44; N, 15.30%.

3.3.30. 4-(tert-Butyl)-2-(3-(methylthio)-1,2,4-triazin-5-yl)phenol 5ai

Yellow powder. Yield 120 mg, 43%; m.p. 123–125 ◦C. Rf = 0.59 (ethyl acetate:hexane,
1:1). 1H NMR (CDCl3): 11.97 (s, 1H, OH), 9.49 (s, 1H, H-6′), 7.80 (d, 1H, J = 2.0 Hz, H-3),
7.53 (dd, 1H, J = 2.0 Hz, J = 8.8 Hz, H-5), 6.99 (d, 1H, J = 8.8 Hz, H-8), 2.71 (s, 3H, SCH3),
1.34 (s, 9H, C(CH3)3); 13C NMR (CDCl3): 170.6, 160.3, 155.3, 142.9, 141.2, 133.5, 123.2, 119.1,
113.2, 34.4, 31.4, 14.0. Anal. Calcd. For C14H17N3OS: C, 61.06; H, 6.22; N, 15.26%; found: C,
61.13; H, 6.29; N, 15.16%.

3.3.31. 40 mmol Scaled Synthesis of 3ad

To a stirred solution of triazine 1a (5.10 g, 40 mmol, 1 equiv.) and 2,7-dihydroxynaphth-
alene 2d (6.40 g, 40 mmol, 1 equiv.) in methanol (40 mL), BF3.OEt2 (40 mL, 320 mmol,
8 equiv.) was added dropwise and the resulting mixture was refluxed for 8 h. After cooling
the methanol was evaporated under reduced pressure, and then the residue was treated
with AcOEt (30 mL) and stirred for 15 min. The precipitate formed was filtered and washed
with AcOEt (10 mL). The precipitate was suspended in AcOEt and the resulting mixture was
washed with aq. NaHCO3 solution. The organic layer was dried over anhydrous Na2SO4,
filtered, and evaporated under reduced pressure to give 3ad. The 3ad was dissolved in a
mixture of CHCl3:EtOH (4:1, 300 mL). To the resulting solution, MnO2 (10.44 g, 120 mmol,
3 equiv.) was added in one portion. The resulting mixture was stirred at 50 ◦C for 6 h. The
completion of the reaction was monitored by TLC. The reaction mixture was then cooled
to room temperature, and the MnO2 was filtered and washed with CHCl3 (3 × 50 mL).
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The combined organic phase was concentrated under reduced pressure. The residue was
recrystallized in EtOH to give pure 4ad (9.62 g, 85% in two steps).

3.4. Further Modifications of Compound 4aa
3.4.1. 10-(4-(Carbazol-9-yl)phenyl)naphtho[1′,2′:4,5]furo[3,2-e][1,2,4]triazine 7

To a solution of 10-(methylthio)naphtho[1′,2′:4,5]furo[3,2-e][1,2,4]triazine 4aa (100 mg,
1 equiv.) in dry THF (5 mL), we added CuTC (249 mg, 3.5 equiv), Pd[PPh3]4 (43 mg,
10 mol%) and (4-(9H-carbazol-9-yl)phenyl)boronic acid (322 mg, 3 equiv.). Then, the re-
action mixture was stirred at reflux for 32 h. The progress of the reaction was monitored
by TLC. After completion, the solvent was evaporated under reduced pressure and the
residue was purified by flash chromatography using n-hexane-ethyl acetate (10:1→5:1) to
give a pure product 7 as yellow powder. Yield 126 mg, 73%; m.p. 280–282 ◦C. 1H NMR
(CDCl3): 9.22–9.18 (m, 1H, H-1), 9.01–8.97 (m, 2H, H-2′ ′), 8.34–8.29 (m, 1H, H-5), 8.20–8.16
(m, 2H, H-1′), 8.11–8.08 (m, 1H, H-4), 7.94–7.82 (m 4H, H-2, H-6, H-3′ ′), 7.74–7.70 (m, 1H,
H-3), 7.60-7.57 (m, 2H, H-4′), 7.48–7.43 (m, 2H, H-3′ or H-2′), 7.36-7.31 (m, 2H, H-2′ or H-3′);
13C NMR (CDCl3): 161.1, 161.0, 158.8, 144.3, 140.7, 140.5, 137.1, 134.5, 130.9, 130.2, 129.8,
129.6, 129.2, 127.2, 126.9, 126.3, 125.1, 123.8, 120.6, 120.5, 113.8, 112.9, 110.1. Anal. Calcd.
For C31H18N4O: C, 80.50; H, 3.92; N, 12.11%; found: C, 80.31; H, 4.07; N, 11.96%.

3.4.2. 10-(Methylsulfonyl)naphtho[1′,2′:4,5]furo[3,2-e][1,2,4]triazine 8

mCPBA (427 mg, ≤77%, 2.2 equiv.) was dissolved in dry DCM (5 mL), Na2SO4 (2.0 g)
was added to the resulting solution and the mixture was stirred for 10 min. Na2SO4
was filtered and washed with DCM (3 × 5 mL). The obtained solution of mCPBA was
added dropwise to a solution of 4aa (133 mg, 0.5 mmol) in DCM (4 mL) at 0 ◦C. Then the
reaction mixture was stirred at room temperature for 12 h. The progress of the reaction was
monitored by TLC. After completion of the reaction, the mixture was quenched with an
aqueous solution of NaHCO3, washed with water and dried over Na2SO4, and the solvent
was evaporated under reduced pressure. The residue was purified by flash chromatography
using n-hexane-chloroform (2:1) as eluent to give pure 8 as a yellow powder. Yield 127 mg,
85%; m.p. 248–251 ◦C. 1H NMR (CDCl3): 9.07–9.04 (m, 1H, H-1), 8.43–8.39 (m, 1H, H-5),
8.11–8.08 (m, 1H, H-4), 7.93–7.88 (m, 2H, H-2, H-6), 7.76–7.72 (m, 1H, H-3), 7.65–7.58 (m,
1H, H-2), 3.66 (s, 2H, SO2CH3); 13C NMR (CDCl3): 163.8, 161.6, 160.4, 145.3, 139.5, 131.0,
130.7, 129.7, 128.7, 127.8, 125.5, 113.0, 112.6, 40.6. Anal. Calcd. For C14H9N3O3S: C, 56.18;
H, 3.03; N, 14.04%; found: C, 56.05; H, 3.20; N, 13.96%.

3.4.3. 10-(Carbazol-9-yl)naphtho[1′,2′:4,5]furo[3,2-e][1,2,4]triazine 9

To a solution of carbazole (106 mg, 1.9 equiv.) in dry DMF (3 mL), we added NaH
(60% suspension in mineral oil, 19 mg, 1.4 equiv.) and the mixture was stirred for 10 min.
Then methylsulfonyl derivative 8 (100 mg, 0.33 mmol) was added to the resulting solution
and the mixture was heated at 70 ◦C for 12 h. After completion of the reaction, the mixture
was diluted with water (15 mL), and the forming precipitate was filtered and washed with
water and ethanol and purified by flash chromatography using n-hexane:chloroform (2:1)
as the eluent to give pure 9 as a yellow powder. Yield 71 mg, 55%; m.p. 250–253 ◦C. 1H
NMR (HMPA d-18): 9.02–8.98 (m, 1H, H-1), 8.95-8.90 (d, J = 9.1 Hz, 1H, H-5), 8.85–8.78
(m, 2H, H-1′), 8.58–8.54 (m, 1H, H-4), 8.51–8.46 (m, 2H, H-4′), 8.42 (d, J = 9.1 Hz, 1H, H-6),
8.15–8.09 (m, 1H, H-3 and H-2), 7.89–7.82 (m, 1H, H-2 and H-3), 7.68–7.61 (m, 2H, H-3′ or
H-2′), 7.50–7.43 (m, 2H, H-2′ or H-3′); 13C NMR (HMPAd-18): 160.2, 159.8, 157.9, 144.5,
139.4, 139.3, 131.5, 130.9, 130.6, 128.9, 127.3, 127.1, 126.0, 124.0, 122.9, 121.0, 115.1, 113.8,
113.2. Anal. Calcd. For C25H14N4O: C, 77.71; H, 3.65; N, 14.50%; found: C, 77.90; H, 2.81;
N, 14.29%.

4. Conclusions

In summary, we have developed an unusual MnO2-induced oxidative cyclization in
adducts of phenols and triazines. This method provides easy two-step access to benzofuro-
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fused triazine via the nucleophilic addition of the 2-naphthol to 1,2,4-triazine, followed
by oxidative cyclization. The scope and limitations of this novel reaction have been in-
vestigated. Further application of the synthesized compound has been demonstrated by
synthesizing carbazole-substituted benzofuro-fused triazines. The mechanistic study has
revealed that the process proceeds through the formation of an O-coordinated Mn complex.
We believe that the present methodology will open a new door to synthesizing important
building blocks of α-sulfonylamino ketones.
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