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Abstract: Plastic waste becomes an immediate threat to our society with ever-increasing negative
impacts on our environment and health by entering our food chain. Sunlight is known to be the
natural energy source that degrades plastic waste at a very slow rate. Mimicking the role of sunlight,
the photocatalytic degradation process could significantly accelerate the degradation rate thanks to
the photocatalyst that drastically facilitates the photochemical reactions involved in the degradation
process. This mini review begins with an introduction to the chemical compositions of the common
plastic waste. The mechanisms of photodegradation of polymers in general were then revisited.
Afterwards, a few photocatalysts were introduced with an emphasis on titanium dioxide (TiO2),
which is the most frequently used photocatalyst. The roles of TiO2 photocatalyst in the photodegra-
dation process were then elaborated, followed by the recent advances of photocatalytic degradation
of various plastic waste. Lastly, our perspectives on the future research directions of photocatalytic
plastic degradation are present. Herein, the importance of catalytic photodegradation is empha-
sized to inspire research on developing new photocatalysts and new processes for decomposition of
plastic waste, and then to increase its recycling rate particularly in the current pandemic with the
ever-increasing generation of plastic waste.

Keywords: plastic waste; photocatalytic degradation; photodegradation mechanisms; titanium
dioxide catalyst

1. Introduction

Plastic is a widely used product globally due to its versatile properties such as low
weight, user-friendly designs, chemical resistance, excellent thermal stability, and outstand-
ing electrical insulation. The resin identification code (RIC) system created by the Society
of Plastic Industry (SPI) is often used to categorize the type of plastic during production
and to facilitate post-consumer plastic recycling. The plastics with SPI number 1 to 7,
including polyethylene terephthalate (PET), polyethylene (PE), polyvinyl chloride (PVC),
polypropylene (PP), polystyrene (PS), etc., are present in Table 1 [1].

The global plastic production was about 2 million tons in the year 1950, which is trivial
compared to the annual production nowadays (368 million tons as of 2019) [2]. According
to data from Plastic Europe, the most produced plastic type is polyolefin including high-
density polyethylene (HDPE), low-density polyethylene (LDPE), and PP, which are mainly
used in the packaging industry. Many of those plastics produced in 1950 still exist as
plastic waste in the environment. One of the reasons for the increasing global plastic
production over the years in various industries is the benefit of one-time use, and thus is
very convenient and cost-effective. As a result, the global plastic market size is expected to
reach USD 722.6 billion by 2027 [3]. In addition, the recent COVID-19 outbreak worldwide
has caused a surge in the demand for medical personal protective equipment (PPEs) such
as single-use disposable face masks, medical face shields, and gloves, most of which are
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made of polymer materials [4]. For instance, a single-use disposable face mask consists of
three layers: An inner layer (made of fibrous material), a middle layer (melt gusted filter
part), and an outer layer (nonwoven) [5]. The middle filtering layer of the mask can be
nanofibers and/or microfibers, which is manufactured using raw material such as PP. The
outer layer of the mask can be made of polyethylene terephthalate (PET). The demand
for disposable plastic products including food containers, plastic bags, and poly mailbags
in the packaging industry which are made from plastic has also been growing rapidly
since more people are staying at home, calling for food delivery, and online shopping
particularly in the current pandemic [4].

Table 1. SPI number for different types of plastic and the recovery rate from the total solid plastic waste [1].

SPI
Number Full Name Chemical Structure Uses Currently

Recyclable?
Recovery
Rate (%)

1 Polyethylene
terephthalate
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In 2020 alone, about 52 billion single-use disposable face masks have been produced
owing to the pandemic, and about 1.6 billion (3%) of them enter the oceans that need
40–50 centuries for complete degradation. Tons of microplastics will be released in the
oceans during the natural degradation of these masks, which will likely enter our food
chain. Moreover, other plastic wastes have also caused a variety of environmental issues,
directly imposing an immediate threat to our health and survival. As a result, excessive use
of plastic has caused a flood of plastic wastes entering the natural environment, bringing
adverse effects to humans and the environment [6]. On top of that, more environmental
issues have emerged, especially when there is a lack of proper management and handling
of plastic wastes.
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Recycling is one of the promising methods to reduce the detrimental effects caused
by plastic wastes. PET and HDPE show a recovery rate of 19.5% and 10%, respectively, as
depicted in Table 1. However, plastic such as PVC, LDPE, PP, and PS that has a recovery
rate of less than 5%, depending on their applications, are barely recyclable. PVC has a
recovery rate of 0%, suggesting that it is completely non-recyclable which is mainly due to
the high chlorine content in its raw material and the high level of hazardous additives in it.
One can see that only less than 10% of the plastic wastes are recycled on average, leaving
more than 80% to accumulate in the natural environment [7].

Therefore, engineering plastic degradation processes such as photodegradation [6,8],
thermo-oxidative degradation [9,10], and biodegradation [11] have attracted intensive
research interest. Photodegradation has attracted our attention as it strikes an excellent
balance of energy consumption, time consumption, and cost-effectiveness, holding great
promise to end plastic wastes. Most importantly, it can capitalize on abundant and renew-
able solar energy.

Herein, we revisit the concept of catalytic photodegradation of plastic wastes. We start
with the discussion of the mechanisms involved in photocatalytic degradation of polymer,
followed by summarizing the recent advances of catalytic photodegradation of various
types of plastic polymers to shed light on the degradation of the entire spectrum of plastic
waste, as illustrated in Figure 1. Plastic polymers including PE (LDPE, HDPE), PP, PS, and
PVC are described in our review as they constitute the world’s most common plastic and
most of them are challenging to be recycled. Lastly, we present our prospective on the
future research directions on photocatalytic degradation of plastic wastes.
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2. Photodegradation of Polymers
2.1. Background of Photodegradation

The sun emits energy over a broad range of wavelengths from ultraviolet spectrum
(UV), visible spectrum (Vis-), to infrared spectrum (IR) with decreasing energy. Ultraviolet
radiation consists of electromagnetic waves with a wavelength between 100 and 400 nm [12],
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which is further divided into three major sub-regions. With the wavelength ranging from
100 to 280 nm, UV-C is fully absorbed by the ozone in the atmosphere. UV-B has a
wavelength from 280 to 315 nm, whereas UV-A has a wavelength from 315 to 400 nm. Most
of the UV-B is also absorbed by the atmosphere, while UV-A is completely reachable to the
Earth’s surface. Visible light is the section of the electromagnetic spectrum that is visible to
humans, covering the range of wavelength from 400 to 700 nm. Infrared radiation consists
of electromagnetic waves with a wavelength from 700 to 1 mm.

UV radiation is known as the most damaging source to polymers owing to its high
energy. Hence, polymers that are continuously exposed to UV radiation will undergo
deterioration in their physical and chemical structure, resulting in photodegradation. Pho-
todegradation of polymer includes chain scission, alteration of molecule’s shape, reduction
in molecule’s weight, and deterioration of polymer properties typically in the presence of
UV radiation and oxygen [8].

2.2. Photodegradation Mechanisms

There are two well-regarded photodegradation mechanisms, i.e., singlet oxygen induced
oxidation [8,13] and free radical caused oxidation [14], as detailed in the following sections.

2.2.1. Singlet Oxygen Mechanism of Oxidation

Singlet oxygen mechanism of oxidation involves the direct reaction of singlet oxygen
with polymer. The singlet oxygen is produced due to the quenching of the excited triplet
state of suitable sensitizers (3S), as depicted in Equation (1).

3S + 3O2 → 1S + 1O2 (1)

A singlet oxygen could react with the product of a Norrish reaction, which is a pho-
tochemical reaction taking place with ketones and aldehydes. A Norrish reaction can be
subdivided into type I and type II reactions, and Norrish Type II reaction causes inter-
molecular rearrangement of the carbonyl group (C=O) to form the vinyl group (-CH=CH2).
Thereafter, a generated singlet oxygen that reacts with the vinyl group could then further
decompose the molecule, leading to chain scission and formation of hydroperoxides func-
tional group (ROOH), as shown in Figure 2a. Likewise, the singlet oxygen produced also
leads to the formation of ROOH by the oxidation of an olefin containing allylic hydrogen,
as depicted in Figure 2b.
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Figure 2. Singlet oxygen mechanism of oxidation. (a) Singlet oxygen oxidation of a vinyl group to
form the hydroperoxide functional group (ROOH) [13]; reprinted from [13] with permission from
Elsevier. (b) Singlet oxygen oxidation of an olefin group to form the hydroperoxide functional group
(ROOH) [8].

2.2.2. Free Radical Mechanism of Oxidation

The free radical mechanism of oxidation involves producing free radicals that react
with the oxygen. The high energy in the UV radiation breaks the C-C and C-H bonds in
polymers to create free radicals. The free radicals then react with the oxygen to create the
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hydroxyl group (O-H) and carbonyl group (C=O). The mechanism involves three main
steps, i.e., initiation, propagation, and termination, as summarized in Figure 3.
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In the initiation step, the existence of chromophore group, which absorbs the incident
light due to energy matching, in the polymer’s structure is important to act as the photo-
initiator [8]. As a result, the absorbed light-excited charge carriers break the chemical
bonds in the polymer chains to produce hydrogen radicals and polymer radicals (Path 1).
In principle, non-absorbing polymers such as polyethylene (PE) and polypropylene (PP)
are almost perfectly stable on exposure to solar radiation with a wavelength greater than
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290 nm, since the structure contains only bonds of C-C and C-H [15]. Moreover, they have
no unsaturated chromophores that can absorb light to form free radicals. However, the
impurities or structural defects in the polymers, as well as carbonyl groups within the
backbone of the polymer can act as chromophores to carry out the photo-initiation [6].

The potential sources for producing free radicals are carbonyl groups such as ketones
and hydroperoxides. Hence, different initiation steps have been undertaken for various
conditions in different polymers to form the free radicals. Those reactions can be initiated
by physical factors such as direct UV initiated photolysis of C-C and C-H bond or by
chemical factors such as the residues of catalyst used, incorporation of carbonyl groups, and
introduction of peroxides or unsaturation site [13]. The free radicals produced can extract
hydrogen atoms from the other polymers and thus initiate the photodegradation activity.

In the propagation step [8,16], polymer macro radicals formed through photo-initiation
react with the oxygen to form polymer peroxyl radicals (Path 2). Subsequent reactions
of polymer peroxyl radicals with another polymer produce hydroperoxides and polymer
macro radicals (Path 3). Afterwards, the polymer macro radicals produced undergo
auto-oxidation to repeat the formation of polymer peroxyl radicals (Path 4). In addition,
the hydroperoxides react with another hydroperoxide to form polymer alkoxy radicals,
polymer peroxide radicals, and water (Path 5). Moreover, the photodecomposition of
hydroperoxides leads to the formation of polymer alkoxy radicals and hydroxyl radicals
(Path 6). Propagation ultimately leads to chain scission to form an oxygen-containing
functional group including olefin and ketone (Path 7). The hydroxyl radicals produced
will extract hydrogen from another polymer to form polymer macro radicals and water
(Path 8).

Lastly, in the termination step [8], the free radicals produced react with each other
to undergo the crosslinking reaction for the formation of inert products (Path 9). When
the oxygen pressure is high, polymer peroxyl radicals react with themselves to form inert
products and oxygen (Path 10). In contrast, when sufficient oxygen cannot be maintained,
polymer peroxyl radicals react with polymer macro radicals (Path 11). Conclusively, olefins
and ketones are the expected products of the termination reactions [16]. The whole process
causes a reduction in the molecule’s weight, and the polymer becomes more brittle, leading
to further photodegradation.

3. Photocatalytic Degradation

In photocatalytic degradation, which is a photochemical reaction process with the
help of photocatalysts, a semiconductor is often used to absorb light and to accelerate the
photoreaction rate [17]. Photocatalysis is used in many applications such as removal of
pollutants and bacteria [18], energy conversion [19], and water splitting for green hydrogen
generation [20]. An ideal photocatalyst should be able to absorb light at room temperature,
and have high stability towards photo corrosion, as well as non-toxicity.

3.1. Titanium Dioxide (TiO2) as Photocatalyst

TiO2 is the most widely used photocatalyst due to its versatile properties such as high
level of oxidation-reduction ability [21,22], chemical stability [21], high-temperature sta-
bility, cost-effectiveness, and environmental friendliness [23,24]. The oxidation-reduction
ability of a photocatalyst depends on its energy band position w.r.t. redox potentials. As
illustrated in Figure 4, using water splitting redox potentials as the reference, TiO2 has
a more positive electrochemical potential with respect to the normal hydrogen electrode
(NHE) potential. Having the valance band maximum (VBM) more positive than 1.23 eV,
showing that the oxidation ability is sufficient in oxidizing water. The lower the position
of VBM of a semiconductor, the higher the oxidation capability it has. In contrast, the
conduction band minimum (CBM) should be more negative than the hydrogen reduction
potential for affecting the reduction of water. The higher the position of CBM of a semi-
conductor, the higher the reduction capability it has. Thus, TiO2 has one of the highest
oxidation capabilities among all of the semiconductors listed in Figure 4. However, one
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should decrease the band gap to increase light adsorption. For instance, ZnS has a too large
band gap to absorb light efficiently though it has high oxidation and reduction capability.
Put together, TiO2 has a great balance between oxidation-reduction capability and band
gap size, resulting in an excellent photocatalyst.
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TiO2 has three crystalline forms: Anatase, rutile, and brookite [25–27], as depicted in
Figure 5a–c. Different phases have different symmetries of the octahedral-shaped TiO6
fundamental building blocks [28]. Anatase and rutile forms are commonly used in pho-
tocatalytic degradation, while brookite is uncommonly used as a photocatalyst due to
its unstable structure. Anatase can be converted into rutile by heating above 700 ◦C [25].
TiO2 can appear in various geometry including nanoparticles [29], nanowires [30], nan-
otubes [31], and other nanostructures [32].
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Figure 5. Atomic structure of (a) anatase TiO2, (b) rutile TiO2, and (c) brookite TiO2. Green and red balls represent Ti and O
atoms, respectively. Schematic carrier recombination process in (d) anatase and (e) rutile TiO2. The e− and h+ represent the
photogenerated electron and hole, respectively. Reproduced from [27] with permission from the PCCP Owner Societies.

Anatase TiO2 has a CBM at the energy level of ECB = −0.51 V, while rutile TiO2 has
CBM at ECB = −0.31 V [33]. In contrast, their VBMs are similar at an energy level of
EVB = +2.69 V. Consequently, the anatase form has a slightly larger bandgap Eg = 3.2 V
than that of rutile (Eg = 3.0 V), leading to a higher energy of photogenerated charges.
As a result, anatase has a relatively higher photocatalytic activity, however, a relatively
narrower absorption bandwidth. Moreover, anatase exhibits an indirect bandgap, while
rutile and brookite show direct bandgaps, as illustrated in Figure 5d,e. Hence, the lifetime
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of photogenerated electron-hole pair in anatase is longer since a direct recombination of
electron-hole pair is forbidden theoretically.

The detailed energy band structure and density of state (DOS) of anatase and rutile
TiO2 are similar, as shown in Figure 6 [27]. Owing to strong O 2p-Ti 3d hybridizations, the
valance bands contain O 2p and some Ti 3d states. Such strong p-d hybridizations broaden
the valance bands and enhance the photo carrier transfer. In contrast, the conduction bands
consist of primarily Ti 3d states with minor O 2p and Ti 3p states. It is worth noting that
the calculated band gaps of anatase and rutile TiO2 are smaller than the measured ones
due to the limitation of basic density functional theory calculations [34,35]. However, this
deficiency can be corrected by the GGA+U approach with more appropriate determined U
parameter values [36]. The GGA+U approach is improved in terms of the energy gap of
material and impurity state in the gap. It yields an energetic sequence consistent with the
experiments, Erutile < Eanatase, for 5 < U < 8 eV.
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Moreover, the effective mass of photogenerated charge carriers can be obtained by
parabolic fitting to the calculated CBM and VBM along a specific direction in the reciprocal
space. Notably, the average effective mass of photogenerated charge carriers in anatase
phase is lower than those in rutile and brookite phases, resulting in faster migration
of the photogenerated electron and holes to the surface of TiO2 [27]. Therefore, more
photogenerated charge carriers in anatase can participate in the surface reactions. Notably,
the photocatalytic activity also greatly depends on other factors such as the geometry [32],
the substrates [33], and the oxygen vacancy/defects density [37].

3.2. Other Photocatalysts

Zinc oxide (ZnO) having a comparable bandgap to that of TiO2 is often used as an
alternative to TiO2, as presented in Figure 7a. Many reports have focused on the use of ZnO
as the photocatalyst, and some results have also shown a high photocatalytic degradation
rate [38–42]. Iron oxide [43], cadmium sulphide [44], zinc sulphide [45], tungsten oxide [46],
tin oxide [47], bismuth vanadate [48], and non-metallic carbon nitride [49,50] are also often
employed as the photocatalysts for photodegradation too, as depicted in Figure 7b–d.
Though the photocatalyst plays the vital role in photodegradation, the degradation rate
also greatly depends on the polymer structure, photocatalyst mass loading, as well as the
experimental setup.
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3.3. Photocatalytic Degradation Mechanism

When the photocatalyst such as TiO2 is exposed to the UV light with irradiation energy
that is equal to or more than its bandgap, the electrons (e−) are excited from its VB to CB,
creating an energetic electron (e−)-hole (h+) pair, as depicted in Equation (2).

TiO2
hv→ e− + h+ (2)

Part of the electrons will recombine with holes swiftly in femtoseconds, and the rest
has a longer lifetime [24]. The recombination of electrons-holes reduces the number of
photogenerated electrons and holes transported to the TiO2 surface for oxidation-reduction
chemical reactions. Therefore, the presence of scavengers and incorporation of trap sites,
which help reduce the recombination of electrons and holes in the bulk of semiconductor,
are attractive strategies to increase the catalytic activity [25]. Thereafter, the electrons and
holes transferred to the surface of the semiconductor undergo interfacial charge-transfers
to carry out the oxidation-reduction chemical reaction as follows.

In the reductive reaction, electrons in the CB of photocatalyst react with oxygen to
produce superoxide, as illustrated in Equation (3). Then, the superoxide will undergo
further reduction to produce hydrogen peroxides, which may generate hydroxides and
hydroxyl radicals through the reaction with the electrons, as shown in Equation (4) [33].

O2 + e− → O−2 (3)

H2O2 + e− → OH− + ·OH (4)

In the oxidative reaction, holes in the VB of photocatalyst react with the water in
the air to form proton and hydroxyl radicals, as depicted in Equation (5). Consequently,
hydroxyl radicals will decompose organic pollutants into the water and carbon dioxide.
Hence, hydroxyl radical is known as the essential element in photocatalysis. Moreover,
it is regarded that the interfacial charge transfer at the surface of the semiconductor is
important in producing hydroxyl radicals, affecting the overall photocatalytic degradation
rate [33].

H2O + h+ → H+ + ·OH (5)
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Since UV light only represents 5–8% of the solar spectrum (at sea level), it limits the
efficiency of photocatalytic degradation for most photocatalysts such as TiO2 and ZnO.
Hence, photocatalytic degradation under visible light is crucial to utilize more solar energy.
To increase the photocatalytic degradation activity under visible light, the energy band
gap needs to be reduced. This can be achieved by introducing structural imperfections
into the crystal, a process known as chemical doping. This is possible by varying the
synthesis conditions and/or adding controlled amounts of impurities such as C, N, Fe3+,
Cr3+, etc. [53].

4. TiO2-Based Photocatalyst in Plastic Degradation
4.1. Polystyrene (PS)

The photocatalytic degradation of PS plastic [(C8H8)n, as shown in the inset of Figure 8a]
with TiO2 as photocatalyst was investigated in the ambient air under UV irradiation [54]. The
results showed that the degradation of PS-TiO2 composite exists at a much higher weight
loss rate (Figure 8a), lower average molecular weight (Figure 8b), and more voids generated
(Figure 8c,d), as compared to that of pure PS film degradation under UV irradiation.
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Various modified TiO2 catalysts have been employed for the photocatalytic degrada-
tion of PS including copper phthalocyanine (CuPc) sensitized TiO2 [PS-(TiO2/CuPc] [55],
grated TiO2 (PS-G-TiO2) [56,57], iron phthalocyanine (FePc) sensitized TiO2 (PS-FePc-
TiO2) [58], and hindered amine modified aromatic polyamide dendrimer/ polystyrene-
grafted TiO2 (PS-HADPG-TiO2) [59]. From the experimental results, modified TiO2 pho-
tocatalysts showed a much higher photocatalytic degradation efficiency than pure TiO2.
When the photocatalytic degradation of PS plastic was carried out with FePc-TiO2, HADPG-
TiO2 or TiO2/CuPc as photocatalyst, it was found that these modified TiO2 had a widened
absorption under visible light. For instance, the UV-VIS absorption spectrum of TiO2/CuPc
shows a broad absorption peak in the visible range of 500 to 650 nm thanks to CuPc, as
depicted in Figure 9a. This enhanced the ability for PS degradation under visible light,
subsequently increasing the photocatalytic degradation efficiency under solar irradiation
(Figure 9b).
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Figure 9. Photodegradation of PS-(TiO2/CuPc) film. (a) The UV-VIS absorption spectra of TiO2, TiO2/CuPc, and CuPc
samples. (b) Weight loss curve of PS-TiO2 and PS-(TiO2/CuPc) samples. (c) The schematic charge separation mechanism
of TiO2/CuPc sample under visible and UV light radiation [55]; reprinted (adapted) from [55] with permission from the
American Chemical Society.

As illustrated in Figure 9c, the UV portion of the incident light (below 388 nm) is
absorbed by TiO2, while the visible portion of the incident light (below 685 nm) is absorbed
by CuPc. Upon illumination in the visible range, an electron in CuPc is excited to a singlet
state (S1), leaving a hole in the ground state (S0). As the energy level of S1 (−0.63 V vs. NHE)
is higher than that of TiO2 (−0.5 V vs. NHE), the excited electron will be swept to TiO2 by
the built-in electric field at the interface of TiO2 and CuPc. As such, the photogenerated
electron and hole are separated and then utilized to reduce oxygen and to oxidize PS
molecule, respectively. Notably, the anatase crystalline form of TiO2 shows higher activity
than rutile TiO2 for photocatalytic degradation, owing to the lower recombination rate and
longer lifetime, as discussed in the previous section [58,59].

4.2. Polyvinyl Chloride (PVC)

Investigations have been also carried out to determine the photocatalytic degradation
efficiency of pure PVC [(C2H3Cl)n, as depicted in the inset of Figure 10a], and PVC film
with TiO2 or modified TiO2 as photocatalyst. As expected, the degradation efficiency is
always relatively higher for the latter. According to Cho and Choi [60], light penetration
into the PVC composite film depends on the concentration and size of TiO2, as well as the
film thickness. The higher the amount of TiO2, the greater the light absorbance of the PVC
composite film is, as displayed in Figure 10a. However, the optical transparency decreases
with more TiO2, and thus shallower light penetration depth, as shown in Figure 10b.
Moreover, the weight loss percentage is higher in air ambient compared to that in nitrogen
ambient (Figure 10c). It suggests that the presence of oxygen in the air was essential for the
efficient photocatalytic degradation of the polymer, agreeing with the reaction mechanism
discussed in Equation (3).

Interestingly, photocatalytic degradation of PVC film with the vitamin-C (VC)-modified
TiO2 photocatalyst was investigated [61]. The specific binding of VC to the TiO2 surface
was attributed to the fact that the Ti ions can easily form complexes with oxygen-containing
ligands. The UV-VIS spectrum shows that the absorption range of PVC-VC-TiO2 has signif-
icantly broadened compared to that of PVC-TiO2 and PVC-VC, as depicted in Figure 11a.
The broadened absorption was ascribed to TiO2 and the unsaturated bonds of VC. The
redshift of the absorption threshold wavelength up to 600 nm was explained by the biden-
tate binding of α-substitute surface modifiers, leading to the five-membered ring at the
surface of Ti atoms, as illustrated in Figure 11b. It was found that the photocatalytic
activity was greatly enhanced by the formation of TiIV-VC charge-transfer complex having
a five-member chelate ring structure. Moreover, the optimum mass ratio of VC to TiO2 is
0.5 for the highest efficiency of photocatalytic activity, as shown in Figure 11c.
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PVC–VC–TiO2 film with 2 wt% TiO2 and 1 wt% VC (curve a), PVC–TiO2 film with 2 wt% TiO2 (curve b), PVC–VC film with
2 wt% VC (curve c), and pure PVC film (curve d). (b) The proposed mechanism of photocatalysis process for VC modified
TiO2. (c) The weight loss rate at different mass ratios of VC to TiO2 in PVC-VC-TiO2 film; [61] reprinted from [61] with
permission from Elsevier.

Upon illumination, the TiIV-VC charge-transfer complex promoted the synergetic
effect between VC and TiO2, as illustrated in Figure 11b. The photogenerated electrons
are transferred from VC to the conduction band of TiO2 to form the superoxide radicals,
according to Equation (3). The superoxide radicals attack the polymer chains nearby, which
accelerate the PVC degradation via one-electron reduction of surface oxygen.

As the photocatalytic activity of TiO2 photocatalyst has low efficiency under visible
light [62], a perchlorinated iron (II) phthalocyanine modified TiO2 (FePcCl16-TiO2) was
developed and showed greatly improved absorption ability of visible light [63]. Sim-
ilarly, the photocatalytic degradation of PVC with bismuth oxyiodide-modified TiO2
(PVC-BiOI/TiO2) [64], polyoxometalate-modified TiO2 (PVC-POM/TiO2) [65], and nano-
graphite-doped TiO2 [PVC-(Nano-G/TiO2)] [66] also showed improved visible light activity
due to their broadened absorption spectra. The modified photocatalysts can effectively im-
prove the migration and separation of TiO2 photogenerated electrons thanks to the built-in
electric field at the heterojunction, which inhibits the recombination of the photogenerated
charge carriers, and thus further improves the photocatalytic degradation rate.

4.3. Polypropylene (PP)

TiO2 with mixed crystalline forms (anatase and rutile) exhibits the highest activity
for photodegradation of PP [(C3H6)n, as depicted in the inset of Figure 12a] with high
consumption of oxygen [67]. Furthermore, it was found that the particle size of TiO2
plays an important role, and extra fine TiO2 is more favourable than large particles for
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photocatalytic degradation. Similar to the other polymers, modified TiO2 photocatalysts
enhance the photocatalytic degradation efficiency. Meng et al. [68] investigated TiO2
immobilized organoclay (TiO2-OMT) photocatalysts. Samples with increasing mass ratio
of TiO2-OMT photocatalyst in the clay from 2, 5, and 10 mmol Ti/g clay were prepared as
PP/OMTTi2, PP/OMTTi5, and PP/OMTTi10, respectively. Pure PP, PP/OMT, and PP/TiO2
composites as control samples were prepared for comparison. Apparently, PP/OMTTi5
shows the highest degradation rate as reflected by the largest carbonyl band absorbance
area, as depicted in Figure 12a. Differential scanning calorimetry (DSC) thermal analysis
shows that PP/OMTTi5 has double endothermic melting peaks after irradiation over 80 h,
as presented in Figure 12b. This observation was attributed to the decreased crystallization
of PP during photodegradation, which caused the metastable crystal phase to appear as
the lower DSC peak. The quantitative molecule weight characterized by gel permeation
chromatography indicates a 2-order-of-magnitude reduction of molecular weight of PP
after 300-h of irradiation. The photogenerated electrons and holes in TiO2 can react with
the absorbed H2O or O2 to produce various reactive oxygen species (ROSs) including O−2 ,
HOO• , HO•, etc. These ROSs capture hydrogen atoms in PP polymer chains and then
generate –CH2(CH3)C•– macro molecule radicals, followed by chain scission, as detailed
in Figure 12c.
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Figure 12. Photodegradation of PP. (a) Irradiation time dependent carbonyl band area of composite of pure PP, PP/OMMT,
PP/OMTTi2, PP/OMTTi5, PP/OMTTi10, and PP/TiO2. Inset: Chemical formula of PP. (b) Melting endotherms of
PP/OMTTi5 film irradiated for 0 h (curve a), 80 h (curve b), 170 h (curve c), 300 h (curve d), as well as that of pure PP film
irradiated for 0 h (curve e) and 300 h (curve f). (c) Proposed mechanism for degradation of PP/TiO2-OMT composite [68];
reprinted from [68] with permission from John Wiley and Sons.

Interestingly, carbon coating on TiO2 increases the photocatalytic activity compared
to pure PP but not PP-TiO2 composite film [69]. Three types of samples were prepared
by mixing carbon-coated TiO2 and PP with the decreasing carbon content from PP5Ti
(30.6 wt%), PP10Ti (11.6 wt%), PP30Ti (2.7 wt%) to PPDTi (0 wt.%), with reference to
pure PP. Direct evidence from scanning electron microscopy (SEM) images are shown in
Figure 13, where the morphology of the degraded samples are presented. One can see that,
after 500-h of illumination, PP30Ti and PPDTi show a very rough surface with very large
cavities. In contrast, the rest of the samples show a much smoother surface, suggesting
mild degradation. The authors attributed the decreased efficiency to the carbon-coated
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layer decreasing the amount of UV light reaching the surface of the particles, and in turn
reducing the hydroxyl groups on the surface of TiO2. These observations thus emphasize
the importance of TiO2-PP interface for PP photodegradation.
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Compared with the abovementioned photocatalysts including TiO2-OMT and carbon-
coated TiO2, the reduced graphene oxide (rGO) coated TiO2 (TiO2-rGO) is the best for
photocatalytic degradation thanks to the introduction of rGO, as illustrated in Figure 14 [70].
Briefly, upon illumination, the photogenerated electrons and holes in TiO2 cause reduction
and oxidation reactions, respectively, leading to the formation of ROSs. The generated
ROSs attack the C-H bonds in PP and generate PP macro radicals for further chain scission.
The high rate of degradation was attributed to (1) rGO extending the absorption range
of TiO2 to a visible region due to the presence of Ti-O-C bond; (2) rGO acting as a good
electron acceptor thanks to its 2D π-conjugation, facilitating electron-hole separation, and
thus decreasing the recombination rate; and (3) rGO offering more adsorption sites and
catalytic sites.

4.4. Polyethylene (PE)

The photocatalytic degradation rate of PE (see inset of Figure 15a for molecular
structure) is found not linearly proportional to the TiO2 concentration [71]. The experiment
using TiO2/CuPc as photocatalyst to degrade the PE plastic has been conducted, and
the results showed that PE-TiO2/CuPc has a higher photocatalytic degradation rate than
PE-TiO2 [72]. However, there was an optimal concentration of CuPc, i.e., 0.8 wt% for
the highest photocatalytic degradation rate, probably caused by the trade-off between
absorption in unit area and light penetration depth, as displayed in Figure 15a. The author
furthers characterized the photovoltage using surface photovoltage spectroscopy (SPS),
as depicted in Figure 15b. In the range of 300–400 nm, TiO2/CuPc shows a much higher
photovoltage, suggesting a higher charge separation efficiency and longer excitations
lifetime than that of TiO2. Moreover, the TiO2/CuPc sample displays a broader range of
photo response. However, there is no response in the visible region, indicating that there is
no charge transfer between TiO2 and CuPc in the visible range. The current-potential curve
further shows that visible light illumination did not make a difference in photocurrent on
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TiO2/CuPc, as shown in the inset of Figure 15b. However, the photocurrent of TiO2/CuPc
is much larger than that of TiO2. Furthermore, due to the different molecular structures, it
is found that the degradation of PS-TiO2/CuPc was slower than PE-TiO2/CuPc.

Fa et al. studied the photocatalytic degradation of the polyethylene-oxidized polyethy-
lene wax-TiO2 (PE-OPW-TiO2) [73]. The presence of OPW helps improve the interaction
between PE and modified TiO2 particles, further improving the degradation efficiency.
Photodegradation of doped TiO2 composite films including Fe/Ag dually doped TiO2,
Ag-doped TiO2, and Fe doped TiO2 were investigated [74]. Overall, the degradation of
doped TiO2 was greater than that of the undoped TiO2, and Fe/Ag dually doped TiO2
shows the highest degradation rate under UV light among all, as shown in Figure 15c.
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PE. (b) Surface photovoltage spectroscopy spectra of TiO2 and TiO2/CuPc photocatalyst. Inset: The I-V curves of different
photocatalysts, i.e., TiO2/CuPc without irradiation (curve A), TiO2/CuPc under visible irradiation (curve B), TiO2 under
UV irradiation (curve C), and TiO2/CuPc under UV radiation (curve D) [72]; reprinted from [72] with permission from
Elsevier. (c) Effect of simulated sunlight on the photocatalytic degradation of PE film [74].

Moreover, the photocatalytic activity of PE-TiO2 can be improved using modified TiO2
photocatalysts such as multiwalled carbon nanotube (MWCNT)-TiO2 composite (TiO2-
MWCNTs) [75], polypyrrole(PPy)-TiO2 composite (PPy/TiO2) [76], and polyacrylamide
grafted TiO2 (PAM-g-TiO2) [77]. PAM absorbs moisture from the atmosphere due to its
high hydrophilicity, which results in the weight loss of PAM-g-TiO2 sample before 100 ◦C
on the thermogravimetric analysis curve, as shown in Figure 16a. The absorbed moistures
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produced more hydroxyl radicals which would accelerate the photodegradation. The
carbonyl index measurement in Figure 16b increases with the increasing UV exposure
duration due to the initiation of chain scission caused by photocatalytic oxidation, which
produces carbonyl compounds with low molecular weights (e.g., ester, acid, and aldehyde).
The degraded PAM also generates amide and acid that promote the degradation of LDPE.
As displayed in Figure 16c, the molecular weight (Mw) distribution curve peak shifts to the
lower value from LDPE towards the LDPE/PAM-g-TiO2-UV sample, indicating that the
PAM-g-TiO2 has the highest activity towards LDPE degradation under UV irradiation.
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5. Conclusions and Outlook

In recent years, plastic pollution has increasingly shown a negative impact on our
environment and health. The recycling rate of plastic waste is very low (~10%) mainly
caused by the contamination of plastic waste by other solid waste, as well as the fact
that the mixing nature of plastic waste consists of various polymers. Additionally, the
widespread plastic waste makes collection and transportation necessary for centralized
recycling technology such as mechanical and thermal catalytic recycling. Thus, a key to
increase the recycling rate of plastic waste, and thus less disposal of plastic waste to landfill,
is to develop a decentralized degradation process that could leverage renewable energies
as the driving force. To this end, photodegradation is perfect as sunlight is known to be
an effective energy source to degrade plastic. Therefore, we present this short review to
recap the photocatalytic degradation mechanism and to discuss the research efforts on
photodegradation of various plastic polymers, aiming to inspire more research ideas to
address this urgent challenge of plastic waste. Despite the advantages of photocatalysis
and extensive efforts devoted to plastic photodegradation to date, there are still several
major challenges as follows:

(1) Photocatalytic degradation mechanism. Decomposition of a large plastic polymer
to small molecules is mechanistically complicated. There could be a dozen or more
different reaction pathways. How to identify and then to control the reaction pathway
is a paramount challenge. Some in situ/operando characterizations could be useful,
such as Raman spectroscopy, photoluminescence spectroscopy, and high-resolution
soft X-ray absorption spectroscopy. It is urgent to develop a suitable and effective
characterization tool/method for in situ/operando monitoring of the degradation
process. Theoretical investigation including first-principle modelling and microkinetic
modelling complementary to the in situ/operando studies could be powerful for
reaction pathways investigation.

(2) Contamination-tolerant degradation technology. Most of the plastic wastes are gener-
ated in a widespread manner and contaminated by various other wastes such as food
wastes, wood waste, and chemical waste. Though the photocatalytic process shows
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good tolerance to these contaminations, it is a surface reaction. Thus, its efficiency
would be low if light penetration is blocked by the non-transparent contaminations.
Thus, a photocatalyst that could degrade these contaminations should be developed
and used together with the plastic degradation photocatalyst.

(3) Multifunctional photocatalyst. Very often, a plastic product consists of various plastic
components, e.g., electronic plastic may contain polyimide, ABS, etc. Therefore, a
multifunctional photocatalyst that consists of individual elements working for a
specific plastic could be very useful for addressing the plastic waste issue. Moreover,
the selectivities of these catalysts are crucial from an economical perspective. Most of
the studied catalyst generates CO2 as the major product. Though less harmful than
plastic waste, CO2 is also a serious environmental issue to be addressed.

(4) Facile processes to introduce photocatalyst into plastic waste. Most of the current
work involves dissolving plastics followed by mixing with photocatalyst to make a
composite, which is then photodegraded. Considering the low economic viability of
such a process, a new method to introduce photocatalyst into plastic waste is needed.
For instance, dispersion of photocatalyst particles that can stick on bulk plastic waste
could be attractive as it is facile and cost-effective. However, an intensive research
effort may be necessary for developing such a photocatalyst.
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