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,e clarity improvement and the noise suppression of digital subtraction angiography (DSA) images are very important.
However, the common methods are very complicated. An image time-domain integration method is proposed in this study,
which is based on the blood flow periodicity. In this method, the images of the first cardiac cycle after the injection of the
contrast agent are integrated to obtain the time-domain integration image. ,is method can be used independently or as
a postprocessing method of the denoising method on the signal image. ,e experimental results on DSA data from an aortic
dissection patient show that the image time-domain integration method is efficient in image denoising and enhancement,
which also has a good real-time performance. ,is method can also be used to improve the denoising and image enhancement
effect of some common models.

1. Introduction

Circulatory system diseases, such as aortic dissection, have
been the focus of medical research [1, 2] for their danger-
ousness and high incidence. Improving the clarity of the
captured medical image helps us to diagnose more accu-
rately, which is an important research field.

Digital subtraction angiography (DSA), as a real-time
approach, is commonly employed in the clinical diagnosis
of circulatory system disease [3, 4], especially in the real-
time surgical monitoring and the medical examination
among small branches of blood vessels which are difficult to
be measured by other methods. In order to protect the
patient, it is important to shorten the shooting time and to
reduce the dosage of contrast media when capturing the
images.

A lot of image denoising methods have been proposed
in recent years, but they are all problematic when applied to
the DSA images. For example, the image reconstruction

method based on the level set theory [5], wavelet de-
composition and reconstruction method [6, 7], Bayesian
method [8], and image denoising method based on an-
isotropic diffusion [9] generally need a long operation time,
which cannot meet the real-time requirements of DSA
image processing. Moreover, images processed by these
approaches are usually not clear enough to show the details
such as edges and textures. In 2004, Candes et al. [10]
proposed an image denoising method based on the sparse
decomposition. On this basis, Needell and Vershynin [11]
proposed the regularized orthogonal matching pursuit
(ROMP) method; Scholefield and Dragotti [12] used
a sparse quadtree decomposition representation to remove
the noise in images; Adler et al. employed the shrinkage
learning approach to acquire the high-resolution re-
construction image [13–17]. However, the operation of
these approaches is also very complicated. ,erefore, it is
necessary to find an image processing method which is
more suitable for the real-time analysis of DSA images.
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In this work, an image time-domain integration method
based on blood flow periodicity has been proposed. In this
algorithm, the DSA images of the first cardiac cycle after the
injection of the contrast agent are extracted denoised by the
wavelet reconstruction method firstly, and then these images
are integrated to obtain the time-domain integration image,
which is named after the TDI image in this paper. ,is
method contributes to the diagnosis of circulatory system
diseases.

2. Materials and Methods

2.1. ,e Noise Model. ,e theoretical gray-scale wj(x0, y0)

at a certain pixel (x0, y0) on the j-th frame of DSA images
can be obtained from the following equation by the
Lambert–Beer law [18, 19]:

wj x0, y0(  � −ln
Ij x0, y0( 

I0 x0, y0( 
 

� −ln e
−k×C

Vj x0 ,y0( )
c Vj( dV

⎛⎝ ⎞⎠ � k × Nj x0, y0( ,

(1a)

where I0 and Ir are the X-ray transmission amount
before and after the addition of the contrast agent, re-
spectively. Vj(x0, y0) is the volume of blood vessels at pixel
(x0, y0). Nj(x0, y0) and c(Vj) are the number and amount
of substance concentration of contrast agent particles
at pixel (x0, y0), respectively. k donates the absorption
coefficient.

,e image quality degrades in the original DSA image,
as a result of the limitations on the imaging system’s
resolution and the influence of additive noise such as
Gaussian noise, which is donated by wj and can be
expressed in as follows [6]:

Wj � wj ∗hj + nj, (1b)

where hj and nj represent the point spread function and the
additive noise, respectively. Operator “∗” is the convolution
operator. Equation (1b) can be rewritten to matrix form
using the block Toeplitz matrixHj, as shown in the following
equation:

Wj � wj · Hj + nj. (1c)

It is difficult to solve Equation (1c) when only Wj is
given. However, since the gray-scale level of a certain pixel is
proportional to the number of contrast agent particles in that
pixel, the number of contrast agent particles follows the
motion pattern of blood. And as for the blood motion
pattern, on consideration of the periodicity of human
heartbeat, the blood flow rate in human body is also cyclical,
which can be expressed in the following equation:

vb(nT + t) � vb(t) + Ψ vb( , t ∈ Z, (2)

where vb(nT + t) is the velocity field of blood at time
(nT + t). vb(t) denotes the average velocity field of blood at

time t, which is the mean flow velocity at the same time in
multiple cardiac cycles. T is the length of the cardiac cycle.
Ψ(vb) characterizes the changes in flow velocity owing to
factors such as the instability of human blood pressure.
Ψ(vb) can be regarded as a zero-mean-value distribution
with a small variance, since patients are under the total
anesthesia during the shooting process and their vital signs
remain stable. According to theWilke–Chang equation [20],
the free diffusion rate of the contrast agent in the blood is
much smaller than the blood flow rate, and thus the contrast
agent obeys the same movement law as the blood.,erefore,
the periodicity of the blood flow rate can be employed to
improve the clarity of DSA images.

2.2. Image Integration. In order to decrease the shoot time
and the contrast agent’s injection quantity, images in
the first cardiac cycle (donated by the cardiac cycle S) after
the injection of the contrast agent are analyzed in this
study. Firstly, the time at which the cardiac cycle begins
is set to be t � 0. Subsequently, the velocity of the i-th
contrast agent particle in this cardiac cycle is expressed as
ui(t) � (ui(t) · x, ui(t) · y, ui(t) · z). Since the motion of
the contrast agent particles is consistent with that of
the blood, and on consideration of the velocity stability
shown in Equation (2), the velocity of the particle at each
position on its trajectory can be regarded as a sample of the
blood flow field at that location. ,erefore, once the
substantial number of particles is extracted, the average
velocity field of the contrast agent at the pixel (x0, y0) in the
entire cardiac cycle can be estimated by the mean velocity
field value of particles which flowed through that pixel
during the calculated cardiac cycle, as shown in the fol-
lowing equation:

vc x0, y0(  �
1

N x0, y0( 


N x0 ,y0( )

i�1
ui ti( , (3a)

where ti represents the time when the i-th particle
approached pixel (x0, y0).

,e total time length that the i-th particle appears in
pixel (x0, y0) during one cardiac cycle T satisfies Equation
(3b), where Li(x0, y0) represents the distance of the i-th
particle in the range of pixel (x0, y0) and ui,//(x0, y0) is set to
be the magnitude of velocity component which is parallel to
the image plane in pixel (x0, y0) during that cardiac cycle
since the photographing each DSA image can be regarded as
a sample of each particle’s location:

Ti x0, y0(  � min
Li x0, y0( 

ui,// x0, y0( 
, T . (3b)

A variate λ is set to represent the absorption capacity of
light in the unit time of a single contrast agent particle. After
that, the time-weighted gray-scale value of the i-th particle at
pixel (x0, y0), pi(x0, y0), can be expressed by the following
equation:

pi x0, y0(  � λ · Ti x0, y0( . (3c)
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On combination of Equations (3a)–(3c), vb,//(x0, y0) can
be characterized by the sum of the time integral intensities of
particles which have appeared in pixel (x0, y0) during the
cardiac cycle, as shown in the following equation:
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,

(3d)

where L is the average moving distance of the contrast agent
particles within that pixel. Since the size of a pixel is small, L

is approximately equal to the length of each pixel, Lpixel.
According to Equations (1a) and (3d), when the frame rate
M tends to infinity, the following equation can be obtained:
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(3e)

Equation (3e) demonstrates that the overall time-
domain integration value of pixel (x0, y0), b(x0, y0), can
be expressed as the integral of each picture’s gray value at
that position in the entire cardiac cycle. On consideration
that the time step Δt is short in the actual case, Equation
(3e) can be employed in the calculation of the captured
DSA images. ,erefore, the relationship shown in
Equation (3f ) can be established. And the image b is
named after the time-domain integration image or the
TDI image:

b x0, y0(  � 
M−1

j�0
wj x0, y0(  × Δt 

� λ × Lpixel ×
N x0, y0( 

vc,// x0, y0( 
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(3f)

Furthermore, to strength the denoising effect, the images
are denoised by the median filter before the time-domain
integration since Ling’s work [21] shows that the noiseless
image is usually insensitive to a median filter. Table 1 shows
the specific steps of our method.

3. Results

Figure 1 shows a group of DSA images from a patient with
aortic dissection. Figures 1(a1)–1(c1) are the DSA images at
t � 1/6T, 1/2T, and 5/6T, respectively. Figure 1(d1) is the
TDI image of the dissecting aneurysm extracted by our
algorithm. For the sake of comparison, the image of dis-
secting aneurysm region in Figures 1(a1)–1(c1) are
extracted and then the normalized gray-scale histograms of
dissecting aneurysm regions among Figures 1(a1)–1(d1)
are obtained, which are shown in Figures 1(a2)–1(d2),
respectively. Table 2 shows the mean value, standard de-
viation, and coefficient of variation of DSA images of the
dissecting aneurysm region in one cardiac cycle of the
patient in Figure 1.

Table 2 shows that the coefficient of variation of the TDI
image is higher than all the DSA images in that cardiac cycle,
which means that our TDI image can enhance the details.
Moreover, the gap between the peaks in Figure 1(d2) is
clearer than those in Figures 1(a2)–1(c2), which means that
our TDI image has higher resolution than the original
images.

4. Discussion

Since the blood flow velocity has a certain degree of un-
certainty in the actual situation, which directly influenced
the gray-scale value of the shot DSA image, Equation (1c)
can be rewritten as follows:

Wj � wj · Hj + nj � qj + Φj  · Hj  + nj, (4)

where qj donates the gray-scale value after the removal of
motion randomness.

Equations (3f ) and (4) illustrate that the time-domain
integration image b can be obtained by the following
equation:

b � Δt × 

M−1

j�0
Wj

⎛⎝ ⎞⎠ � Δt × 

M−1

j�0
qj + Φj  · Hj + 

M−1

j�0
nj

⎛⎝ ⎞⎠

� Δt × 
M−1

j�0
qj + Gj ⎛⎝ ⎞⎠,

(5a)

where matrix Gj is defined to characterize the differences
between Wj and qj. A new symbol bx is defined here, which
represents the noise-free time-domain integration image.
bx � 

M−1
j�0 qj. ,en, the error analysis of Equation (5a) is

implemented below.

Table 1: ,e image time-domain iteration method.
1. Delineate the region-of-interest
2. Extract the images in the first cardiac cycle after the contrast
agent enters the region-of-interest
3. Image denoising with the median filter
4. Extract the time-weighted image, pi: pi � Wj × Δtj

5. Image time-domain integration, b � 
M−1
j�0 pi

6. Extract the TDI image in the region-of-interest
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vinlet(t) �

2.4e−7.557t sin(13.09t), 0≤ t≤ 0.24,
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According to Reference [22], when the cardiac cycle
length is 0.8 seconds, the blood flow rate at the aortic inlet,
denoted by vinlet, follows Equation (5b). ,e first part of
Equation (5b) denotes the ejection phase, which is followed by
a brief closure of blood after the closure of the aortic valve.
,e flow rate in the rest time is 0. Since the time varies when
each particle enters the view field, the time when they arrive at
the same position on the image also varies. ,erefore, the
number of images which satisfy Nj(x, y)≠ 0 is greater than
one in most positions. ,us, Equation (5c) can be obtained.

According to Equation (5c), the signal-to-noise ratio of
image b (bx is defined as the noise-free image in this cal-
culation) is higher than the mean signal-to-noise ratio of
original DSA images at each pixel. ,erefore, the result of

our method contains lower noise in the entire view field, and
our method can suppress the noise.

Furthermore, Equation (5d) can be deduced from
Equation (3e), where ‖‖2 stands for the two-norm of matrix.
According to Equation (5d), image b is closer to the noise-
free TDI image bx than all of the DSA images, which means
that image b has the highest clarity. ,us, the image b can
improve the clarity of the original DSA images.

5. Conclusion

In summary, this study presents a DSA image denoising and
enhancement method based on the periodicity of blood flow.
Firstly, the DSA images are reconstructed through the median
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Figure 1: A set of DSA images from a patient.

Table 2:,emean value, standard deviation, and coefficient of variation of DSA images of the aortic dissection for the patient in Figure 1 in
the first cardiac cycle after the contrast agent enters the aortic dissection.

Time 0 1/6T 1/3T 1/2T 2/3T 5/6T T TDI image
Mean 0.6794 0.6340 0.6948 0.6507 0.6958 0.5965 0.5978 0.6025
Standard deviation 0.3585 0.3452 0.3473 0.3554 0.3430 0.3784 0.3835 0.4425
Coefficient of variation (%) 52.77 54.44 49.98 54.62 49.30 63.44 64.15 73.44
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filter, and thenDSA images in a cardiac cycle are integrated and
the overall time-domain integration image b is obtained.
According to the mathematical derivation as well as the ver-
ification using aortic dissecting aneurysm images, this study
demonstrates that the TDI image of the contrast agent has
a lower overall noise than original DSA images, and it is also
clearer than the original image. ,is method can contribute to
the feature location extraction and disease prophylaxis in
circulatory disease, such as the first break’s position extraction
of aortic dissecting aneurysms and the analysis of stress dis-
tribution on vessel wall [23], which are also our future work.
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