
SARS-CoV-2 lineage assignments using phylogenetic 
placement/UShER are superior to pangoLEARN 
machine-learning method

Adriano de Bernardi Schneider,1,2,‡,†,* Michelle Su,3,† Angie S. Hinrichs,1,§ Jade Wang,3 Helly Amin,3 John Bell,4 Debra A. Wadford,4
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Abstract 

With the rapid spread and evolution of SARS-CoV-2, the ability to monitor its transmission and distinguish among viral lineages is 
critical for pandemic response efforts. The most commonly used software for the lineage assignment of newly isolated SARS-CoV-
2 genomes is pangolin, which offers two methods of assignment, pangoLEARN and pUShER. PangoLEARN rapidly assigns lineages 
using a machine-learning algorithm, while pUShER performs a phylogenetic placement to identify the lineage corresponding to a 
newly sequenced genome. In a preliminary study, we observed that pangoLEARN (decision tree model), while substantially faster than 
pUShER, offered less consistency across different versions of pangolin v3. Here, we expand upon this analysis to include v3 and v4 of 
pangolin, which moved the default algorithm for lineage assignment from pangoLEARN in v3 to pUShER in v4, and perform a thorough 
analysis confirming that pUShER is not only more stable across versions but also more accurate. Our findings suggest that future lineage 
assignment algorithms for various pathogens should consider the value of phylogenetic placement.
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Introduction
Determining the genetic relationships between virus strains is key 
to SARS-CoV-2 surveillance and outbreak investigation. Lineage 
nomenclature systems have been a constant topic of discussion 
in the specialized literature with no clearly established nomencla-
ture system for the subclassification of infectious agent lineages 
or subtypes and significant variability between each pathogen-
specific research community (de Bernardi Schneider et al. 2019). 
Early attempts at microbial lineage classification included the 
use of technologies such as pulsed-field gel electrophoresis (PFGE) 
(Khambaty, Bennett, and Shah 1994; Miranda et al. 1996; Thong, 
Puthucheary, and Pang 1998; Jang et al. 2005; Sandt et al. 2006), 
but whole-genome sequencing (WGS) has revolutionized the field 
and given more discriminatory power as well as the ability to char-
acterize additional traits such as strain antimicrobial resistance 

markers, virulence genes, and plasmid content in one assay 
(Gilmour et al. 2010; Den Bakker et al. 2014; Jackson et al. 2016; 
Stucki et al. 2016; Moura et al. 2017; Jajou et al. 2018). WGS 
has enabled phylogenetic studies to evaluate the relationships of 

individual sequences and allowed the development of a compre-

hensive lineage classification system based on genome evolution, 
a significant improvement over the use of single-gene evolution or 

phenetics (Durand et al. 2018). Moreover, the use of phylogenetic 
tools with WGS enables improved epidemiological responses in 

the field by revealing viral dynamics such as in the 2013–16 Ebola 

epidemic in West Africa (Dudas et al. 2017). Currently, tools such as 

Nextstrain (Hadfield et al. 2018) and Nextclade (Aksamentov et al. 
2021) are an accessible way to perform phylodynamics and clade 

assignment for numerous viruses (e.g., West Nile virus, influenza 
virus, and mpox virus).
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SARS-CoV-2 was first reported in December 2019, and by March 
2020 it was classified as a pandemic by the World Health Orga-
nization (WHO). The rapid spread and lack of test availability in 
the beginning of the pandemic meant that traditional methods 
were inadequate to describe the scale of the pandemic. Whole-
genome sequencing of SARS-CoV-2 and the subsequent creation 
of Pango lineages (Rambaut et al. 2020, 2021) have been central in 
aiding health officials to trace the spread of the virus locally and 
globally, and identifying differences among viral lineages (O’Toole 
et al. 2021). Currently, the most commonly used tool for the lineage 
assignment of newly isolated SARS-CoV-2 genomes is Phylogenetic 
Assignment of Named Global Outbreak Lineages (pangolin), which 
offers parsimony-based lineage assignment using pangolin Ultra-
fast Sample Placement on Existing tRees (pUShER) (default on v4) 
and pangoLEARN (default on v3) lineage designation modes (Cov-
Lineages; Turakhia et al. 2021; Scher, O’Toole, and Rambaut 2022). 
PangoLEARN aims for a rapid assignment of lineages using a deci-
sion tree algorithm. pUShER performs a phylogenetic placement 
using a maximum parsimony approach to identify the lineage 
corresponding to a newly sequenced genome. PangoLEARN is 
substantially faster than pUShER. However, because the Pango 
lineage nomenclature system is phylogenetic (Rambaut et al. 
2020), it is possible that pUShER is more accurate and stable in 
lineage assignments across subsequent releases. Given the epi-
demiological importance of assigning strains the correct lineages, 
we sought to evaluate the consistency and accuracy of the two 
main methods of lineage assignment currently available (Zhang, 
Wu, and Zhang 2020).

Despite high overall concordance between pangoLEARN and 
pUShER lineage assignments, pangoLEARN can be unreliable 
when new lineages are designated, leading to sequences that 
must be reassigned in a later software version despite high-
genome coverage/quality. In addition, greater single-nucleotide 
polymorphism (SNP) distances are found between samples that 
are assigned the same lineage by pangoLEARN (decision tree 
model but not random forest model). Also, more serious con-
stellations of reoccurring phylogenetically independent origin 
(Scorpio) lineage call overrides are found in the pangoLEARN 
analyses. Therefore, we could conclude that pUShER is a more 
stable and accurate method to assign pangolin lineages to SARS-
CoV-2 sequences. More generally, phylogenetic placement is an 
appealing method for lineage assignment in rapidly evolving 
pathogens and should be the subject of future research for diverse
pathogens.

Materials and methods
The genomic data used in this study were submitted to a lin-
eage assignment pipeline using five different versions of pan-
golin (Table 1), MAximum Parsimonious Likelihood Estimation 
(MAPLE), and Nextclade. The lineage assignments were then 
evaluated and compared through the methods described below
(Fig. 1).

Data
We generated three datasets to compare the lineage assign-
ment between pangoLEARN and pUShER as implemented in 
pangolin. The first (local dataset) consisted of 66,411 SARS-CoV-
2 genomes collected in New York City (NYC) and the state of 
California (CA) with collection dates between the beginning of 
August 2021 and the end of November 2021: 15,862 genomes 
sampled in NYC by Department of Health and Mental Hygiene 
(DOHMH) Public Health Laboratory (PHL) and the NYC Pandemic 

Table 1. Pangolin and dependency versions. *With pangolin v4, 
pangoLEARN models became packaged into pangolin-data, which 
has a different versioning convention.

Pangolin pangoLEARN Scorpio Constellations

v3.1.11 44,456 v0.3.12 v0.0.16
v3.1.14 44,467 v0.3.12 v0.0.16
v3.1.15 44,487 v0.3.13 v0.0.20
v3.1.16 44,509 v0.3.14 v0.0.21
v.4.0.2 1.2.133* v0.3.16 v0.1.4

Response Lab in addition to 50,549 genomes sampled in Cal-
ifornia via the California Department of Public Health (CDPH) 
COVIDNet sequencing effort. 15,393 NYC sequences and 45,326 
CA sequences had a genome N percent content < 10. The second 
(global dataset 2021) was a random global dataset with 60,000 
genomes from the National Center for Biotechnology Information 
(NCBI) with the same collection date range as the local dataset 
and sampled with equal amounts of genomes for each month 
with genome N percent content < 10. While random, this dataset 
was prone to bias due to differences in sequence deposition into 
NCBI impacted by factors such as total sequencing by country. 
The majority of genomes included came from just five coun-
tries: USA (31,633 sequences), England (19,097 sequences), Ger-
many (4,677 sequences), Scotland (2,187 sequences), and Switzer-
land (1,662 sequences). The third (global dataset 2022) was a 
random global sample of 9,717 genomes from the Global Ini-
tiative on Sharing Avian Influenza Data (GISAID) collected in 
April 2022 with genome N percent content < 10. The composition 
of the third dataset skewed towards some of the same coun-
tries: USA (2,057 sequences), Denmark (1,730 sequences), Eng-
land (1,280 sequences), and Germany (1,215 sequences). However, 
this sampling represents a more diverse subsample than previ-
ously attained (49 versus 32 countries) and more countries with 
more than 100 sequences included (14 versus 7 countries), poten-
tially due to more countries contributing sequences. This third 
dataset was solely used for assessing pangolin v4 given that pan-
golin v3 was not trained to recognize the new lineages in this
dataset.

Lineage assignments
We performed lineage assignments to the dataset sequences 
using five versions of pangoLEARN and pUShER. Four versions 
spanned Pango designation v1.2.76–93, pangolin v.3.1.13, v.3.1.14, 
v.3.1.15, and v.3.1.16, where pangoLEARN uses a decision tree 
model and one version came from pangolin v.4.0.2/pangolin-data 
v1.2.133, where pangoLEARN uses a random forest model. For 
all the analyses, the option to assign lineages with designation 
hash was turned off with the option—skip-designation-hash to 
allow for a true comparison between both lineage designation
methods.

Lineage assignment validation
In order to validate the lineage assignments from pangolin, we 
used an independent method with multiple sequence alignment 
followed by tree search. The multiple sequence alignment was 
performed using Multiple Alignment using Fast Fourier Trans-
form (MAFFT) v7.486 (Katoh and Standley 2013) with options—
anysymbol—keeplength—6merpair—addfragments on sequences 
from the local dataset that had less than 10 per cent unknown 
positions (N) as well as lineage consensus reference sequences 
(available at https://github.com/corneliusroemer/pango-seq

https://github.com/corneliusroemer/pango-sequences
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Figure 1. Lineage assignment and validation pipeline. Genomic datasets were run through pangolin and MAPLE for lineage assignments, assignment 
comparisons between pangolin assignments were performed for stability (expected versus non-expected) and lineage assignment consistency (SNP 
Distance), assignment validation. Assignment validation was performed comparing pangolin assignments with MAPLE assignments using Adjusted 
Mutual Information calculations and ancestral accuracy (lineage mis-assignments belonging to ancestral or descendent lineages or sublineages).

uences) for a total of 62,719 genome sequences. We implemented 
lineage assignment within the maximum likelihood phylogenetic 
software MAPLE (De Maio et al. 2023) version 0.3.4 (https://
github.com/NicolaDM/MAPLE). This software was developed inde-
pendently from pangolin and UShER. Lineage assignment in 
MAPLE is performed by inferring the joint phylogeny of ref-
erence and target genomes (using options—model UNREST—
rateVariation—estimateSiteSpecificErrorRate), and then assigning 
each sample to the lineage whose reference genome is the clos-
est direct ancestor. Sample A is interpreted as a direct ancestor 
of sample B if A has a phylogenetic distance (the sum of the 
branch lengths separating two nodes of the tree) of 0 from an 
internal node ancestral to B. During the MAPLE analysis, we chose 
to mask the untranslated ends of the sequences to the reference 
genome, specifically bases 1–265 and 29,674–29,903. This decision 
was made to ensure consistency with the input format used by 
pangolin for lineage assignment.

Disagreements between lineages assigned by MAPLE versus 
pangolin were scored by an in-house python script that deter-
mined whether or not one lineage was ancestral to the other, and 
computed the distance between the lineages as the number of 
edges separating the lineages on the MAPLE tree of all lineages. 
For example, B.1 was ancestral to B.1.2, with a distance of 1 (the 
edge from B.1 to B.1.2). B.1.3 and B.1.2 did not have an ancestral 
relationship; their common ancestor was B.1, and their distance 
was two (the edge from B.1 to B.1.3 and the edge from B.1 to 
B.1.2). We emphasize that this was not a genetic distance (i.e. the 
number of mutations that separate two lineages may not exactly 

correspond to this), but this comparison was appropriate for our 
analysis because we were evaluating correspondence within a lin-
eage system. We used an in-house R script to perform an adjusted 
mutual information (AMI) comparison between the results from 
MAPLE and pangolin to see how consistently groups were recov-
ered between the distinct methods.

In addition to MAPLE, we also validated the lineage assign-
ments using Nextclade (Aksamentov et al. 2021). Nextclade 
CLI v1.11.0 was used with the SARS-CoV-2 dataset 2023–06-
16T12:00:00Z. Disagreements between Nextclade and pangolin 
were scored by the same in-house python script described
above.

Pangolin versions lineage assignment 
comparison
We created a list of expected versus non-permitted lineage assign-
ments between each version based on the number of newly des-
ignated lineages. We then evaluated the relationship between 
genome coverage and number of lineage assignments across all 
versions of each method and number of non-permitted lineage 
changes (reassignment to a non-descendant lineage in subse-
quent pangolin versions). We also evaluated through Sankey dia-
grams of lineage assignment using the five different versions of 
pangolin (v3.1.13., v3.1.14, v3.1.15, v3.1.16, and v4.0.2) to look 
at the distinct pattern of assignment and reassignment (includ-
ing non-permitted lineage changes) within pUShER and pangolin 
versions.

https://github.com/corneliusroemer/pango-sequences
https://github.com/corneliusroemer/pango-sequences
https://github.com/corneliusroemer/pango-sequences
https://github.com/NicolaDM/MAPLE
https://github.com/NicolaDM/MAPLE
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SNP distance between samples
A pairwise SNP distance matrix was created using snp-dists 
v.0.8.2 (https://github.com/tseemann/snp-dists). For each version 
of pangolin tested and each dataset, we calculated the SNP dis-
tances between all the sequences that were designated a lineage
name. 

Results and discussion
Dataset sampling
To evaluate the performance of pangolin calling by either pan-
goLEARN or pUShER, we built two initial datasets: a local US 
dataset that consists of 60,719 samples from CA and NYC and 
a 60,000 sample global dataset. The timeframe of sampling was 

Figure 2. Lineage calls of datasets as determined by pUShER (A, C, E) and pangoLEARN (B, D, F) in Pangolin v.4.0.2. A/B: local dataset, C/D: 2021 global 
dataset, E/F: 2022 global dataset. For A–D, only lineages present at >1 per cent prevalence in the dataset are shown and for E–F, >0.01%.

https://github.com/tseemann/snp-dists
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August to November 2021 to avoid early sequencing quality con-
cerns surrounding the newly designated Omicron strains. There-
fore, samples included in this study were largely Delta sublineages 
(Fig. 2). The US dataset was more deeply sampled and could poten-
tially magnify lineage assignment errors that apply only to a small 
set of samples, thus the performance against a global dataset was 
also necessary. It is worth noting that the majority of the global 
dataset consisted of sequences from the USA and England and was 
a biased subsampling of globally circulating strains.

There are differences in sublineage prevalence between the 
local and global datasets that reflect the effect of location on 
circulating variants. While countries can also enter different 
stages of the SARS-CoV-2 pandemic at different times, e.g. B.1.1.7 
emerged in the UK before being found in other countries, the time 
period studied began in the middle of Delta’s dominance (roughly 
May/June–December 2021) and was not a significant contributing 
factor.

After the release of pangolin v4, we created a third global 
dataset of 9,717 sequences from April 2022 to evaluate the per-
formance of a newer methodology employed by pangoLEARN. This 

Table 2. Agreement of calls of pangoLEARN and pUShER across the 
local and global datasets for different Pangolin versions (v3.1.13, 
v3.1.14, v3.1.16 and v4.0.2).

 Datasets

Pangolin version Local (%) Global 2021 (%) Global 2022 (%)

v3.1.13 (decision tree) 84.68 82.13 N/A
v3.1.14 (decision tree) 87.85 84.50 N/A
v3.1.15 (decision tree) 91.02 90.55 N/A
v3.1.16 (decision tree) 92.93 89.45 N/A
v4.0.2 (random forest) 97.28 97.35 86.90

subset was still biased towards certain countries like the USA, Eng-
land, Germany, and Denmark and reflected the waning of BA.1, 
which dominated during the early Omicron wave, and the subse-
quent takeover of BA.2. Additionally, it was a less diverse subset of 
sublineages than the previous datasets and performance on this 
subset may not necessarily have been generalizable.

Overall concordance and SNP distance
The concordance of the methods improved with each new model 
(Table 2). This was more apparent with the 2021 global dataset and 
was likely due to AY.4 prevalence. Overall, the two methods were 
highly concordant and differed mostly on sublineage calls.

Pangolin v4, released in April 2022, changed the pangoLEARN 
model to a random forest, fixed the previous calling errors of pan-
goLEARN (decision tree model), and was not significantly different 
from pUShER in any of the historical datasets. This was to be 
expected as similar sequences from those datasets were likely 
included in the training datasets for the new model. The pan-
goLEARN (random forest model) v4 had good concordance with 
pUShER on a contemporary dataset collected in April 2022, but 
it was much lower than with the historical datasets. The lower 
concordance could be largely attributed to pUShER assigning BA.2 
and pangoLEARN BA.2.3. Assigning lineages with a newer ver-
sion of pangoLEARN (random forest model) v.4.1.2 (UShER-v1.13 
and pangoLEARN-v1.13) resolved the assignment in the favor of 
pUShER as pangoLEARN BA.2.3 calls decreased significantly from 
1,662 to 392, while pUShER BA.2.3 calls changed minimally from 
483 to 395. Thus, the new pangoLEARN (random forest model) 
method may still be prone to certain types of miscalling.

Because pangolin lineages are defined phylogenetically, we 
expected sequences that were given the same lineage designa-
tion to be more closely related than those of a different lineage. 

Figure 3. Average SNP distance between pangoLEARN and pUShER on Pangolin. (A) Local dataset, (B) 2021 global dataset, and (C) 2022 global dataset. 
ns = not statistically significant/* = 0.05/** = 0.01/**** = 0.0001. 09–17, 09–28, 10–18, and 11–09 used the pangoLEARN decision tree model, and v4.0.2 used 
the pangoLEARN random forest model.
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Figure 4. Number of Scorpio overrides between pangoLEARN and pUShER on Pangolin. (A) local dataset, (B) 2021 global dataset, (C) 2022 global 
dataset. 09–17, 09–28, 10–18, and 11–09 used the pangoLEARN decision tree model, and v4.0.2 used the pangoLEARN random forest model.
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Pairwise SNP distances were calculated, and the average pairwise 
distance per lineage is shown in Fig. 3. It is evident that as the 
Delta wave progressed and more sublineages evolved, pUShER 
was able to call these newly defined sublineages with a lower 
average SNP distance between samples compared to pangoLEARN 
(decision tree model). This was true for both the local and global 
2021 dataset with the difference between the two methods larger 
within the global. This was likely due to the high prevalence of 
AY.4 in the global 2021 dataset, which was known on a previous 
date to be overcalled by pangoLEARN (see https://github.com/cov-
lineages/pango-designation/issues/221). In general, pangoLEARN 
(decision tree model) showed improvement over the course of 
the Delta wave by shrinking the average SNP distance between 
lineages with each successive model. Notably, pangoLEARN v4 
(random forest model) did not differ significantly from pUShER in 
any of the datasets.

Scorpio analysis
Scorpio takes a set of lineage-defining ‘constellations’ with rules 
to classify each sequence by its specific mutations. It is manually 
curated and is limited to the WHO Variants of Concern, Variants 
of Interest, or Variants Under Monitoring (World Health Organiza-
tion 2023). Prior to pangolin v4.1, when pangoLEARN or pUShER 
made an assignment that conflicted with Scorpio’s assignment, 
pangolin overrode the pangoLEARN or pUShER assignment with 
the Scorpio assignment. This allowed pangolin to make higher 
accuracy assignments when new lineages emerged (pangoLEARN 
would initially lack sufficient training data for new lineages). How-
ever, this proved problematic with the emergence of BA.4 and 
BA.5 which saw Scorpio overriding correct assignments of these 
lineages and outputting BA.2 as the lineage (see https://github.
com/cov-lineages/scorpio/issues/47). This Scorpio issue was due 
to early BA.4 and BA.5 having lower quality and lacking lineage 
defining mutations. However, due to the timeframe sampled, BA.4 
and BA.5 sequences represent a small percentage of the data in 
our 2022 global dataset (<100 sequences). In addition, the lat-
est versions of pangoLEARN and pUShER used in our study did 
not label these sequences as BA.4 and BA.5 at the time, thus, 
these sequences do not negatively affect our Scorpio analysis. 
No other large-scale problems with Scorpio have previously been 
documented. Therefore, Scorpio overrides in this study can be 
evaluated as erroneous calls made by pangoLEARN or pUShER.

In general, Scorpio was not a significant contributor to the over-
all accuracy of these methods as it was usually used in <1% of 
cases. Comparing the two methods, Scorpio overrode pangoLEARN 

calls more often than pUShER calls (Fig. 4). As expected, Scor-
pio was used to correct many incorrect AY.4 calls and accounted 
for the largest difference between the two methods (pangolin 
model 10–18). We observed pangoLEARN (decision tree model) 
erroneously calling B.1/B.1.1 sequences when pUShER did not have 
a similar problem. Given the timeframe of the specimens (Delta or 
Omicron wave), it was reasonable not to expect these sequences to 
be present, and this was corroborated by the genomic mismatches 
flagged by Scorpio in these sequences. B.1 miscalls were mostly 
present in pangolin model 9–17 and, to some extent, model 09–28. 
This reappeared as an issue in pangoLEARN (random forest model) 
v4 with B.1.1.

Initially, lineage categorization was performed using phyloge-
netic tree search methods such as IQTree. However, as the number 
of sequences grew, these methods became unfeasible. To address 
this issue, UShER became the go-to method for tree search and lin-
eage categorization. This shift may explain why pUShER showed 
a higher degree of accuracy in lineage assignments compared to 
pangoLEARN.

Allowed reassignments
The Pango lineage system was explicitly designed to be updated 
with the SARS-CoV-2 pandemic as the virus continues to evolve 
(Rambaut et al. 2020). For that reason, some lineage reassignments 
were expected for a given genome sequence. For example, a sam-
ple originally designated in one lineage might be reassigned to a 
new daughter lineage of its original assignment. This occurs as an 
expected part of the Pango system when new lineages are desig-
nated. However, in some cases, a sample may be reassigned to a 
non-descendant lineage in subsequent versions of pangoLEARN or 
pUShER due to an error in the assignment approach. We will refer 
to such lineage reassignments as non-permitted lineage changes. 
Instability in lineage assignments might cause problems for inter-
pretation that rely on precise and reliable lineage definitions for 
individual samples.

The consistency of assignments by pangoLEARN was infe-
rior to pUShER. Even though 81 per cent of the sequences being 
assigned by pangoLEARN had a maximum of two calls across dif-
ferent pangolin versions, pUShER outperformed pangoLEARN by 
assigning 97 per cent of the sequences a maximum of two calls 
(Table 3). Although a large number of calls across different ver-
sions of pangoLEARN could be associated with the designation 
of new lineages, 27 per cent of the sequences analyzed with pan-
goLEARN presented at least one non-permitted change, while only 
7 per cent of sequences assigned by pUShER present at least one 

Table 3. Number of times (Khambaty, Bennett, and Shah 1994; Miranda et al. 1996; Thong, Puthucheary, and Pang 1998; Sandt et al. 2006; 
de Bernardi Schneider et al. 2019) that sequences were assigned a distinct lineage using pangoLEARN and pUShER across five different 
versions (v3.13, v3.v3.14, v3.15, v3.16, and v4).

Application\No. of calls 1 2 3 4 5

pangoLEARN 19,222 (29%) 34,463 (52%) 9537 (14%) 2515 (4%) 673 (1%)
pUShER 21,444 (32%) 43,229 (65%) 1619 (2%) 96 (>0%) 22 (>0%)

Table 4. Number of times (0-Thong, Puthucheary, and Pang 1998) that sequences were assigned non-permitted lineage changes using 
pangoLEARN and pUShER across five different versions (v3.13, v3.v3.14, v3.15, v3.16, and v4).

Application\Non-permitted changes 0 1 2 3 4

pangoLEARN 48,586 (73%) 10,706 (16%) 4170 (6%) 2072 (3%) 876 (1%)
pUShER 61,518 (93%) 3964 (6%) 670 (1%) 197 (>0%) 61 (>0%)

https://github.com/cov-lineages/pango-designation/issues/221
https://github.com/cov-lineages/pango-designation/issues/221
https://github.com/cov-lineages/scorpio/issues/47
https://github.com/cov-lineages/scorpio/issues/47
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non-permitted change (Table 4 and Fig. 5). While pangoLEARN v4 
(random forest model) was included in this analysis, the results 
were a reflection of the instability of pangoLEARN v3 (decision tree 
model) and cannot be generalized to v4.

Furthermore, the number of pangoLEARN lineage assignments 
for a given sequence seemed to be independent of the genome 
coverage, whereas pUShER assignments had a higher number of 
non-permitted lineage changes and consequently higher num-
ber of lineage assignments as the genome coverage decreased 
(Fig. 6). This reflects the expected higher phylogenetic placement 
uncertainty of less complete genomes.

Lineage assignment validation
As the pango lineage designation system is phylogenetic in nature, 
we wanted to benchmark the results of v4 pUShER and v4 
pangoLEARN (random forest model) against a full maximum-
likelihood phylogenetic method, MAPLE (De Maio et al. 2023) 
and Nextclade (Aksamentov et al. 2021). The MAPLE lineage 
assignment recovered 78.84% of the calls made by pUShER and 
76.92% of the calls made by pangoLEARN. Nextclade recovered 
97.52% of the calls made by pUShER and 96.09% of the calls 
by pangoLEARN (Table 5). The calculated AMI for all compar-
isons was above 0.85 indicating excellent recovery of similar 

Figure 5. Sankey diagram of lineage assignment using pUShER (top) and pangoLEARN (bottom) across five different versions. Each column represents 
one version of pangolin in order of release (v3.1.13., v3.1.14, v3.1.15, v3.1.16, and v4.0.2). Red lines represent unexpected changes between versions. All 
sequences had N percent content < 10, and robustness estimates may differ for high ambiguous content. Two interactive html plots for this figure are 
available in the Supplementary Material, where the user can hover over each block within each column and identify the lineage and number of 
sequences that were labeled that lineage.
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Figure 6. Violin plot of sample distribution based on genome coverage and pangoLEARN/pUShER lineage assignments for all CA and NYC samples. Top 
left: pUShER lineage assignment calls and reference genome coverage; Top right: pUShER lineage assignment non-permitted lineage changes and 
reference genome coverage; Bottom left: pangoLEARN lineage assignment calls and reference genome coverage; Bottom right: pangoLEARN lineage 
assignment non-permitted lineage changes and reference genome coverage.

Table 5. Validation of pangolin v.4 lineage assignments (pUShER 
and pangoLEARN) by comparison with MAPLE and Nextclade lin-
eage assignments. Match and mismatch = Direct comparison of 
matches/mismatches of main call between the distinct methods. 
AMI (>0.90 = excellent recovery).

Method 
comparison Matches Mismatches AMI

MAPLE vs 
pangoLEARN

46,707 (76.92%) 14,012 (23.08%) 0.88336081

MAPLE vs 
pUShER

47,872 (78.84%) 12,847 (21.16%) 0.906688939

Nextclade vs 
pangoLEARN

58,346 (96.09%) 2373 (3.91%) 0.948766048

Nextclade vs 
pUShER

59,216 (97.52%) 1503 (2.48%) 0.966070267

clusters of lineage assignments regardless of the specific lineage 
call made for each sequence, indicating consistency in the calls 
made by both validation methods in comparison to pUShER and
pangoLEARN.

When looking into the mismatches, we found that 13,521 
(96.6 per cent of mismatches) of MAPLE versus pangoLEARN (ran-
dom forest model) mismatches were ancestrally related calls with 
distances of 1 or 2 sublineages between the calls, 13 (>0 per cent of 
mismatches) had a distance of 3+ sublineages, 470 (0.03 per cent) 

were siblings with distances of 2–4 to their common ancestor, and 
there was the presence of a mismatch due to a recombinant (XB) 
(Supplementary Table S1). For MAPLE versus pUShER, a similar 
ratio was found, with 12,510 (97.4%) being ancestrally related with 
distance of 1 or 2 sublineages between the calls, 4 (>0 per cent of 
mismatches) had a distance of 3+ sublineages, 324 (0.03 per cent) 
were siblings with distances of 2–4 to their common ancestor, and 

the presence of a mismatch due to a recombinant (XB) (Supple-
mentary Table S2). Upon closer examination of the discrepancies 

between the pangolin lineage assignment methods and MAPLE, it 

becomes evident that the majority of mismatches occur between 
the AY.44/AY.26 and B.1.617.2 lineages. Specifically, 10,202 mis-

matches (79.41 per cent of total mismatches) are observed with 
the pUShER method, while 10,212 mismatches (72.88 per cent 

of total mismatches) are noted with the pangoLEARN method. 

Considering that the ancestral distance between these lineage 
assignments is just one sublineage, it leads us to hypothesize that 

MAPLE may have inaccurately positioned AY.44 and AY.26 as less 
ancestral lineages than they should have been.

For Nextclade versus pangoLEARN, a slighter different ratio 
was found, with 2,155 (90.9 per cent) being ancestrally related with 

the distance of 1 or 2 sublineages between the calls, 8 (0.3% of 
mismatches) had a distance of 3+ sublineages, 208 (8.8 per cent) 
were siblings with distances of 2–4 to their common ancestor, and 
the presence of two mismatches due to two recombinant (XB) 
(Supplementary Table S3). For Nextclade versus pUShER had a 
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similar result to the latter, with 1,367 (91 per cent) being ances-
trally related with the distance of 1 or 2 sublineages between the 
calls, 4 (>0 per cent of mismatches) had a distance of 3+ sublin-
eages and 132 (0.02 per cent) were siblings with distances of 2–4 to 
their common ancestor (Supplementary Table S4). The presence of 
over 90 per cent of the mismatches being ancestrally related with 
distances of 1 and 2 sublineages further the indication that there 
is a high concordance between all the methods analyzed.

Together, these results show that there is high concordance 
between pangolin methodology and two independent lineage 
assignment methods, giving confidence that pangolin can account 
for the phylogenetic structure underlying SARS-CoV-2 evolution. 
Nevertheless, the elevated number of mismatches between the 
pangolin methods and MAPLE suggests that further investigation 
is necessary to determine whether MAPLE would be inaccurately 
placing certain reference lineages during the tree search process.

Conclusions
Given the increased stability and reduced rate of non-permitted 
lineage reassignments by pUShER coupled with its higher reliabil-
ity when analyzing high genome coverage/quality sequences com-
pared to pangoLEARN v3 (decision tree model), we recommend 
that the pUShER option be selected as the first choice when assign-
ing lineages to newly and previously sequenced genomes. While 
we hypothesize pangoLEARN v4 (random forest model) is more 
stable than v3, UShER has still been shown to have fewer Scorpio 
overrides and is likely to be as or more stable. We stress, however, 
that there are two important caveats to this recommendation.

First, the lineage system is explicitly phylogenetic, and recently, 
the Pango curation team has used a tree inferred with pUShER 
to assign new lineages. Thus, if there are systematic biases asso-
ciated with phylogenetic inference in pUShER, then consistently 
inaccurate phylogenetic placements might create spurious lin-
eage designations and assignments that appear to be consistent 
lineage calls. We consider this unlikely because the pUShER’s 
accuracy for SARS-CoV-2 phylogenetic inference was quite high 
(Kramer et al. 2023; Turakhia et al. 2021).

Second, lineage assignments with pUShER had higher com-
putational costs than with pangoLEARN; however, the com-
pute costs associated with lineage assignment were relatively 
small compared to the total costs associated with producing a 
single-genome sequence. Furthermore, pUShER could efficiently 
exploit parallelism to decrease runtime. We believe that the 
advantages of increased stability of lineage assignments out-
weigh marginal additional computing costs except possibly when 
reanalyzing vast datasets on a regular basis as is done with 
large repositories such as GISAID. However, a complete reanal-
ysis of 6 million genomes would cost approximately $43.44 on 
a typical cloud instance (see https://github.com/cov-lineages/
pangoLEARN/issues/32#issuecomment-946937425) if efficiently 
exploiting multi-core architectures. This suggests that the cost 
is still a relatively minor consideration when choosing lineage 
assignment modes.

As of pangolin v4, pUShER is now the default option due 
to its accuracy and performance, which has been verified by 
benchmarking against the tree created by MAPLE and Nextclade. 
Changes have also been made to potentially decrease runtime 
through the implementation of an assignment cache (—add-
assignment-cache and—use-assignment-cache). In addition, as 
of v4.1, Scorpio no longer overrides pUShER lineage assignments 
but continues to do so for pangoLEARN. Outbreak investigations 
are a case study of how pUShER’s high accuracy and robustness 

can reduce superfluous resource consumption. Lineages called by 
pUShER can be trusted to cluster together on a phylogenetic tree 
and thus be genetically similar, avoiding chasing unrelated cases 
and maximizing resources allocated to contact tracing. Similarly, 
rapidly increasing sublineages can be scrutinized for higher fit-
ness and/or immune evasion if the lineage calls can be trusted 
to be reliable. Thus, for newly emerging pathogens undergoing 
rapid evolution, our results suggest that phylogenetic placement 
is a superior option for lineage assignment than machine-learning 
methods.

Data availability
The dais manuscript are publicly available at NCBI and acces-
sible upon request at GISAID. Sequence data with less than 
90 per cent genome coverage that were not found in public 
databases were made available in a public GitHub repository. 
The list of the accessions, along with metadata and genomic 
sequences of the global and local datasets used in this study 
are available on GitHub at https://github.com/nychealth/COVID-
consensus-genomes-pangolin-analysis.

Supplementary data
Supplementary data is available at Virus Evolution online.
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