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Background. The role of 11b-hydroxysteroid dehydrogenase type 1 (11b-HSD1) in the regulation of energy metabolism and
immune system by locally reactivating glucocorticoids has been extensively studied. Experiments determining initial rates of
enzyme activity revealed that 11b-HSD1 can catalyze both the reductase and the dehydrogenase reaction in cell lysates,
whereas it predominantly catalyzes the reduction of cortisone to cortisol in intact cells that also express hexose-6-phosphate
dehydrogenase (H6PDH), which provides cofactor NADPH. Besides its role in glucocorticoid metabolism, there is evidence that
11b-HSD1 is involved in the metabolism of 7-keto- and 7-hydroxy-steroids; however the impact of H6PDH on this alternative
function of 11b-HSD1 has not been assessed. Methodology. We investigated the 11b-HSD1-dependent metabolism of the
neurosteroids 7-keto-, 7a-hydroxy- and 7b-hydroxy-dehydroepiandrosterone (DHEA) and 7-keto- and 7b-hydroxy-pregneno-
lone, respectively, in the absence or presence of H6PDH in intact cells. 3D-structural modeling was applied to study the
binding of ligands in 11b-HSD1. Principal Findings. We demonstrated that 11b-HSD1 functions in a reversible way and
efficiently catalyzed the interconversion of these 7-keto- and 7-hydroxy-neurosteroids in intact cells. In the presence of H6PDH,
11b-HSD1 predominantly converted 7-keto-DHEA and 7-ketopregnenolone into their corresponding 7b-hydroxy metabolites,
indicating a role for H6PDH and 11b-HSD1 in the local generation of 7b-hydroxy-neurosteroids. 3D-structural modeling offered
an explanation for the preferred formation of 7b-hydroxy-neurosteroids. Conclusions. Our results from experiments
determining the steady state concentrations of glucocorticoids or 7-oxygenated neurosteroids suggested that the equilibrium
between cortisone and cortisol and between 7-keto- and 7-hydroxy-neurosteroids is regulated by 11b-HSD1 and greatly
depends on the coexpression with H6PDH. Thus, the impact of H6PDH on 11b-HSD1 activity has to be considered for
understanding both glucocorticoid and neurosteroid action in different tissues.
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INTRODUCTION
Originally, 11b-HSD1 was identified in a search for a dehydroge-

nase catalyzing the conversion of active 11b-hydroxyglucocorti-

coids (cortisol and corticosterone) into inactive 11-ketoglucocorti-

coids (cortisone and 11-dehydrocorticosterone)[1]. In lyzed cells

and upon purification, 11b-HSD1 catalyzes both dehydrogenase

and reductase reaction [2,3], whereas it acts predominantly as

a reductase in intact hepatocytes and differentiated adipocytes

[4–7]. Recent studies suggested that in vivo hexose-6-phosphate

dehydrogenase (H6PDH) generates NADPH in the endoplasmic

reticulum (ER) lumen, which causes 11b-HSD1 to function as

a reductase [5]. Evidence for this role for H6PDH in the catalytic

specificity of 11b-HSD1 comes from several studies. In preadipo-

cytes with low expression of H6PDH, 11b-HSD1 was found to be

primarily a dehydrogenase, whereas in differentiated adipocytes

with high H6PDH expression, 11b-HSD1 was a reductase [5,8].

Importantly, mice lacking H6PDH are unable to reduce 11-

dehydrocorticosterone to corticosterone [9].

H6PDH colocalizes with 11b-HSD1 at the lumenal surface of

the ER-membrane [10], where H6PDH provides cosubstrate

NADPH and strongly stimulates 11b-HSD1 reductase activity

[10–14]. Thus, a tightly controlled ratio of H6PDH to 11b-HSD1

is crucial since the local regeneration of cortisol and corticosterone

in tissues such as liver, skeletal muscle and adipose tissue deter-

mines the magnitude of glucocorticoid receptor (GR) activation

and subsequent regulation of genes involved in carbohydrate and

lipid metabolism. Indeed, chronically elevated local reactivation of

glucocorticoids by enhanced 11b-HSD1 activity has been

associated with the development of the metabolic syndrome

[15]. Although it has not been analyzed so far, modulation by

H6PDH might also be relevant for alternative functions of 11b-

HSD1, including the detoxification of xenobiotics [16] and the

metabolism of 7-keto- and 7-hydroxy-sterols and -steroids [6,17–

19].

Academic Editor: Hany El-Shemy, Cairo University, Egypt

Received April 24, 2007; Accepted May 27, 2007; Published June 27, 2007

Copyright: � 2007 Nashev et al. This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Funding: This study was supported by the Cloëtta Research Foundation, the
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Recently, it has become clear that 11b-HSD1 also can catalyze

the interconversion of the C7-ketone and the C7-hydroxyl on

DHEA [19–22]. DHEA is synthesized in the adrenal glands and

serves as a major sex steroid hormone precursor [23]. Besides,

another important site for synthesis of DHEA is the brain, where it

is further metabolized to its 7a- and 7b-hydroxy-forms. DHEA

and its C7-oxygenated metabolites are considered neurosteroids

and they play a role in the regulation of emotional responses,

memory functions and neuronal excitability [24–26]. Pregneno-

lone and its metabolites also are neurosteroids. 7a-hydroxypreg-

nenolone is the major neurosteroid in amphibians, increasing the

neuron locomotor activity in the breeding newts [27].

The major metabolic fate of DHEA and pregnenolone in the brain

and other extrahepatic tissues is the CYP7B1-dependent 7a-

hydroxylation. It was suggested that 7a-hydroxy-DHEA serves as

a precursor for other active derivatives [28]. A causal link between

declining DHEA levels and age-related loss of cognitive function,

including Alzheimer’s disease, has been proposed, with evidence for

reduced hippocampal CYP7B1 expression [29,30]. Moreover, several

studies suggest that 7-keto- and 7-hydroxy-steroids exert neuropro-

tective, anti-glucocorticoid and immune-modulatory effects [19,29,

31,32]. The presence of 11b-HSD1 activity in the brain suggests that

11b-HSD1 may have a role in regulating the neurosteroid actions of

the 7-keto- and 7-hydroxy-metabolites of DHEA and pregnenolone.

However, details of the role of H6PDH in their metabolism and their

in vivo regulation remained unclear, and the reaction direction of the

metabolism of these compounds has not been assessed.

Here, we employed enzyme activity measurements and 3D-

structural modelling to investigate how 7-keto-, 7a-hydroxy- and

7b-hydroxy-DHEA interact with 11b-HSD1. Furthermore, we

determined the impact of H6PDH on the 11b-HSD1-dependent

metabolism of various 7-keto- and 7-hydroxy-steroids in intact

cells by measuring both initial rates of activity and steady state

concentrations. We find that when H6PDH supplies sufficient

NADPH, this results in 11b-HSD1 having a preference for the

reduction of 7-keto-DHEA to 7b-hydroxy-DHEA. Thus, in vivo,

depending on the level of H6PDH activity, 11b-HSD1 can

regulate the equilibrium between 7-keto-, 7a-hydroxy- and 7b-

hydroxy-DHEA in brain and other organs.

RESULTS

11b-HSD1 catalyzes the interconversion of

7-keto- and 7-hydroxy-DHEA
To determine the ability of 11b-HSD1 to catalyze the interconver-

sion of 7-keto- and 7-hydroxy-DHEA in intact cells, we employed

HEK-293 cells that were transfected with either 11b-HSD1 alone or

together with H6PDH. This cell line is suitable to assess the effect of

H6PDH on 11b-HSD1 function, because of low endogenous

H6PDH and lacking 11b-HSD1 and 11b-HSD2 expression, which

is indicated by Ct values that were higher than 32 [10].

As shown in Figure 1A, incubation of cells expressing 11b-

HSD1 with 1 mM 7a-hydroxy-DHEA led to the formation of both

7b-hydroxy-DHEA and 7-keto-DHEA. Cells co-expressing 11b-

HSD1 and H6PDH metabolized less 7a-hydroxy-DHEA, and the

accumulation of 7-keto-DHEA was abolished. The fact that 7b-

hydroxy-DHEA formation could still be observed suggests that the

7-keto-DHEA formed from 7a-hydroxy-DHEA was rapidly

further converted to 7b-hydroxy-DHEA. The involvement of

other enzymes in the interconversion of 7-keto- and 7-hydroxy-

DHEA in HEK cells is unlikely, since the selective 11b-HSD1

inhibitor T0504 [33,34] prevented the formation of 7b-hydroxy-

DHEA and 7-keto-DHEA, and no conversion was detected in

untransfected cells (data not shown). The recovery of the initially

added counts was approximately 75%, which was due to a loss of

steroids during sampling and during extraction steps. Similarly,

incubation of cells expressing 11b-HSD1 with 1 mM 7b-hydroxy-

DHEA led to the formation of almost equal amounts of 7-keto-

DHEA and 7a-hydroxy-DHEA, while the formation of 7a-

hydroxy-DHEA was significantly reduced and that of 7-keto-

DHEA almost completely abolished in the presence of H6PDH

(Figure 1B). Inhibition of 11b-HSD1 prevented the formation of

7a-hydroxy-DHEA and 7-keto-DHEA.

We then incubated cells expressing 11b-HSD1 with 1 mM 7-keto-

DHEA and observed the formation of almost equal amounts of 7a-

hydroxy-DHEA and 7b-hydroxy-DHEA (Figure 1C). In the

presence of H6PDH, 11b-HSD1 nearly fully metabolized 7-keto-

DHEA and preferentially formed 7b-hydroxy-DHEA. A compari-

son of the products formed after different time intervals indicated

that 11b-HSD1 preferentially catalyzes the conversion of 7-keto-

DHEA to 7b-hydroxy-DHEA. The formation of 7a-hydroxy-DHEA

is less efficient and its accumulation was only observed after

prolonged time of incubation. After 24 h of incubation, a steady state

was reached and the ratio of 7-keto-DHEA, 7a-hydroxy-DHEA and

7b-hydroxy-DHEA was independent of the substrate chosen initially

(Figure 1D). Importantly, the presence of H6PDH strongly shifted

the equilibrium from the 7-keto- to the 7b-hydroxy-steroid.

Analysis of substrate binding by 3D-modelling
To better understand how 7-keto-, 7a-hydroxy- and 7b-hydroxy-

DHEA interact with 11b-HSD1, we inserted these steroids into

the active site of the recently solved 3D-structure of 11b-HSD1

[35]. In constructing models of DHEA analogs with 11b-HSD1,

there are two different orientations in which DHEA analogs can fit

in the substrate binding site of 11b-HSD1. In one configuration,

the D ring of DHEA is oriented towards the interior of 11b-HSD1.

In the other, the A ring is oriented towards the interior.

To obtain the first orientation for analysis, we first extracted E.

coli 7a-HSD from the PDB (file: 1FMC). 7a-HSD contains

chenodeoxycholic acid, which has a 7a-hydroxyl group. The D

ring of chenodeoxycholic acid is oriented towards the interior of

7a-HSD [36]. We superimposed 1FMC with 1Y5R. As shown in

Figure 2, the 7a-hydroxyl in chenodeoxycholic acid and the

catalytic tyrosine in 7a-HSD superimpose nicely on the 11b-

hydroxyl in corticosterone and the catalytic tyrosine in 11b-HSD1.

Initial models of 7-keto-DHEA (with NADPH) and 7b-hydroxy-

DHEA (with NADP+) with the D ring oriented towards the

interior of 11b-HSD1 were constructed by using the Biopolymer

option in Insight II for conversion of the 7a-hydroxyl to a ketone

and to a 7b-hydroxyl, respectively.

The second orientation was obtained by overlaying 7b-hydroxy-

DHEA with the 11b-hydroxyl on corticosterone in 11b-HSD1 with

NADP+ (Figure 3). To obtain initial models of 7-keto-DHEA (with

NADPH) and 7a-hydroxy-DHEA (with NADP+) with the A ring

oriented towards the interior of 11b-HSD1, we used the Biopolymer

option in Insight II for conversion of the 7b-hydroxyl to a ketone and

to a 7a-hydroxyl, respectively. Thus, we had six tertiary complexes of

mouse 11b-HSD1 with 7-keto-, 7a-hydroxy- or 7b-hydroxy-DHEA

(Figure 4) for refinement by energy minimization using Discover 3.

Figure 4A shows the minimized 3D models of 7-keto-, 7a-

hydroxy- or 7b-hydroxy-DHEA with the D ring oriented towards

the interior of 11b-HSD1. All of these C7-DHEA analogs have

either the hydroxyl or ketone in a favorable position for catalysis

by 11b-HSD1. For example, the distance between Tyr-183 and

7a-hydroxyl, 7-keto and 7b-hydroxyl is 2.9 Å, 2.8 Å and 3.1 Å,

respectively. The distance between the nicotinamide C4 and 7a-

hydroxyl, 7-keto and 7b-hydroxyl is 3.9 Å, 3.5 Å and 3.0 Å,

respectively. Figure 4B shows the minimized structures of 7-keto-,

11b-HSD1 and Neurosteroids
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7a-hydroxy- or 7b-hydroxy-DHEA with the A ring oriented

towards the interior of 11b-HSD1. 7-keto-DHEA and 7b-

hydroxy-DHEA have the ketone and hydroxyl, respectively, in

a favorable position for catalysis by 11b-HSD1. In contrast, the

7a-hydroxyl on DHEA is 4.8 Å from the nicotinamide C4.

The models show that 7b-hydroxy-DHEA is favored for

reduction when 7-keto-DHEA is in two orientations in 11b-

HSD1, while 7a-hydroxy-DHEA is favored in one orientation.

Thus, our models can explain the preference for formation of 7b-

hydroxy-DHEA by 11b-HSD1.

Metabolism of other 7-keto steroids by 11b-HSD1
We next investigated whether 11b-HSD1 acts on other 7-keto-

steroids and demonstrate for the first time that 11b-HSD1

metabolizes 7-ketopregnenolone and 5a-androstane-3b-ol-7,17-

dione (5-ADION)(Figure 5) and that metabolism of both 7-keto-

substrates to 7b-hydroxy-steroids was strongly stimulated by

H6PDH. For 7-keto-pregnenolone, the equilibrium was shifted

from the 7-keto to the 7b-hydroxy form, comparable with the

metabolism of 7-keto-DHEA. Since 7a-hydroxypregnenolone and

5a-androstane-3b-ol-7-hydroxy,17-one were not available, the

Figure 1. Interconversion of 7a-hydroxy-, 7b-hydroxy- and 7-keto-DHEA by 11b-HSD1 in intact cells. HEK-293 cells transfected with a plasmid for
11b-HSD1 and either a control vector or a plasmid for H6PDH were incubated with 1 mM of 7a-hydroxy-DHEA (7a-OH-DHEA) (A), 7b-hydroxy-DHEA
(7b-OH-DHEA) (B) or 7-keto-DHEA (C) in absence or presence of 11b-HSD1 inhibitor T0504, followed by determination of C7-oxygenated DHEA
metabolites after 3 h (A–C). Alternatively, cells were incubated with either 7a-hydroxy-, 7b-hydroxy- or 7-keto-DHEA (7-oxo-DHEA) for 24 h, followed
by determination of C7-oxygenated DHEA metabolites as described in Materials and Methods (D). Data are given as percentage of initially supplied
substrate. A representative experiment from three independent transfections is shown. Hatched bars, 7a-hydroxy-DHEA; filled bars, 7b-hydroxy-
DHEA, open bars, 7-keto-DHEA.
doi:10.1371/journal.pone.0000561.g001

11b-HSD1 and Neurosteroids
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formation of these products could not be analyzed. Peaks in the

GC-MS analyses that may correspond to these products were

observed and suggest preferential formation of the 7b-hydroxy

metabolites (data not shown). The 11b-HSD1-dependent metab-

olism of 7-ketopregnenolone and 5a-androstane-3b-ol-7,17-dione

was almost completely abolished in the presence of inhibitor

T0504 (Figure 5), and cells transfected with pcDNA3.1 control

plasmid instead of the plasmid for 11b-HSD1 did not show any 7-

keto-reductase activity (data not shown).

Assessment of 7-oxygenated neurosteroids as

substrates of 11b-HSD1 by determining competition

with glucocorticoids
The modeling analyses indicated that the 7-keto and 7-hydroxy

metabolites of DHEA occupy the same binding site in 11b-HSD1

as cortisone and cortisol, respectively. If the 7-keto and 7-hydroxy

metabolites of DHEA and pregnenolone are substrates for either

the reductase or the dehydrogenase reaction, then they should

compete with the reduction of cortisone and the dehydrogenation

of cortisol, respectively. Indeed, as shown in Table 1, all three 7-

keto-steroids tested preferentially inhibited 11b-HSD1-dependent

reduction of cortisone to cortisol with much weaker effects on the

reverse reaction. In contrast, 7-hydroxy-steroids preferentially

inhibited the dehydrogenase reaction, whereby 7b-hydroxy-

DHEA was more potent than 7a-hydroxy-DHEA, in line with

the observation that 7b-hydroxy-DHEA is a better substrate for

11b-HSD1 than 7a-hydroxy-DHEA.

H6PDH stimulates 11b-HSD1 reductase activity and

alters the steady state ratio of cortisone to cortisol
Recent studies showed that H6PDH affects 11b-HSD1 function

by strongly stimulating the reduction of cortisone and abolishing

the oxidation of cortisol [10,13]. These studies determined only

initial rates of conversion. Here, we determined the steady state

ratio of cortisone to cortisol in HEK-293 cells transfected with

11b-HSD1 alone or cotransfected with 11b-HSD1 and H6PDH.

As shown in Table 2, a steady state ratio of 70–75% cortisol to

25–30% cortisone was reached in cells expressing 11b-HSD1,

independent of whether cortisone or cortisol were supplied

initially. Co-expression with H6PDH shifted the steady state ratio

to 90–95% cortisol and 5–10% cortisone, respectively. Interest-

ingly, the two structurally distinct 11b-HSD1 inhibitors flavanone

[34] and BNW7 [37] both had little or no effect on the steady state

ratio of glucocorticoids, suggesting that the presence of inhibitors

only lowers the time until the equilibrium is reached and that the

NADPH availability is the key determinant for the control of the

intracellular ratio of cortisone to cortisol. A similar shift from keto-

to hydroxy-steroids was observed with 7-substituted steroids

(Figure 1 and 5).

DISCUSSION
The cloning of 11b-HSD1 has stimulated important advances in

understanding its molecular properties and physiological actions.

As a result, recombinant 11b-HSD1 in lysates of cells or upon

purification became available for determining the kinetic constants

for reduction of cortisone and oxidation of cortisol, which revealed

that 11b-HSD1 only had a slight preference for reduction of the

keto group at C11 on glucocorticoids [2,3,38]. In contrast, studies

of 11b-HSD1 in whole cells, showed that 11b-HSD1 preferentially

was a reductase [4–7]. The reaction direction of 11b-HSD1 is

crucial with respect to its potential as a target for treatment of

metabolic diseases, where a decrease of glucocorticoid reactiva-

tion, especially in adipose tissue, is thought to be beneficial

[15,39]. Whether 11b-HSD1 acts as a reductase or dehydrogenase

in a given tissue also is important regarding its reported alternative

Figure 2. Superposition of E. coli 7a-HSD and mouse 11b-HSD1. The
7a-hydroxyl in chenodeoxycholic acid superimposes nicely on the 11b-
hydroxyl in corticosterone. The catalytic tyrosine and nicotinamide C4
are favorably positioned to interact with the C7a-hydroxyl and C11b-
hydroxyl on chenodeoxycholic acid and corticosterone, respectively.
The D rings in chenodeoxycholic acid and corticosterone are oriented
towards the interior of 7a-HSD and 11b-HSD1, respectively.
doi:10.1371/journal.pone.0000561.g002

Figure 3. Superposition of 7b-hydroxy-DHEA on corticosterone in
11b-HSD1. In this model, the A ring of 7b-hydroxy-DHEA (7b-OH-DHEA)
is oriented towards the interior of 11b-HSD1. The C7b-hydroxyl in 7b-
hydroxy-DHEA superimposes nicely on the C11b-hydroxyl in cortico-
sterone with equal predicted distances to C4 of the nicotinamide ring
and the hydroxyl of the catalytic tyrosine.
doi:10.1371/journal.pone.0000561.g003

11b-HSD1 and Neurosteroids
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functions. Several studies showed 11b-HSD1-dependent carbonyl

reduction of a variety of chemicals, indicating that 11b-HSD1 has

a role in detoxification of xenobiotics [16] and oxidized cholesterol

[6,17,18]. Importantly, it was recently shown that 11b-HSD1 is

closely localized to H6PDH in the endoplasmic reticulum [10].

H6PDH provides NADPH for reductases, indicating that the

mechanism by which 11b-HSD1 regulates cortisol levels was more

complex than previously thought [10,12,13].

Here, we provide evidence that in concert with H6PDH, 11b-

HSD1 also regulates the levels of 7a-hydroxy-, 7b-hydroxy- and

7keto-neurosteroids derived from DHEA and pregnenolone

(Figure 1 and 5). We show that regulation of cosubstrate levels

by H6PDH is crucial for determination of the directionality of the

synthesis of neurosteroids and glucocorticoids by 11b-HSD1,

expanding the physiological functions of 11b-HSD1. We tested

various 7-keto- and 7-hydroxy-steroids as substrates of 11b-HSD1

and investigated the influence of H6PDH on their metabolism in

intact cells. In line with the results from Muller et al. using

microsomal fractions from yeast expressing human 11b-HSD1

[22], we detected efficient interconversion of 7-keto- and 7-

hydroxy-steroids in an intact human cell system. Importantly, we

demonstrate that cells co-expressing 11b-HSD1 and H6PDH

predominantly metabolize 7-keto-DHEA, 7-ketopregnenolone

and 5a-androstane-3b-ol-7,17-dione into their corresponding 7b-

hydroxy metabolites.

The present study provides evidence that 11b-HSD1 plays an

important role in regulating the intracellular equilibrium between

C7- and C11-keto and their -hydroxy metabolites, respectively.

Depending on the level of H6PDH activity, the steady state ratio

between keto- and hydroxy-steroids can be controlled. That

cosubstrate levels influence how 11b-HSD1 regulates an equilib-

rium between active versus inactive or less potent steroid hormone

metabolites resembles 17b-HSD enzymes. Auchus and coworkers

recently showed that at equilibrium 17b-HSD1, 2 and 3 catalyze

both reductase and dehydrogenase reactions; thus, these enzymes

do not just drive steroid flux in one direction [40,41].

Our structural modeling provides an explanation for the

preferential formation of 7b-hydroxy-DHEA from 7-keto-DHEA.

First, the models show that when 7-keto-DHEA, 7a-hydroxy-

DHEA and 7b-hydroxy-DHEA have their D ring pointing into the

interior of the enzyme, they are in a favorable position to interact

with the catalytic tyrosine and the nicotinamide ring (Figure 4A). A

similar orientation of the D ring is found for the bile acid

chenodeoxycholic acid crystallized in 7a-HSD and corticosterone

in 11b-HSD1 (Figure 2). The close superposition of the 7a-

hydroxyl on chenodeoxycholic acid and 11b-hydroxyl on

corticosterone supports an earlier hypothesis by Lathe, who

recognized the rotational symmetry between the 11b- and the 7a-

position of the steroid backbone and suggested that some binding

sites may recognize both 7a- and 11b-modified steroids [42].

Figure 4. Minimized structures of DHEA analogs in 11b-HSD1. A, the D ring is oriented towards the interior of 11b-HSD1. B, the A ring is oriented
towards the interior of 11b-HSD1.
doi:10.1371/journal.pone.0000561.g004

11b-HSD1 and Neurosteroids
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The important discovery from the 3D models is that there are

favorable interactions between the C7-hydroxyl and the catalytic

site of 11b-HSD1 when the A ring on 7b-hydroxy-DHEA is

oriented towards the interior of 11b-HSD1 (Figure 4B). Thus,

there are two orientations of 7-keto-DHEA in 11b-HSD1 that can

lead to 7b-hydroxy-DHEA in the presence of NADPH, but only

one configuration of 7-keto-DHEA is favorable for reduction to

7a-hydroxy-DHEA. This analysis reveals an important role for

H6PDH in regulating the specificity for formation of 7b-hydroxy-

DHEA. By providing sufficient NADPH, H6PDH can increase

cellular levels of 7b-hydroxy-DHEA.

The metabolism of C7-keto and -hydroxy-DHEA and C7-keto

and -hydroxy-pregnenolone by 11b-HSD1 and H6PDH can

regulate the activities of these neurosteroids in the brain. CYP7B1

is responsible for the production of 7a-hydroxy-DHEA, mainly in

the hippocampus [43]. CYP7B1 knock-out mice are unable to

produce 7a-hydroxy-DHEA and 7b-hydroxy-DHEA [44], sug-

gesting that 7a-hydroxy-DHEA serves as a precursor for other

derivatives including 7b-hydroxy-DHEA and 7-keto-DHEA [28].

Figure 5. Reduction of 7-ketopregnenolone and 5a-androstane-3b-ol-7,17-dione by 11b-HSD1 in intact cells. HEK-293 cells transfected with
a plasmid for 11b-HSD1 and either a control vector or a plasmid for H6PDH were incubated with 1 mM of 7-ketopregnenolone (A) or 5a-androstane-
3b-ol-7,17-dione (5-ADION) (B) in absence or presence of 11b-HSD1 inhibitor T0504, followed by determination of the 7-keto- and 7-hydroxy-
metabolites after 3 h (A,B) or 6 h (B). Data are given as percentage of initially supplied substrate. A representative experiment from three
independent transfections is shown. (A) 7b-hydroxy-pregnenolone is shown as filled bars and 7-ketopregnenolone as open bars; (B) 5a-androstane-
3b-ol-7,17-dione (5-ADION) after incubation for 3 h is shown as open bars, and after 6 h as closed bars.
doi:10.1371/journal.pone.0000561.g005

Table 2. Control of the steady state ratio of cortisone to
cortisol by 11b-HSD1 and H6PDH

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Reduction of cortisone to cortisol

11b-HSD1 11b-HSD1/H6PDH

cortisol cortisone SD cortisol cortisone SD

Control 71.8% 28.2% 2.6% 94.1% 5.9% 0.3%

Flavanone 74.1% 25.9% 0.7% 91.7% 8.3% 0.3%

BNW7 74.5% 25.5% 1.7% 91.1% 8.9% 0.5%

Oxidation of cortisol to cortisone

11b-HSD1 11b-HSD1/H6PDH

cortisol cortisone SD cortisol cortisone SD

Control 73.1% 26.9% 1.4% 95.4% 4.6% 1.1%

Flavanone 61.2% 39.8% 2.8% 90.9% 9.1% 0.6%

BNW7 73.8% 26.2% 0.7% 90.2% 9.8% 1.3%

The ratio of cortisone to cortisol was measured after incubating HEK-293 cells
expressing 11b-HSD1 or coexpressing 11b-HSD1 and H6PDH for 16 h in the
presence of 200 nM of radiolabeled substrate. The effect of inhibitors was
determined by coincubating cells with 20 mM of the corresponding compound.
Data are given as percentage of total glucocorticoid and represent mean6SD,
n = 4.
doi:10.1371/journal.pone.0000561.t002..
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Table 1. 7-oxygenated neurosteroids compete with 11b-
HSD1-dependent cortisone reduction

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Compound
11b-HSD1
(oxidation)

11b-HSD1
(reduction)

7-ketodehydroepiandrosterone 2965 0.8260.07

7a-hydroxydehydroepiandrosterone 1661 4562

7b-hydroxydehydroepiandrosterone 0.5460.05 7.760.8

7-ketopregnenolone 5.460.5 0.6860.11

7b-hydroxypregnenolone 1.3460.49 2.460.5

5a-androstane-3b-ol-7,17dione 1861 0.5060.11

11b-HSD activities were determined in lysates of HEK-293 cells expressing
recombinant enzyme as described in Materials and Methods. IC50 values are in
mM. Data represent mean6S.D. from four independent experiments.
doi:10.1371/journal.pone.0000561.t001..
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The mechanism, however, for the formation of 7b-hydroxy-

DHEA and 7-keto-DHEA remained unclear. The present findings

indicate that, depending on the activity of H6PDH, 11b-HSD1

can regulate the availability of 7a-hydroxy- 7b-hydroxy- and 7-

keto-metabolites of DHEA and pregnenolone in tissues expressing

CYP7B1, which can control local concentrations of neurosteroids.

Since cerebrospinal fluid from patients with vascular dementia

contained higher levels of 7b-hydroxy-DHEA than that from

patients with Alzheimer’s disease, Kim et al. suggested that 7b-

hydroxy-DHEA may be more neuroprotective than 7a-hydroxy-

DHEA and that the ratio of 7b-hydroxy-DHEA to 7a-hydroxy-

DHEA could be a marker to distinguish between vascular dementia

and Alzheimer’s disease [45]. Moreover, other 7b-hydroxy-steroids

appear to have important protective actions in the brain. For

example, Pringle et al. reported more efficient reduction of ischemia-

induced neuronal damage by 7b-hydroxy-epiandrosterone com-

pared with its 7a-epimer, both in vivo and in vitro [46].

Interestingly, a single-nucleotide polymorphism associated with

a six-fold increased risk for sporadic Alzheimer’s disease was

recently identified in the promoter region of the HSD11B1 gene.

The polymorphism reduced promoter activity, and the authors

suggested that 11b-HSD1 might act as a dehydrogenase in

hippocampus and that the polymorphism may result in insufficient

inactivation of glucocorticoids with increased neuronal damage

[47]. Our data indicate that this polymorphism also will alter levels

of 7a-hydroxy- and 7b-hydroxy-DHEA and -pregnenolone,

respectively, in the brain, which could contribute to the increased

incidence of Alzheimer’s disease. A previous study on the

distribution of H6PDH activity indicated a ten-fold lower

expression in the brain compared with the liver, but the exact

localization has not been determined [48]. It will be important to

investigate the distribution and activity of H6PDH in specific

regions of the brain, with respect to the metabolism of both

glucocorticoids and C7-oxygenated steroids by 11b-HSD1.

In conclusion, we provide evidence for a role of 11b-HSD1 in

the regulation of the relative ratios of 7a-hydroxy-, 7b-hydroxy-

and 7-keto-metabolites of DHEA and pregnenolone, respectively.

11b-HSD1 acts as a reversible enzyme, whereby H6PDH by

providing cosubstrate NADPH mediates a shift in the steady state

ratio from inactive to active glucocorticoids and from 7a-hydroxy-

and 7-keto-steroids to their 7b-hydroxy-forms, respectively. The

role of 11b-HSD1 and H6PDH in the metabolism of neuroster-

oids should be kept in mind when using 11b-HSD1 inhibitors for

treatment of patients with the metabolic syndrome.

MATERIALS AND METHODS

Materials
Cell culture media were purchased from Invitrogen (Carlsbad, CA),

[1,2,6,7-3H]-cortisone from American Radiolabeled Chemicals (St.

Louis, MO), [1,2,6,7-3H]-cortisol from Amersham Pharmacia

(Piscataway, NJ, USA), 5H-1,2,4-triazolo(4,3-a)azepine,6,7,8,9-tet-

rahydro-3-tricyclo(3?3?1?13?7)dec-1-yl (T0504) from Enamine (Kiev,

Ukraine), and reagents for derivatization from Pierce (Rockford, IL).

DHEA, 7-keto-DHEA, 7a-hydroxy-DHEA, 7b-hydroxy-DHEA,

5a-androstane-3b-ol-7,17-dione, pregnenolone and 7-ketopregne-

nolone were obtained from Steraloids (Wilton, NH). BNW7 was

kindly provided by Dr. Thomas Wilckens, BioNetWorks GmbH,

Munich, Germany. All other chemicals were from Fluka AG (Buchs,

Switzerland) of the highest grade available.

Cell culture and transient transfection
HEK-293 cells were cultured in Dulbecco’s Modified Eagle’s

Medium (DMEM) supplemented with 10% fetal calf serum (FCS),

50 units/ml penicillin, 50 mg/ml streptomycin and 2 mM glutamine.

Cells were transfected with expression plasmids for FLAG-tagged

11b-HSD1 and myc-tagged H6PDH or pcDNA3.1 control using the

Ca2+-phosphate precipitation method. The epitope tags had no effect

on enzymatic activities or expression levels of 11b-HSD1 and

H6PDH [10,49]. A total amount of 8 mg DNA was used per 10 cm

culture dish or 2 mg DNA per well of a six-well culture plate.

11b-HSD activity assays
The enzyme activity in intact cells was measured as described [10].

Briefly, HEK-293 cells, grown in 10 cm culture dishes and

transfected with FLAG-tagged 11b-HSD1 alone or co-transfected

with myc-tagged H6PDH, were detached 24 h post-transfection

and distributed in 96-well plates at a density of 309000–409000

cells per well. After 16 h, cells were incubated in serum- and

steroid-free medium and the conversion of radiolabeled cortisone

to cortisol (or the reverse activity) was determined upon incubation

for 1 h at 37uC in a total volume of 50 ml containing 200 nM

cortisone (or cortisol). The reaction was stopped by adding

methanol containing 2 mM unlabeled cortisone and cortisol,

followed by separation of steroids by TLC and scintillation

counting. Measurements with freshly prepared cell lysates were

carried out in the presence of [1,2,6,7-3H]-cortisone and cofactor

NADPH at final concentrations of 200 nM and 500 mM for the

reductase reaction and with 50 nM [1,2,6,7-3H]-cortisol and

500 mM cofactor NAD+ for the dehydrogenase reaction, re-

spectively, in the absence or presence of various concentrations of

competing 7-oxygenated neurosteroid ligands. The concentration

of dimethylsulfoxide or methanol from the solvent was 0.1% in all

reactions and had no effect on enzyme activity. Data (mean6SD)

were obtained from four independent experiments and were

calculated using the Data Analysis Toolbox (Elsevier MDL,

Allschwil, Switzerland).

Measurement of 7-keto-steroid reductase and

7-hydroxy-steroid dehydrogenase activity in intact

cells
HEK-293 cells were seeded in six-well plates at a density of

9009000 cells per well. After 24 h, cells were transfected with

expression vector for 11b-HSD1 or co-transfected with vectors for

11b-HSD1 and H6PDH. An empty pcDNA3.1 plasmid was used

in transfections lacking H6PDH to adjust total DNA amounts in

all samples. The medium was replaced 18 h post-transfection by

steroid-free medium followed by addition of 1 mM of the steroid

substrate to be tested. Compound T0504 at 1 mM was used in

control reactions to achieve almost complete inhibition of 11b-

HSD1 [33,34]. After incubation for various time intervals,

reactions were terminated by addition of an equal volume of

dichloromethane, containing 500 ng medroxyprogesterone as an

internal standard. Since radiolabeled C7-oxygenated metabolites

were not commercially available, we applied GC-MS for de-

tection. Steroids were extracted and the organic phase separated

after centrifugation for 5 min at 20006g. The organic solvent was

evaporated under nitrogen flow, 500 ng of stigmasterol added as

an external standard, and the solvent evaporated again. De-

rivatization was carried out by adding 100 ml of 2% methox-

yamine-HCl in pyridine, followed by incubation at 60uC for 1 h.

After evaporation of the solvent, 100 ml of trimethylsilylimidazole

was added and the samples were incubated for 16 h at 100uC.

After cooling to 25uC, the samples were dissolved in 500 ml of

cyclohexane:pyridine:hexamethyldisilazane (98:1:1), and the ster-

oids were purified using Lipidex-500 columns. Finally, steroids

were dissolved in 200 ml of cyclohexane, sonicated for 2 min and
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subjected to GC-MS analysis on a Hewlett Packard gas

chromatograph 6890 equipped with a mass-selective detector

5973 by selected ion monitoring.

3D-Models of 11b-HSD1
Mouse 11b-HSD1 (PDB ID:1Y5R) was extracted from the Protein

Data Bank (PDB) for use as a template to investigate the

interactions of 7-keto-, 7a-hydroxy- and 7b-hydroxy-DHEA with

11b-HSD1. We used 1Y5R because it contains both corticoste-

rone and NADP+, which allows us to superimpose C7-DHEA

analogs on corticosterone. Human 11b-HSD1 (PDB ID: 1XU7)

and guinea pig 11b-HSD1 (PDB ID: 1XSE) were co-crystallized

with NADP+, but not with a glucocorticoid. The close similarity of

human and mouse 11b-HSD1, which have 81% sequence identity,

allows mouse 11b-HSD1 to be a good model for the interaction of

compounds with human 11b-HSD1 [35].

To investigate an alternative, inverted binding mode of 7-keto-

and 7-hydroxy-DHEA in 11b-HSD1, we used chenodeoxycholic

acid from E. coli 7a-hydroxysteroid dehydrogenase (7a-HSD).

Chenodeoxycholic acid is an excellent template because it has a 7a-

hydroxyl. We superimposed the PDB file 1FMC (E. coli 7a-HSD

with chenodeoxycholic acid) with 1Y5R and extracted cheno-

deoxycholic acid, which was merged into 11b-HSD1. For

conversion of the 7a-hydroxyl to a ketone or a 7b-hydroxyl we

used the Biopolymer option in Insight II. The energy of each

model of 11b-HSD1 with C7-DHEA analogs was minimized using

Discover 3 (Accelrys Inc., San Diego, CA, USA), which was run

for 10,000 iterations, using a distant dependent dielectric constant

of 2.
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