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ABSTRACT Survival kinetics of Salmonella enterica have been previously studied us-
ing an inoculum cocktail composed of different strains that have been associated
with low-moisture foods. Here, we report the closed genome sequences of five
strains of Salmonella enterica that are commonly used in these storage studies.

The incidence of salmonellosis associated with dry food products has been increas-
ing in recent years. An aspect of public health concern is the ability of Salmonella

spp. to survive on these foods (nuts, black pepper, and spices) in a low-moisture
environment. Numerous studies on the survival of Salmonella enterica in dried foods
have previously been published (1–3) using a cocktail of different strains. Here, we
report the complete closed genome sequences of 5 strains commonly used in these
studies, S. enterica serotype Anatum CFSAN076215 (strain 6802), isolated from peanuts; S.
enterica serotype Enteritidis CFSAN076214 (strain ATCC BAA-1045), isolated from almonds;
S. enterica serotype Oranienburg CFSAN076211 (strain 1839), isolated from pecans; S.
enterica serotype Tennessee CFSAN076210 (strain K4643), isolated from peanut butter; and
S. enterica serotype Mbandaka CFSAN076213 (strain 688538), isolated from tahini.

The isolates were cultured in Trypticase soy broth (Becton, Dickinson, Franklin Lakes,
NJ, USA) overnight at 37°C. The genomic DNA was isolated using the DNeasy blood and
tissue kit (Qiagen, Inc., Valencia, CA, USA). A single SMRTbell 20-kb library was prepared
according to the 20-kb PacBio sample preparation protocol using the BluePippin
size-selection system (Sage Science, Beverly, MA, USA). Each isolate was sequenced
based on previously reported procedures on the PacBio RS II platform (Pacific Biosci-
ences, Menlo Park, CA, USA) using a single small-molecule real-time (SMRT) cell (4). The
sequencing statistics for each isolate can be found in Table 1. The genomes were de
novo assembled using the Hierarchical Genome Assembly Process version 3.0 using
default settings. The assembled sequences were annotated using the NCBI Prokaryotic
Genomes Annotation Pipeline (PGAP) and have been deposited at DDBJ/EMBL/
GenBank. The S. Anatum (CFSAN076215) chromosome size was 4,689,440 bp, with a
G�C content of 52.1%, and the plasmid size was 104,123 bp, with 50.5% G�C content.
The plasmid (pCFSAN076215) showed two toxin-antitoxin (TA) modules (ccdA-ccdB and
higA-2– higB-2). The ccdA-ccdB TA module can lead to the formation of persister cells if
induced by environmental stress. (5). The S. Oranienburg (CFSAN076211) genome size
was 4,651,134 bp, with 52.1% G�C content. The S. Tennessee (CFSAN076210) chromo-
some size was 4,834,056 bp, with 52.2% G�C content, and the plasmid was 109,917 bp,
with 50.7% G�C content. The plasmid (pCFSAN076210) has the oxidative stress gene
grxA, which can be upregulated in response to preadaptation to cold stress and may
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provide increased protection against hydrogen peroxide (6). The S. Enteritidis (CF-
SAN076214) chromosome size was 4,668,874 bp, with 52.0% G�C content; plasmid 1
was 59,261 bp, with 42.1% G�C content, and plasmid 2 was 56,636 bp, with 51.6% G�C
content. Plasmid 1 (pCFSAN076214_1) has vir genes associated with the type IV
secretion system. Plasmid 2 (pCFSAN076214_2) has virulence genes spvA, spvB, spvC,
spvD, and spvR, which have been shown to express lethal disease in BALB/c mice (7).
The S. Mbandaka (CFSAN076213) genome size was 4,709,669 bp, with 52.3% G�C
content.

Data availability. The sequences have been deposited in GenBank under the
following accession numbers (SRA accession numbers): CP033338 and CP033339
(SRR8217764) for S. Anatum, CP033344 (SRR8170031) for S. Oranienburg, CP033345
and CP033346 (SRR8170030) for S. Tennessee, CP033340, CP033341, and CP033342
(SRR8170032) for S. Enteritidis, and CP033343 (SRR8170034) for S. Mbandaka.
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TABLE 1 PacBio RS sequencing statistics

Isolate name Coverage (�)
Total no.
of reads

Avg read
length (bp)

N50 read
length (bp)

CFSAN076210 169 90,179 12,732 16,680
CFSAN076211 115 62,043 11,025 20,045
CFSAN076213 120 69,380 10,357 18,170
CFSAN076214 162 77,741 12,017 16,680
CFSAN076215 182 77,545 13,499 26,714
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