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OBJECTIVE: To evaluate the detection of malignancy in

women with a pelvic mass by using multiplexed gene

expression analysis of cells captured from peripheral

blood.

METHODS: This was an IRB-approved, prospective clin-

ical study. Eligible patients had a pelvic mass and were

scheduled for surgery or biopsy. Rare cells were captured

from peripheral blood obtained preoperatively by using

a microfluidic cell capture device. Isolated mRNA from

the captured cells was analyzed for expression of 72

different gene transcripts. Serum levels for several

commonly assayed biomarkers were measured. All

patients had a tissue diagnosis. Univariate and multivar-

iate logistic regression analyses for the prediction of

malignancy using gene expression and serum biomarker

levels were performed, and receiver operating charac-

teristic curves were constructed and compared.

RESULTS: A total of 183 evaluable patients were

enrolled (average age 56 years, range 19–91 years). There

were 104 benign tumors, 17 low malignant potential

tumors, and 62 malignant tumors. Comparison of the

area under the receiver operating characteristic curve

for individual genes and various combinations of genes

with or without serum biomarkers to differentiate

between benign conditions (excluding low malignant

potential tumors) and malignant tumors showed that a

multivariate model combining the expression levels of

eight genes and four serum biomarkers achieved the

highest area under the curve (AUC) (95.1%, 95% CI

92.0–98.2%). The MAGIC (Malignancy Assessment using

Gene Identification in Captured Cells) algorithm signifi-

cantly outperformed all individual genes (AUC 50.2–

65.2%; all P,.001) and a multivariate model combining

14 different genes (AUC 88.0%, 95% CI 82.9–93.0%;

P5.005). Further, the MAGIC algorithm achieved an

AUC of 89.5% (95% CI 81.3–97.8%) for stage I–II and

98.9% (95% CI 96.7–100%) for stage III–IV patients with

epithelial ovarian cancer.

CONCLUSION: Multiplexed gene expression evaluation

of cells captured from blood, with or without serum

biomarker levels, accurately detects malignancy in

women with a pelvic mass.
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The prevalence of pelvic masses is relatively com-
mon, with 5–10% of women being diagnosed with

a mass at some point in their lifetime.1 Annually in the
United States, more than 200,000 women undergo
surgery for a pelvic mass, with 13–21% being malig-
nant.2 It is critical to accurately assess the risk for
malignancy in women who present with a pelvic mass
before surgery, because morbidity and mortality out-
comes are significantly improved when women with
ovarian cancer have surgery performed by gyneco-
logic oncologists experienced in the management of
ovarian cancer.3–5 Currently, history and physical,
imaging, serum CA 125 levels and formal biomarker
algorithms are included in the pelvic mass assessment
guidelines from the American College of Obstetri-
cians and Gynecologists.6 Despite these guidelines,
only 30–50% of women diagnosed with ovarian can-
cer are referred to gynecologic oncologists.7,8

Although improvements have been made in the triage
of women presenting with a pelvic mass by the addi-
tion of U.S. Food and Drug Administration–cleared
predictive algorithms such as ROMA� (Risk of
Ovarian Malignancy Algorithm) and OVA1�, further
improvements are needed.6,9–12

Emerging technologies for the isolation and
interrogation of cells captured from blood, comprised
of circulating tumor cells (CTCs) and other rare
circulating cells (RCCs), present a novel opportunity
for the detection and potential characterization of
malignancy with a simple peripheral blood test.13 This
study was designed to evaluate multiplexed gene
expression of cancer related targets in cells captured
from peripheral blood (CTCs and RCCs) using a liq-
uid biopsy system, alone or in combination with
serum biomarkers, for detection of malignancy in
women with a pelvic mass.

METHODS

This prospective clinical study, registered with clini-
caltrials.gov (NCT02781272), was approved by the
University of Rochester Wilmot Cancer Institute
IRB and conducted through the Division of Gyneco-
logic Oncology, Department of Obstetrics and Gyne-
cology, Wilmot Cancer Institute at the University of
Rochester. Any patient diagnosed with an ovarian

cyst or pelvic mass who was scheduled for an imaging
guided biopsy, surgical biopsy, or surgical excision for
definitive tissue diagnosis of their pelvic mass was
eligible for enrollment into the trial. All patients were
required to have a pelvic mass documented by imag-
ing (ultrasonography, computed tomography, or mag-
netic resonance imaging) within 90 days before
surgery or biopsy. Patients with a malignancy diag-
nosed within the prior 5 years were excluded from
enrollment into the study, except for patients with
skin cancers (squamous cell or basal cell).

A convenience sample of 200 patients with a
pelvic mass was selected based on patient availability
and the expected incidence of malignancy in this
referred population of 20–30%. The goal was to
obtain samples from a minimum of 50 women diag-
nosed with a malignant pelvic mass to evaluate the
ability of using multiplexed gene expression evalua-
tion of cells captured by the Parsortix� system from
preoperatively collected peripheral blood (CTCs and
RCCs) for the identification of malignancy in women
with a pelvic mass.

Imaging guided biopsy, surgical biopsy, or surgi-
cal excision for evaluation of the pelvic mass was
performed by a qualified physician. All tissue samples
were evaluated by the gynecologic oncology pathol-
ogy team at the University of Rochester pathology
department. Results of the histopathologic evaluation,
including the final diagnosis, along with histologic
subtype and stage of cancer (if present), were docu-
mented. Only patients with a confirmed histologic
diagnosis were considered evaluable. Race, age, and
menopausal status information was recorded for all
patients to determine the demographics of the pop-
ulation of women included in the study. All data
collected were independently source verified.

Blood samples were obtained within 30 days
before or on the day of surgery or biopsy of the
pelvic mass and before anesthesia. Up to 35 mL of
whole blood was collected by venipuncture into the
following evacuated blood collection tubes for all
patients: one 5-mL serum separating tube followed by
three separate 10-mL K2EDTA tubes. The 5-mL
serum separating tube was drawn first and was used
for serum biomarker testing, followed by the collec-
tion of blood into the three K2EDTA tubes, which
were pooled and used for the capture and harvest of
circulating cells. The collection of the serum separat-
ing tube first helps to avoid contamination of the
K2EDTA samples with squamous or noncirculating
cells that might be collected as a result of the veni-
puncture. The blood collected into the K2EDTA tubes
was pooled and two equal volume aliquots (7.5–15
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mL each, 12.2 mL on average) were processed using
Parsortix PR1 Systems for the capture of circulating
cells (CTCs and RCCs) based on their size and deform-
ability.14 The captured cells from each aliquot of blood
were harvested into a single tube (each cell harvest
consisted of 210 microliters of phosphate-buffered
saline, so a combined harvest contained 420 microliters
of phosphate-buffered saline and cells), and the cap-
tured circulating cells were lysed with RLT buffer con-
taining 1% 2-mercaptoethanol (if a single harvest was
collected, 600 microliters of RLT buffer was added to
the harvest [total lysate volume of 810 microliters]; if
two harvests were combined, 1,200 microliters of RLT
buffer was added to the combined harvest [total lysate
volume of 1,410 microliters]). The cell lysate from each
patient was split into two equal volume aliquots and
stored frozen at 2180°C in liquid nitrogen. Using the
RNeasy Micro Kit, RNA was purified from one of the
lysate aliquots and subsequently analyzed using a
highly multiplexed gene expression assay to evaluate
the expression of 72 different gene transcripts repre-
senting 52 different ovarian cancer–associated genes
and eight different housekeeping genes (Table 1). The
ovarian cancer–associated genes were identified
through a literature search as being primarily related to
ovarian cancer or to cancer in general. The house-
keeping genes were included to help gauge the quality
of the RNA obtained, as well as the relative quantity of
blood cells (primarily white blood cells) present in the
lysates.

Serum obtained from blood collected into the
5-mL serum separating tube was used to measure
seven different serum biomarkers related to ovarian
cancer and menopausal status that are currently in use
in one or more multivariate biomarker algorithms
for pelvic mass risk assessment. Serum levels of CA
125, HE4, transthyretin (prealbumin), apolipoprotein
A1, transferrin, b-2-microglobulin, and follicle-
stimulating hormone were determined for each
patient. All serum biomarker testing was performed
through the University of Rochester Laboratories and
ARUP Laboratories.

The primary objective of the study was to
evaluate the ability of cancer-related gene expression
in circulating cells captured from peripheral blood
using a liquid biopsy system, alone or in combination
with serum biomarkers, to detect malignancy in
patients with a pelvic mass. Univariate logistic regres-
sion and multivariate backward-stepwise logistic
regression analyses of the gene expression results
and the serum biomarkers, alone and in combination,
were performed to develop algorithms for the differ-
entiation of various histopathologic diagnosis group-

ings of the evaluable patients (eg, benign or low
malignant potential vs all cancers, benign vs all
cancers). Receiver operating characteristic curves
were constructed for each univariate and multivariate
model, the area under the curve (ROC-AUC) was
determined, and the equality of the ROC-AUC was
tested (“roccomp” command in Stata). Sensitivity,
specificity, positive predictive value, negative predic-
tive value, likelihood ratio of a positive test, likelihood
ratio of a negative test, and overall accuracy for the
multivariate logistic regression models were deter-
mined using various thresholds for the predictive
probabilities.

RESULTS

A total of 200 patients with an ovarian cyst or pelvic
mass were enrolled into the study between June 2016
and April 2017, of which 183 (91.5%) were evaluable.
The mean and median age of the evaluable cohort was
56 years (range: 19–91). Of these patients, 68 (37.2%)
were premenopausal and 115 (62.8%) were postmen-
opausal as determined through history and clinical
exam. Demographics and final pathology diagnoses
for the 183 evaluable patients are summarized in
Tables 2 and 3.

Of the 183 evaluable patients, 104 (56.8%) were
diagnosed with benign disease, 17 (9.3%) were diag-
nosed with low malignant potential tumors, 42
(23.0%) were diagnosed with ovarian cancer, 14
(7.6%) were diagnosed with nonovarian gynecologic
cancer, and six (3.3%) were diagnosed with non-
gynecologic metastatic cancers. For the 37 (20.1%)
patients diagnosed with invasive epithelial ovarian
cancer, 12 (32.4%) had a stage I disease, four (10.8%)
had stage II, nine (24.4%) had stage III, and 12
(32.4%) had stage IV.

The areas under the receiver operating character-
istic curve (ROC-AUC) of the individual genes and
serum biomarkers for their ability to discriminate
between various histopathologic diagnosis groupings
of the 183 evaluable patients are reported in Table 4.
Analysis of the expression of individual genes in the
captured circulating cells (CTCs and RCCs) through
RNA interrogation for the prediction of benign
(excluding low malignant potential tumors) compared
with malignancy (all cancers) did not produce any
significant results when examining each gene alone.
The highest ROC-AUC found for any one individual
gene was seen for FN1 (transcript 1) when differenti-
ating between benign or low malignant potential
compared with all cancers, with an ROC-AUC of
65.2% (95% CI 56.6–73.7%), followed by CCR2
(transcript 2) and CD274 when differentiating between
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Table 1. Gene Transcripts Analyzed

Gene Name Description

AFP* Alpha fetoprotein
AGR2* Anterior gradient 2
CCNE2* Cyclin E2
CCR2 (transcript 1)* C-C chemokine receptor type 2
CCR2 (transcript 2)* C-C chemokine receptor type 2
CD274* Programmed death-ligand 1 (PDL1)
CD45 (transcript 1)† Protein tyrosine phosphatase receptor type C (PTPRC)
CD45 (transcript 2)† Protein tyrosine phosphatase receptor type C (PTPRC)
CDH1* Epithelial cadherin (E-cadherin)
CDH2* Neuronal cadherin (N-cadherin)
CDH3* Placental cadherin (P-cadherin)
CDH5 (transcript 1)* Vascular endothelium cadherin (VE-cadherin)
CDH5 (transcript 2)* Vascular endothelium cadherin (VE-cadherin)
CEACAM5* Carcinoembryonic antigen-related cell adhesion molecule 5
CHI3L1* Chitinase-3-like protein 1 (YKL-40)
CLDN3* Claudin 3
CXCR4* C-X-C chemokine receptor type 4 (CD184)
EMP2* Epithelial membrane protein 2
EN2 (transcript 1)* Homeobox protein Engrailed-2
EN2 (transcript 2)* Homeobox protein Engrailed-2
EPCAM* Epithelial cell adhesion molecule
ERBB2* Receptor tyrosine-protein kinase erbB-2 (HER2)
ERBB3 (transcript 1)* Receptor tyrosine-protein kinase erbB-3 (HER3)
ERBB3 (transcript 2)* Receptor tyrosine-protein kinase erbB-3 (HER3)
ERCC1* DNA excision repair protein ERCC-1
ESR1* Estrogen receptor 1 (ER)
FN1 (transcript 1)* Fibronectin 1
FN1 (transcript 2)* Fibronectin 1
FOXJ1* Forkhead box protein J1
FXYD3* FXYD domain containing ion transport regulator 3
GPX8* Glutathione peroxidase 8 (putative)
HE4* Human epididymis protein 4
HJURP* Holliday junction recognition protein
HSP90AB1† Heat shock protein 90 alpha family class B member 1
HUWE1* HECT, UBA and WWE domain containing 1, E3 ubiquitin protein ligase
INHA* Inhibin alpha
INHBA* Inhibin subunit beta A
KRT20* Keratin 20 (CK20)
KRT7* Keratin, type II cytoskeletal 7 (CK7)
LAMB1* Laminin subunit Beta-1
MAL2* T-cell differentiation protein 2
MSLN* Mesothelin
MUC1* Cell surface–associated mucin 1 (EMA)
MUC16* Cell surface–associated mucin 1 (CA 125)
NOTCH1* Notch homolog 1, translocation-associated (drosophila)
PAX8 (transcript 1)* Paired box gene 8
PAX8 (transcript 2)* Paired box gene 8
PAX8 (transcript 3)* Paired box gene 8
PGR* Progesterone receptor (PR)
PLAT* Plasminogen activator, tissue type
PPIA† Peptidylprolyl isomerase A
PPIC* Peptidyl-prolyl cis-trans isomerase C
PRAME* Preferentially expressed antigen in melanoma
RPL13A† 60S ribosomal Protein L13a
RPL4 (transcript 1)† 60S ribosomal protein L4
RPL4 (transcript 2)† 60S ribosomal protein L4
RPLP0 (transcript 1)† 60S acidic ribosomal protein P0

(continued )
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benign compared with all cancers, with ROC-AUCs
of 64.4% (95% CI 55.9–72.9%) and 64.2% (95% CI
55.6–72.9%), respectively. The individual serum bio-
markers had higher ROC-AUCs than any of the indi-
vidual genes, with the highest being HE4 in all cases,
but particularly when differentiating between benign
or low malignant potential compared with epithelial
ovarian cancer only with an ROC-AUC of 89.4%
(95% CI 83.4–95.3%).

Backward-stepwise multivariate logistic regression
analysis of the gene expression results alone, the serum
biomarkers alone, and the gene expression results and
serum biomarkers in combination for their ability to
discriminate between various histopathologic diagnosis
groupings of the 183 evaluable patients are reported in
Table 5. Comparison of the ROC-AUCs between the
gene-only and serum biomarkers–only multivariate

algorithms for the discrimination between the various
histopathologic diagnosis groupings showed non-
significant differences (all P..38). However, combin-
ing gene expression analysis with serum biomarker
analysis produced the highest ROC-AUCs compared
with either serum markers alone or gene expression
results alone (Table 5). In most instances, a compari-
son of the ROC-AUCs for the gene-only and serum
biomarkers–only algorithms to the combination
algorithms showed significant differences (P,.05).
The combination of genes and serum biomarkers to
differentiate benign compared with all cancers
showed that a multivariate model combining the
expression of eight genes and four serum protein
biomarkers achieved the highest ROC-AUC. This
algorithm, referred to hereafter as the MAGIC
(Malignancy Assessment using Gene Identification in

Table 1. Gene Transcripts Analyzed (continued )

Gene Name Description

RPLP0 (transcript 2)† 60S acidic ribosomal protein P0
S100A16* S100 calcium-binding protein A16
SCGB2A2* Secretoglobin family 2A member 2 (Mammaglobin-A)
SEPT2* Septin 2
SERPINE2* Serpin family E member 2
SLC6A8* Sodium and chloride-dependent creatine transporter 1
TBP† TATA box binding protein
TFF1* Trefoil factor 1
TPT1 (transcript 1)† Translationally controlled tumor protein
TPT1 (transcript 2)† Translationally controlled tumor protein
TPT1 (transcript 3)† Translationally controlled tumor protein
TUSC3* Tumor suppressor candidate 3
VCAM1* Vascular cell adhesion molecule 1
VEGFA* Vascular endothelial growth factor A
VIM* Vimentin

* Ovarian cancer–associated genes.
† Housekeeping genes.

Table 2. Patient Demographics

Demographic All Evaluable Patients (N5183)
Normal or Benign Tumors

(n5104, 56.8%)
LMP Tumors
(n517, 9.3%)

All Cancers
(n562, 33.9%)

Age (y) 56613
56 (19–91)

53612
53 (20–82)

51612
52 (24–67)

62614
62 (19–91)

Menopausal status
Premenopausal 68 (37.2) 49 (47.1) 8 (47.1) 11 (17.7)
Postmenopausal 115 (62.8) 55 (52.9) 9 (52.9) 51 (82.3)

Race
Black 13 (7.1) 8 (7.7) 1 (5.9) 4 (6.5)
White 166 (90.7) 94 (90.4) 15 (88.2) 57 (91.9)
None of the above 4 (2.2) 2 (1.9) 1 (5.9) 1 (1.6)

LMP, low malignant potential.
Data are average6SD, median (range), or n (%).
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Captured Cells) algorithm, was composed of the gene
expression of PPIA, TBP, TPT1 (transcripts 2 and 3),
WFDC-2 (HE4), INHA, VEGFA, CCR2, and SEPT2,
plus serum levels of b-2-microglobulin (B2M), trans-
ferrin, CA 125 and HE4, and achieved an ROC-AUC
of 95.1% (95% CI 92.0–98.2%) for the discrimination
of benign tumors from all cancers. The MAGIC algo-
rithm significantly outperformed all individual genes
(ROC-AUC 50.2–65.2%; all P,.001), the serum
biomarkers–only algorithm (ROC-AUC 89.6%, 95%
CI 84.3–95.0%), and the gene-only algorithm (ROC-
AUC 88.0, 95% CI 82.9–93.0%, P5.005) for the dis-
crimination of benign tumors from all cancers (Table 5
and Fig. 1).

Table 6 provides the estimates of sensitivity, spec-
ificity, negative predictive value, positive predictive
value, accuracy, likelihood ratio of a positive test,
and likelihood ratio of a negative test for the MAGIC
algorithm, the serum biomarkers–only algorithm, and
the gene expression–only algorithm at set specificities
of approximately 65%, approximately 75%, approxi-
mately 85%, 95%, and 100% for the discrimination of
benign tumors (excluding low malignant potential

tumors) compared with any malignancy. Further, the
MAGIC algorithm achieved an ROC-AUC of 89.5%
(95% CI 81.3–97.8%) for patients with stage I–II epi-
thelial ovarian cancer and 98.9% (95% CI 96.7–100%)
for patients with stage III–IV disease (data not shown).

DISCUSSION

Accurate risk stratification for patients presenting with
a pelvic mass is essential for optimum management.
Surgical intervention for patients with ovarian cancer
performed by a gynecologic oncologist is associated
with improved morbidity and mortality and better
overall survival.5,7,15–20 Despite this, it is estimated
that only 30–40% of patients with an ovarian malig-
nancy undergo their initial surgery by a gynecologic
oncologist.7,20–23 In recent years, there has been sig-
nificant research in the development multiple bio-
marker algorithms to predict malignancy in patients
with a pelvic mass. The serum biomarkers HE4 and
CA 125 havebeen shown to be the markers with the
most value for detecting malignancies when used in
multiple marker algorithms.12,24–26 Analysis of serum
biomarkers measured in the current trial found similar

Table 3. Summary of Histologic Subtypes for Benign and Malignant Tumors

Classification Histology Premenopausal Postmenopausal All

Benign 49 (47.1) 55 (52.9) 104 (56.8)
Benign condition Serous cystadenoma, cystadenofibroma 7 22 29

Mucinous cystadenoma, cystadenofibroma 4 8 12
Endometriosis 13 2 15
Dermoid, teratoma 1 3 4
Fibrothecoma 0 3 3
Fibroids (leiomyoma) 7 8 15
Cysts (eg, corpus luteum, paratubal, follicular,
hemorrhagic, simple)

17 9 26

Borderline or LMP 8 (47.1) 9 (52.9) 17 (9.3)
LMP tumor Serous 4 5 9

Mucinous 4 4 8
Malignant 11 (17.7) 51 (82.3) 62 (33.9)

Ovarian cancer EOC serous 3 16 19
EOC mucinous 0 4 4
EOC endometrioid 2 4 6
EOC clear cell 0 3 3
EOC mixed 2 3 5
Sex cord, stromal (granulosa cell) 2 3 5

Nonovarian gynecologic
cancer

Endometrial 0 9 9

Uterine sarcoma 0 5 5
Nongynecologic

metastatic cancer
Colon 0 1 1

Appendix 1 0 1
Gastric 0 2 2
Other (lymphoma, inflammatory myofibroblastic
tumor)

1 1 2

LMP, low malignant potential; EOC, epithelial ovarian cancer.
Data are n (%) or n unless otherwise specified.

636 Moore et al MAGIC Algorithm for Prediction of Malignancy OBSTETRICS & GYNECOLOGY



Table 4. Area Under the Receiver Operating Characteristic Curve Analysis of the Individual Genes and
Serum Biomarkers for Their Ability to Differentiate Between Various Histopathologic Diagnosis
Groupings of the Evaluable Patients

Gene or Biomarker
Name

Benign or LMP vs All Cancers Benign vs All Cancers
Benign or LMP vs

EOC Only Benign vs Ovarian Cancers Only

n
ROC-AUC

(%)
95% CI
(%) n

ROC-AUC
(%)

95% CI
(%) n

ROC-AUC
(%)

95% CI
(%) n

ROC-AUC
(%)

95%
CI (%)

AFPc 183 53.2 49.6–56.8 166 53.0 49.4–56.7 158 53.2 48.6–57.8 146 52.6 48.4–56.7
AGR2 183 52.7 46.7–58.8 166 52.1 45.8–58.3 158 52.6 45.2–60.0 146 51.7 44.6–58.9
CCNE2 183 50.4 41.7–59.1 166 52.1 43.2–61.0 158 53.1 43.2–63.0 146 55.4 45.6–65.2
CCR2 (transcript 1) 183 63.9 55.6–72.1 166 64.3 55.8–72.8 158 61.5 51.9–71.1 146 61.3 51.5–71.1
CCR2 (transcript 2) 183 64.3 56.0–72.5 166 64.4 55.9–72.9 158 61.9 52.1–71.6 146 61.5 51.6–71.4
CD274 183 64.1 55.7–72.6 166 64.2 55.6–72.9 158 61.7 51.5–72.0 146 60.3 50.2–70.5
CD45 (transcript 1) 183 52.9 44.1–61.7 166 54.1 45.1–63.2 158 51.3 40.8–61.8 146 51.1 40.7–61.4
CD45 (transcript 2) 183 58.6 49.9–67.3 166 59.1 50.2–68.0 158 55.4 44.8–66.0 146 57.0 46.7–67.2
CDH1 183 53.1 45.4–60.8 166 53.8 45.8–61.8 158 55.3 46.3–64.3 146 56.7 48.0–65.4
CDH2 183 50.5 41.9–59.1 166 50.3 41.3–59.3 158 50.6 40.0–61.2 146 50.4 39.9–60.8
CDH3 183 57.4 50.0–64.8 166 57.2 49.5–64.9 158 57.4 48.6–66.2 146 57.5 48.8–66.2

CDH5 (transcript 1) 183 57.3 50.1–64.5 166 57.4 50.1–64.7 158 54.5 45.9–63.1 146 55.2 47.0–63.5
CDH5 (transcript 2) 183 58.3 50.8–65.8 166 57.7 50.1–65.4 158 54.0 45.2–62.8 146 55.3 46.6–64.0
CEACAM5 183 56.0 47.3–64.7 166 56.2 47.1–65.3 158 57.8 47.1–68.5 146 56.6 45.9–67.3
CHI3L1 183 56.3 47.6–64.9 166 57.6 48.8–66.5 158 58.3 48.0–68.5 146 56.9 46.6–67.2
CLDN3 183 53.6 44.8–62.4 166 52.8 43.8–61.9 158 50.5 39.6–61.4 146 52.1 41.8–62.4
CXCR4 183 51.5 42.8–60.3 166 51.8 42.7–60.8 158 50.6 40.0–61.3 146 50.4 40.1–60.7
EMP2 183 50.3 41.4–59.2 166 50.6 41.6–59.7 158 54.1 43.4–64.8 146 54.4 44.2–64.6
EN2 (transcript 1) 183 56.0 48.9–63.1 166 57.1 50.0–64.3 158 54.7 46.1–63.3 146 56.4 48.2–64.7
EN2 (transcript 2) 183 51.6 42.6–60.6 166 50.9 41.7–60.1 158 52.2 41.3–63.1 146 52.5 41.8–63.2
EPCAM 183 53.0 45.0–60.9 166 52.8 44.5–61.0 158 50.9 41.3–60.4 146 50.6 41.5–59.7
ERBB2 183 50.4 41.3–59.5 166 50.6 41.3–59.9 158 50.9 39.8–62.1 146 50.8 40.1–61.5
ERBB3 (transcript 1) 183 51.0 44.5–57.5 166 51.1 44.5–57.7 158 50.1 42.1–58.1 146 51.6 44.1–59.1
ERBB3 (transcript 2) 183 50.3 41.8–58.7 166 51.0 42.3–59.7 158 55.8 45.9–65.7 146 57.6 48.0–67.2
ERCC1 183 58.1 49.5–66.7 166 58.7 49.8–67.6 158 53.3 43.3–63.3 146 55.1 45.1–65.1
ESR1 183 52.3 43.8–60.8 166 51.5 42.7–60.3 158 54.3 44.5–64.1 146 52.7 43.0–62.4
FN1 (transcript 1) 183 65.5 57.1–73.8 166 65.2 56.6–73.7 158 58.6 48.5–68.7 146 60.2 50.2–70.2
FN1 (transcript 2) 183 62.2 53.3–71.0 166 62.7 53.6–71.7 158 55.0 44.6–65.5 146 58.0 47.6–68.4
FOXJ1 183 59.0 50.4–67.5 166 60.8 52.1–69.6 158 53.5 43.1–64.0 146 56.0 45.9–66.2
FXYD3 183 59.1 50.8–67.3 166 59.9 51.4–68.3 158 50.4 40.7–60.2 146 54.9 45.2–64.6
GPX8 183 55.5 46.2–64.9 166 55.9 46.5–65.4 158 50.0 38.5–61.6 146 50.7 39.7–61.6
HE4 183 60.2 51.5–68.8 166 60.9 52.0–69.8 158 56.1 45.4–66.8 146 56.6 46.3–67.0
HJURP 183 55.7 47.0–64.4 166 57.0 48.1–65.9 158 52.5 42.5–62.5 146 50.7 40.7–60.7
HSP90AB1 183 56.1 47.5–64.8 166 55.8 46.9–64.7 158 53.9 43.7–64.1 146 54.8 44.7–64.9
HUWE1 183 56.0 47.4–64.5 166 55.7 46.9–64.6 158 52.5 42.2–62.7 146 52.6 42.5–62.7
INHA 183 59.7 50.8–68.6 166 60.1 50.9–69.3 158 57.7 46.4–69.0 146 58.6 47.8–69.4
INHBA 183 50.5 43.2–57.8 166 50.2 42.7–57.7 158 54.1 45.7–62.5 146 54.3 46.2–62.4
KRT20 183 51.0 47.1–54.9 166 51.2 47.1–55.3 158 51.5 47.1–55.9 146 52.0 47.8–56.2
KRT7 183 56.8 48.3–65.4 166 58.5 49.7–67.3 158 53.3 43.4–63.3 146 53.8 44.0–63.7
LAMB1 183 61.0 52.4–69.7 166 61.8 52.9–70.6 158 55.6 44.7–66.5 146 57.2 46.7–67.7
MAL2 183 51.2 47.6–54.8 166 51.4 47.7–55.0 158 50.7 46.5–54.9 146 50.5 46.7–54.3
MSLN 183 55.3 47.1–63.5 166 55.7 47.2–64.1 158 54.4 44.6–64.2 146 56.8 47.2–66.5
MUC1 183 61.5 52.8–70.1 166 61.9 53.0–70.8 158 57.5 47.1–68.0 146 58.6 48.5–68.8
MUC16 183 52.1 46.8–57.4 166 52.2 46.8–57.6 158 50.4 44.4–56.4 146 50.9 45.0–56.8
NOTCH1 183 55.7 46.9–64.5 166 56.6 47.5–65.6 158 52.1 41.1–63.0 146 52.3 41.7–62.9
PAX8 (transcript 1) 183 54.7 45.4–63.9 166 54.8 45.2–64.4 158 53.8 42.6–65.0 146 51.1 40.1–62.0
PAX8 (transcript 2) 183 55.3 49.0–61.6 166 55.8 49.3–62.1 158 51.2 44.3–58.1 146 51.7 45.0–58.3
PAX8 (transcript 3) 183 50.2 42.4–58.0 166 50.3 42.2–58.3 158 52.7 43.6–61.8 146 51.8 42.8–60.8
PGR 183 52.1 48.9–55.3 166 52.2 48.8–55.6 158 52.3 48.7–55.9 146 52.6 49.1–56.1
PLAT 183 62.1 54.6–69.6 166 62.3 54.6–69.9 158 59.6 50.6–68.7 146 58.6 50.0–67.2
PPIA 183 55.2 46.5–63.9 166 56.6 47.7–65.5 158 51.5 41.4–61.6 146 55.4 45.2–65.5
PPIC 183 63.3 54.8–71.7 166 62.7 54.0–71.4 158 58.9 48.5–69.4 146 58.3 48.2–68.5
PRAME 183 52.3 45.2–59.3 166 53.6 46.5–60.8 158 50.7 42.4–59.1 146 50.5 42.7–58.3
RPL13A 183 53.2 44.4–62.1 166 53.8 44.7–62.9 158 50.6 40.0–61.2 146 52.8 42.3–63.3
RPL4 (transcript 1) 183 54.8 46.1–63.5 166 56.0 47.0–64.9 158 51.0 40.8–61.3 146 52.9 42.7–63.2
RPL4 (transcript 2) 183 57.3 48.7–65.8 166 59.5 50.7–68.2 158 52.1 41.9–62.2 146 55.9 45.8–66.0
RPLP0 (transcript 1) 183 57.4 48.9–66.0 166 57.7 48.9–66.5 158 55.0 44.9–65.1 146 56.2 46.3–66.2
RPLP0 (transcript 2) 183 55.1 46.4–63.8 166 54.6 45.6–63.7 158 55.2 45.0–65.4 146 56.0 45.9–66.2
S100A16 183 55.6 47.0–64.2 166 54.6 45.7–63.4 158 54.0 43.6–64.5 146 52.9 42.8–63.1
SCGB2A2 183 52.0 45.3–58.7 166 52.0 45.1–58.9 158 52.7 44.6–60.9 146 52.6 44.7–60.5

(continued )
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results to previous studies, which showed that the
addition of other biomarkers to HE4 and CA 125
do not significantly improve the performance over
the dual marker combination of HE4 and CA 125
for the differentiation of benign masses from malig-
nant pelvic masses.25–30 The additive properties of
serum biomarkers to detect malignancy may open
the door to markers that are associated with, but per-
haps not specific to, epithelial ovarian cancer.
Although this could contribute to overall improve-
ment in sensitivity of an algorithm, it could also lead
to decreased specificity and little incremental value to
the statistical performance of a dual marker algo-
rithm.25 For these reason,s novel methods for detect-
ing malignancies outside of serum biomarker analysis
is needed.

Circulating tumor cells are cells that originate and
detach from solid tumors and can be detected in the
peripheral circulation of patients with malignancies.
Circulating tumor cells are rare and have been
estimated to have a ratio of 1 in 100 million to 1 in
1 billion cells in circulating blood.31,32 Multiple tech-
niques and newer technologies have been developed
to capture CTCs, which have now been demonstrated
to be present in the blood of nearly all late-stage solid
tumor patients and have also been shown to be pre-
sent in early-stage disease.33–35 The presence of CTCs
in blood has been shown to be a useful prognostic
indicator in patients with primary and metastatic can-

cers.36–38 Gene expression profiling has been used in
prognostic calculators in malignancies, such as multi-
ple myeloma, breast cancer, and gliomas.39–42 The
Parsortix system used in the current study employs
a microfluidic based particle separation technology,
with a gradient stepwise cassette that captures cells
based on their size and deformability. Most blood
cells pass across the steps and through the terminal
gap and cells with increased size and rigidity are cap-
tured on the cassette and preserved. This system has
been shown to efficiently capture RCCs and CTCs
that can then be harvested and used for gene expres-
sion analysis.14,43 The liquid-biopsy and multiplex
gene expression technologies used in the current trial
are being investigated for detection of multiple cancer
types, including ovary, endometrial, breast, prostate,
and lung cancer.

In ovarian cancer, gene expression in CTCs is an
emerging field not yet incorporated into existing
clinical risk-stratification models. Recently, research
has identified that in addition to transcoelomic spread,
there is significant hematogenous spread, which may
play a significant role in the metastatic spread to the
omentum.44,45 Circulating tumor cell isolation,
enrichment, and molecular characterization has been
reported in patients with ovarian cancer. Kolostova
et al reported on 40 patients using a cytomorphologic
approach to identify captured cells for gene expres-
sion analysis. Comparison of the relative gene

Table 4. Area Under the Receiver Operating Characteristic Curve Analysis of the Individual Genes and
Serum Biomarkers for Their Ability to Differentiate Between Various Histopathologic Diagnosis
Groupings of the Evaluable Patients (continued )

Gene or Biomarker
Name

Benign or LMP vs All Cancers Benign vs All Cancers
Benign or LMP vs

EOC Only Benign vs Ovarian Cancers Only

n
ROC-AUC

(%)
95% CI
(%) n

ROC-AUC
(%)

95% CI
(%) n

ROC-AUC
(%)

95% CI
(%) n

ROC-AUC
(%)

95%
CI (%)

SEPTIN2 183 58.9 50.4–67.4 166 59.1 50.3–67.8 158 53.0 43.0–63.1 146 53.0 43.0–63.1
SERPINE2 183 54.9 45.9–63.9 166 55.0 45.8–64.2 158 52.1 41.5–62.7 146 51.3 40.9–61.7
SLC6A8 183 57.6 48.8–66.5 166 57.5 48.4–66.7 158 55.7 45.1–66.2 146 57.5 47.3–67.8
TBP 183 57.0 48.5–65.4 166 56.8 48.0–65.6 158 54.9 45.0–64.7 146 54.9 45.0–64.8
TFF1 183 54.4 45.5–63.3 166 54.0 44.8–63.2 158 50.3 39.7–60.9 146 50.6 40.2–61.1
TPT1 (transcript 1) 183 59.7 51.1–68.4 166 61.7 53.0–70.5 158 55.7 45.0–66.4 146 57.1 46.8–67.4
TPT1 (transcript 2) 183 58.2 49.6–66.8 166 59.5 50.7–68.3 158 55.3 44.8–65.7 146 55.9 45.8–66.0
TPT1 (transcript 3) 183 58.2 49.8–66.7 166 58.4 49.7–67.2 158 57.5 47.8–67.2 146 57.9 48.3–67.6
TUSC3 183 59.5 51.6–67.5 166 59.7 51.4–67.9 158 54.6 45.1–64.0 146 56.5 47.1–65.8
VCAM1 183 57.5 49.6–65.4 166 57.2 49.0–65.3 158 52.4 43.2–61.6 146 51.0 42.1–59.9
VEGFA 183 62.1 53.8–70.3 166 63.1 54.6–71.7 158 56.9 46.9–66.8 146 59.7 49.9–69.4
VIM 183 56.9 48.1–65.6 166 57.7 48.7–66.6 158 56.7 46.3–67.1 146 58.1 47.8–68.4
Prealbumin 183 75.6 68.0–83.2 166 76.0 68.3–83.7 158 73.8 65.2–82.4 146 73.3 64.3–82.3
Apolipoprotein A1 181 64.3 56.0–72.6 164 66.6 58.1–75.1 156 56.0 45.6–66.4 144 59.9 49.8–70.0
Transferrin 183 75.9 68.5–83.3 166 77.5 70.0–85.0 158 71.9 61.8–82.0 146 74.5 65.2–83.8
B2M 183 70.3 62.2–78.3 166 69.9 61.6–78.2 158 68.9 58.7–79.0 146 66.4 56.4–76.4
FSH 183 51.6 42.6–60.6 166 50.4 41.2–59.6 158 63.2 53.6–72.8 146 54.5 44.0–65.1
CA 125 183 80.0 73.2–86.8 166 82.6 76.0–89.2 158 81.0 72.3–89.7 146 83.8 76.1–91.5
HE4 183 83.6 76.9–90.4 166 85.1 78.4–91.7 158 89.4 83.4–95.3 146 85.1 77.3–93.0

LMP, low malignant potential; EOC, epithelial ovarian cancer; FSH, follicle-stimulating hormone.

638 Moore et al MAGIC Algorithm for Prediction of Malignancy OBSTETRICS & GYNECOLOGY



expression level in peripheral blood samples con-
firmed a statistically significant difference for gene
expression of KRT7, WT1, EPCAM, MUC16, MUC1,
KRT18 and KRT19. The combination of these genes
could suggest the presence of ovarian cancer CTCs in
the peripheral blood of patients.46

The role of CTCs, and multiple CTC gene
expression identification and quantification analyses
in epithelial ovarian cancer have been explored.
However, no studies have incorporated the CTC
gene expression analysis and serum biomarker levels
into a risk assessment tool such as the one constructed
in this study. We evaluated the potential of combining
the gene expression of circulating cells captured from
blood by liquid biopsy (CTCs and RCCs) with serum
biomarker levels for the detection of cancer in women
with a pelvic mass before surgical intervention. Single
genes and their predictive performances were ana-
lyzed. The highest performing individual gene was
FN1 with an AUC of 65.2%, followed by CCR2 with
an AUC of 64.4%. CCR2 is the receptor for haptoglo-
bin, which has been used as a nonspecific marker for
inflammation, infection, and malignancy, including
ovarian cancer. CCR2 may have relation to the tumor
microenvironment and cell migration, which could be
why it performed so well compared with other single

genes. However, its significance and clinical applica-
tion in ovarian cancer are still unclear.47 Similarly,
multivariate analysis of the gene expression results
alone compared with the serum biomarkers alone re-
vealed that no combination outperformed the dual
marker combination of HE4 and CA 125 for the pre-
diction of benign (excluding low malignant potential
tumors) compared with malignancy (all cancers and
ovarian cancers only).

However, the unique grouping of eight genes with
a total of nine different transcripts (PPIA, TBP, TPT1
transcripts 2 and 3, WFDC-2 [HE4], INHA, VEGFA,
CCR2, and SEPT2) and four serum proteins (b-2-
microglobulin, transferrin, CA 125, and HE4) com-
prising the MAGIC algorithm produced the highest
ROC-AUC in this study (95.1%), which significantly
outperformed any other gene or biomarker combina-
tion, including HE4 and CA 125. The MAGIC algo-
rithm not only detected epithelial ovarian cancer, but
also detected nonovary primary cancers, including
metastatic cancers. At the same time, the MAGIC
algorithm did not lose its performance regarding
detection of early stage epithelial ovarian cancer, with
an ROC-AUC for stage I–II disease of 89.5%. The
inclusion of the WFDC-2 gene, which produces the
protein HE4, is of interest as HE4 has recently been

Table 5. Area Under the Receiver Operating Characteristic Curve Analysis and Comparisons of the
Multivariate Algorithms for the Gene Expression Results Alone, the Serum Biomarkers Alone, and
the Combination of Gene Expression and Serum Biomarkers Results for Their Ability to
Differentiate Between Various Histopathologic Diagnosis Groupings of the Evaluable Patients

Multivariate Logistic
Regression Algorithms

Benign or LMP vs All Cancers Benign vs All Cancers Benign or LMP vs EOC Only
Benign vs Ovarian Cancers

Only

n
ROC-AUC

(%)

ROC-AUC
(95% CI)

(%) n
ROC-AUC

(%)

ROC-AUC
(95% CI)

(%) n
ROC-AUC

(%)

ROC-AUC
(95% CI)

(%) n
ROC-AUC

(%)

ROC-AUC
(95% CI)

(%)

Serum
biomarkers
only

Included in
algorithm

Prealbumin, transferrin and HE4 Prealbumin, transferrin and HE4 Prealbumin and HE4 B2M, transferrin, CA 125 and
HE4

Performance 183 87.8 82.2–93.3 166 89.6 84.3–95.0 158 88.4 81.2–95.5 146 89.6 83.7–95.4Genes only

Included in
algorithm

EMP2, PPIA, CDH1, CDH5,
PLAT, TPT1, MUC16,
HUWE1, CHI3L1, CCR2,
CD274 and CXCR4

ERBB2, RPL4, ERBB3, CDH1,
FN1, GPX8, PLAT, PAX8,
TPT1, HUWE1, INHBA,
CHI3L1, CCR2 and CXCR4

EMP2, PPIA, PPIC, ERBB3,
CDH1, CDH5, FN1, TPT1,
MUC16, HUWE1, CHI3L1,
CCR2 and SEPT2

PPIA, PPIC, ERBB3, CDH1,
CDH3, CDH5, FN1, GPX8,
TFF1, PAX8, RPL13A,
HSP90AB1, TPT1, MSLN,
HUWE1, CHI3L1, CCR2 and
SEPT2

Performance 183 84.5 78.8–90.2 166 88.0 82.9–93.0 158 84.9 78.5–91.3 146 87.9 82.0–93.7Genes and
serum
biomarkers

Included in
algorithm

EPCAM, PPIA, CDH1, TPT1,
HE4, HUWE1, INHBA,
VEGFA and CCR2 plus B2M,
transferrin and HE4

PPIA, TBP, TPT1, HE4, INHA,
VEGFA, CCR2 and SEPT2 plus
B2M, transferrin, CA 125 and
HE4

EMP2, CDH1, CDH5, FN1,
TPT1, HUWE1 and CCR2 plus
prealbumin and HE4

PPIA, RPLP0, TBP, TPT1 and
VEGFA plus B2M, transferrin,
CA 125 and HE4

Performance 183 92.6 88.2–97.0 166 95.1 92.0–98.2 158 94.7 91.5–97.8 146 93.9 89.8–98.1P for comparison
of ROC-AUCs Serum vs

genes
0.3896 0.6219 0.4805 0.6638

Serum vs
combo

0.0722 0.0113 0.0317 0.0113

Genes vs
combo

0.0089 0.0054 0.0018 0.0765

LMP, low malignant potential; EOC, epithelial ovarian cancer; ROC-AUC, area under the receiver operating characteristic curve.
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shown to play an inhibitory role of CD8+ infiltrating
lymphocytes and inducing macrophages to the M2
nonactive form in the ovarian cancer tumor microen-

vironment.48 Approximately 80% of epithelial ovar-
ian cancers overexpress the HE4 protein, which may
speak to the importance of the WFCD-2 gene in
pathogenesis.

A major strength of this study is that it is a large
prospective clinical trial employing novel technology
with the ability to capture circulating cells from blood
(RCCs and CTCs) and analyze their gene expression.
Often, biomarker and gene expression research are
executed retrospectively, by using tissue biopsy sam-
ples through microarray analysis. All the patients in
this study had gene expression testing from a pro-
spective liquid biopsy of peripheral blood samples, in
addition to serum testing using blood samples collected
just before surgery. Moreover, the nature of biomarker
and gene expression testing is inherently objective. The
key measures for this model are not reliant on sub-
jective factors such as physician assessment or imaging
interpretation, which have been used by other risk-
assessment models and, thus, subject to interpretive
variation.49–51 Additionally, the MAGIC algorithm has
the advantage that it can also detect cancers of non-
ovarian origin, including metastatic cancers. A primary
limitation of this study is that it was performed at a
single tertiary care institution with patients who had
been referred to the division of gynecologic oncology,
and, therefore, the cohort may not represent the

Table 6. Performance Parameters of Sensitivity, Specificity, Positive Predictive Value, Negative Predictive
Value, Accuracy, Likelihood Ratio of a Positive Test, and Likelihood Ratio of a Negative Test for the
Following Multivariate Algorithms for the Differentiation of Benign Compared With All Cancers:
the MAGIC (Malignancy Assessment Using Gene Identification in Captured Cells) Algorithm, the
Serum Biomarkers–Only Algorithm, and the Gene Expression–Only Algorithm

Benign (n5104) vs All
Cancers (n562)

Predictive
Probability

Threshold (%)

Estimates (95% CI) (%)

Sensitivity Specificity Accuracy LR+ LR2

MAGIC algorithm 10 or greater 95 (87–99) 66 (56–75) 77 (70–83) 2.8 (2.1–3.7) 13.8 (4.5–42.2)
16 or greater 95 (87–99) 76 (67–84) 83 (77–88) 4.0 (2.8–5.6) 15.8 (5.5–66.6)
30 or greater 90 (80–96) 85 (76–91) 87 (81–92) 5.9 (3.7–9.3) 8.7 (4.1–18.7)
48 or greater 81 (69–90) 95 (89–98) 90 (84–94) 16.8 (7.1–39.9) 4.9 (3.0–8.2)
67 or greater 76 (63–86) 100 (97–100) 91 (86–95) — 4.1 (2.7–6.4)

Serum biomarkers–only algorithm 18 or greater 89 (78–95) 65 (55–74) 74 (67–81) 2.6 (1.9–3.4) 5.8 (2.8–11.8)
20 or greater 87 (76–94) 74 (65–82) 79 (72–85) 3.4 (2.4–4.7) 5.7 (3.0–11.1)
31 or greater 82 (70–91) 85 (76–91) 84 (77–89) 5.3 (3.4–8.5) 4.8 (2.8–8.2)
60 or greater 65 (51–76) 95 (89–98) 84 (77–89) 13.4 (5.6–32.3) 2.7 (1.9–3.8)
88 or greater 44 (31–57) 100 (97–100) 79 (72–85) — 1.8 (1.4–2.2)

Gene expression–only algorithm 18 or greater 94 (84–98) 64 (62–80) 75 (69–83) 2.6 (2.0–3.4) 9.9 (3.8–25.8)
20 or greater 79 (67–88) 75 (66–83) 77 (69–83) 3.2 (2.2–4.5) 3.6 (2.2–5.9)
31 or greater 69 (56–80) 84 (75–90) 78 (71–84) 4.3 (2.7–6.8) 2.7 (1.9–4.0)
60 or greater 52 (39–65) 95 (89–98) 79 (72–85) 10.8 (4.4–26.2) 2.0 (1.5–2.6)
88 or greater 19 (10–31) 100 (97–100) 70 (62–77) — 1.2 (1.1–1.4)

LR+, likelihood ratio of positive test; LR2, likelihood ratio of negative test; MAGIC, Malignancy Assessment using Gene Identification in
Captured Cells.

Fig. 1. Comparison of areas under receiver operating
characteristic curves for the genes-only algorithm (green),
the serum biomarkers–only algorithm (red), and the MAGIC
(Malignancy Assessment Using Gene Identification in
Captured Cells) algorithm (genes and serum biomarkers)
(orange). Benign (n5104) vs all cancers (n562).

Moore. MAGIC Algorithm for Prediction of Malignancy. Obstet
Gynecol 2022.
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general population. The MAGIC algorithm needs to
be verified and validated in a separate real-world
cohort comprised of patients from the general commu-
nity with a pelvic mass of unclear risk of malignancy.
Proof of efficacy in a prospective validation data set
would be necessary before clinical application.
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