
Phylogenetics

MIPUP: minimum perfect unmixed phylogenies

for multi-sampled tumors via branchings

and ILP

Edin Husi�c1, Xinyue Li2, Ademir Hujdurovi�c3,4, Miika Mehine5,

Romeo Rizzi6, Veli Mäkinen2, Martin Milani�c3,4,* and

Alexandru I. Tomescu2,*

1Department of Mathematics, London School of Economics and Political Science, London, UK, 2Department of

Computer Science, Helsinki Institute for Information Technology HIIT, University of Helsinki, Finland, 3University of

Primorska, UP IAM, Koper SI-6000, Slovenia, 4University of Primorska, UP FAMNIT, Koper SI-6000, Slovenia,
5Genome-Scale Biology Research Program, Research Programs Unit, Department of Medical and Clinical

Genetics, Faculty of Medicine, University of Helsinki, Medicum, Helsinki, Finland and 6Department of Computer

Science, University of Verona, Verona, Italy

*To whom correspondence should be addressed.

Associate Editor: Russell Schwartz

Received on February 13, 2018; revised on July 8, 2018; editorial decision on July 30, 2018; accepted on August 7, 2018

Abstract

Motivation: Discovering the evolution of a tumor may help identify driver mutations and provide a

more comprehensive view on the history of the tumor. Recent studies have tackled this problem

using multiple samples sequenced from a tumor, and due to clinical implications, this has attracted

great interest. However, such samples usually mix several distinct tumor subclones, which con-

founds the discovery of the tumor phylogeny.

Results: We study a natural problem formulation requiring to decompose the tumor samples into

several subclones with the objective of forming a minimum perfect phylogeny. We propose an

Integer Linear Programming formulation for it, and implement it into a method called MIPUP. We

tested the ability of MIPUP and of four popular tools LICHeE, AncesTree, CITUP, Treeomics to re-

construct the tumor phylogeny. On simulated data, MIPUP shows up to a 34% improvement under

the ancestor-descendant relations metric. On four real datasets, MIPUP’s reconstructions proved to

be generally more faithful than those of LICHeE.

Availability and implementation: MIPUP is available at https://github.com/zhero9/MIPUP as open

source.

Contact: martin.milanic@upr.si or alexandru.tomescu@helsinki.fi

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

1.1 Background
Cancer is an evolutionary disease, with new mutations accumulating

over time. Tumor genomes may carry up to thousands of mutations

and one of the major challenges in cancer research is to distinguish

between driver and passenger mutations. Furthermore, tumors are

composed of several genetically distinct subpopulations, each har-

boring driver mutations. Identifying the set of mutations that belong

to each subpopulation may help pinpoint which (gene) mutations

are drivers. Moreover, understanding the order in which each driver

mutation occurs will provide us with a more comprehensive view

of tumor evolution. This can lead to a better understanding

VC The Author(s) 2018. Published by Oxford University Press. 769

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 35(5), 2019, 769–777

doi: 10.1093/bioinformatics/bty683

Advance Access Publication Date: 8 August 2018

Original Paper

https://github.com/zhero9/MIPUP
https://academic.oup.com/

(Campbell et al., 2008; Nik-Zainal et al., 2012), and help in diagno-

sis and therapies (Newburger et al., 2013).

High-throughput sequencing can offer a moderately-priced, gen-

ome-wide perspective of the mutations involved in the subclones of

a tumor, as opposed to other more targeted methods such as single-

cell sequencing, fluorescence in situ hybridization (FISH), or silver

in situ hybridization (SISH) (Malikic et al., 2015). However, the

main drawback is that, by nature, more cell subpopulations are

mixed in each sample.

Given such tumor high-throughput sequencing data, several

questions pertain to it: what are the subpopulations of the tumor, in

what proportion they occur, and what is the evolutionary relation

among them. In case there is an evolutionary relation, the cell sub-

populations are also called subclones of the tumor. Various compu-

tational methods have been proposed to address these questions,

each answering a subset (or all) of them. Some methods assume as

input a single sequencing sample from a tumor (Hajirasouliha et al.,

2014; Schwartz and Shackney, 2010; Strino et al., 2013), whereas,

as we will review in Section 1.2 below, other start the analysis with

multiple samples.

In this paper we propose a multi-sample method for finding the

tumor evolution, called MIPUP (minimum perfect unmixed phyloge-

nies). MIPUP works by solving a problem equivalent to the

Minimum-Split-Row problem proposed by Hajirasouliha and

Raphael (2014), asking to minimally decompose the samples so that

they form a perfect phylogeny. This phylogeny model is a common

one, also used by e.g. Malikic et al. (2015), Popic et al. (2015), Jiao

et al. (2014), El-Kebir et al. (2015). The method of this paper

exploits a relation between perfect phylogenies and branchings in a

directed acyclic graph from (Hujdurovi�c et al., 2018). Based on it,

we give here a simple and efficient Integer Linear Programming

(ILP) formulation for this problem.

We tested MIPUP against four other popular tools for discovering

the tumor evolution, CITUP (Malikic et al., 2015), LICHeE (Popic

et al., 2015), AncesTree (El-Kebir et al., 2015), and Treeomics (Reiter

et al., 2017). We also tried testing against PASTRI (Satas and

Raphael, 2017), but we could not run it (see the Supplementary

Material). Under the perfect phylogeny assumption, over a range of

scenarios (read coverage 100 1000 and 10000, a number of samples

from 5 to 20) and 100 random trees simulated for each of these scen-

arios, MIPUP proved the most accurate in reconstructing the shape of

the phylogenetic tree. This was measured as a proportion of how

many of the original ancestor-descendant relations in the original tree

were kept also in the reconstructed tree, as done also in (Popic et al.,

2015) and in (El-Kebir et al., 2015). Our experiments show that, with

respect to the overall two best performing tools among these four,

MIPUP improves this metric by up to 34% for read coverage 100, by

up to 11% for read coverage 1000, and by up to 20% for read cover-

age 10 000. In some cases, MIPUP reconstructs more than 92% of all

relations, also on low coverage datasets. MIPUP also appeared resili-

ent to a low number of loss of mutation events, which violate the per-

fect phylogeny assumption.

We also tested MIPUP and LICHeE on four real datasets. We

manually inspected the output of both, and compared them to the

reconstructions given in the papers the datasets were published in.

We observe that, even though both tools output overall comparable

trees, MIPUP’s results are generally more faithful to the original

reconstructions, and require much less input parameters to fix.

1.2 Related work
In this section we review several methods that analyze multi-sample

data from tumors. A few methods, such as Salari et al. (2013) and of

van Rens et al. (2015), are primarily focused on improving the vari-

ant calling results in each sample. Many other methods are instead

focused on reconstructing the evolutionary tree of the tumor using

multiple samples. Among these latter methods, CITUP (Malikic

et al., 2015), LICHeE (Popic et al., 2015) and AncesTree (El-Kebir

et al., 2015) assume only the variant allele frequencies (VAFs) of the

mutations. Other methods, such as PhyloWGS (Deshwar et al.,

2015), Canopy (Jiang et al., 2016), SPRUCE (El-Kebir et al., 2016),

also explicitly take into account copy-number aberrations.

Method CITUP works by exhaustively enumerating all possible

trees with up to Nmax nodes (where Nmax is provided by the user),

and decomposing each sample into several nodes of this tree. The fit

between each sample and the tree is one minimizing a Bayesian in-

formation criterion on the VAF values. This fit is computed either

exactly, with quadratic integer programming, or with a heuristic it-

erative method. The best tree is then output, together with the

decompositions of each sample as nodes of this tree.

Method LICHeE also tries to fit the VAF values to a phylogenet-

ic tree, but with an optimized search for such a tree. Mutations are

first assigned to clusters based on their frequencies (a mutation can

belong to more clusters). Then clusters are transformed to binary ab-

sence/presence vectors (with wildcards), based on two thresholds

below which, and above which, the value is transformed into a 0 or

a 1, respectively. Values in between are marked with a wildcard.

The containment relation between these vectors induces a directed

acyclic graph. Spanning trees of this graph are exhaustively enumer-

ated, and the ones best compatible with the mutation frequencies

are output.

Method AncesTree derives an ILP for the so-called VAF factor-

ization problem (VAFF), namely the problem of determining the

composition of each sample, including the number and proportion

of clones in each sample, and a tree that describes the ancestral

relationships between all clones. As the authors argue, this problem

generalizes several previous formulations, including the above-

mentioned (Hajirasouliha et al., 2014; Jiao et al., 2014; Malikic

et al., 2015; Strino et al., 2013). The implementation behind

AncesTree uses a more complex model than the VAFF problem, that

also accounts for errors and is solved with a Mixed ILP.

El-Kebir et al. (2015) also argue that in the case of a single input

sample, the VAFF problem generalizes the so-called Perfect

Phylogeny Mixture Problem also proposed by Hajirasouliha and

Raphael (2014), see (El-Kebir et al., 2015, p. i64). Note that El-

Kebir et al. (2015) propose an ILP for the initial VAFF problem,

which is thus also applicable to the Perfect Phylogeny Mixture

Problem. However, this problem is not equivalent to the problem

underlying MIPUP, as it only asks for some decomposition of the

samples into a perfect phylogeny, not necessarily a minimal one.

Therefore, we cannot directly compare the efficiency of the ILP

from this paper with the ILP of El-Kebir et al. (2015). See Table 1

for an overview of the advances relative to these two problems.

2 Materials and methods

2.1 Overview of the approach
In this section we give an informal overview of our approach. We

refer the reader to Figure 1 for a visual overview.

Assume we obtained samples r1; . . . ; rm from a tumor. Using a

somatic point mutation caller, such as VarScan 2 (Koboldt et al.,

2012), we can detect the somatic single nucleotide variants (SSNVs)

present in each sample and derive their VAF values from the read

alignments over their positions. Denote these SSNVs by c1; . . . ; cn.

We then build a binary matrix M with rows labeled r1; . . . ; rm and

770 E.Husi�c et al.

Deleted Text: ;
Deleted Text: ;
Deleted Text: ;
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty683#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty683#supplementary-data

columns labeled c1; . . . ; cn, such that Mi;j ¼ 1 if and only if the

VAF value of SSNV cj in sample ri is greater or equal to a given

threshold t.

Matrix M is the input to our problem. From it, we would like to

infer (i) the individual subclones of the tumor making up each sam-

ple ri (i.e., the binary pattern of SSNVs in each such subclone) and

(ii) the evolutionary relation among these unknown subclones.

Let us now make these notions more precise. In this paper we

consider the model and problem formulation proposed by

Hajirasouliha and Raphael (2014). This considers as evolutionary

relation among the tumor subclones the so-called perfect phylogeny

model, in line with previous studies such as (El-Kebir et al., 2015;

Jiao et al., 2014; Malikic et al., 2015; Popic et al., 2015). This

assumes that (i) all mutations in the parent cells are passed to the

descendants, and (ii) once a mutation occurs at a particular site, it

does not occur again at that site (the “infinite sites assumption”).

Being mixtures of subclones of the tumor, the rows of M may not

necessarily form a perfect phylogeny. Thus, we would like to split

each row ri of M into a set of rows Ri so that the resulting matrix M0

does correspond to a perfect phylogeny. (See Definition 2.2 for a for-

mal definition of the split operation, and Figure 2 for an example of

a matrix M and a matrix MB obtained by splitting the rows of M.)

Hajirasouliha and Raphael (2014) proposed to perform this split so

that the resulting matrix is “minimal”. Such parsimony criterion is

often employed when modeling real-life problems, and it is one of

the most basic investigations one can perform.

More specifically, Hajirasouliha and Raphael (2014) proposed

that M0 has the minimum number of rows. In terms of perfect phyl-

ogeny trees, this means that we are looking to split each sample into

a collection of subclones forming a perfect phylogeny, and the total

number of subclones from all samples is minimum. We will call this

problem MinimumConflict-FreeRowSplit (MCRS), see Section 2.2.

Hajirasouliha and Raphael (2014) claimed that the MCRS prob-

lem is NP-hard (and gave an incorrect proof), and in (Hujdurovi�c

et al., 2015, 2016) a correct hardness proof was given. Hujdurovi�c

et al. (2016) also proposed a polynomial-time heuristic algorithm

for it based on coloring co-comparability graphs and tested it on

real samples.

As opposed to the above heuristic algorithm, in this paper we

propose an exact algorithm for the MCRS problem. We obtain this

by using a recent result from (Hujdurovi�c et al., 2018) showing that

the problem is equivalent to a problem related to finding an optimal

branching in a directed acyclic graph. A branching is a subgraph in

which every vertex has out-degree at most 1. We formally describe

this correspondence in Section 2.3. Using this branching formula-

tion, we then show in Section 2.4 that the MCRS problem can be

expressed using ILP, and solve it using the CPLEX ILP solver.

See Table 1 for a summary of these results.

2.2 Problem formulation
A binary matrix M 2 f0;1gm�n is a matrix having m rows and n col-

umns, and all entries 0 or 1. Each row of such a matrix is a vector in

f0;1gn; each column is a vector in f0; 1gm. We will denote by RM ¼
ðriÞ1� i�m and CM ¼ ðcjÞ1� j�n the families of rows and columns of

M, respectively. The entry of M at row ri and column cj will be

denoted by Mi;j or Mri ;j when appropriate. For brevity, we will often

write “the number of distinct rows (resp., columns) of M” to mean

Table 1. Advances relative to the MCRS and the VAFF problems

NP-hardness Heuristic algorithms ILPs

Hajirasouliha and Raphael (2014) Only claimed Only claimed

Hujdurovi�c et al. (2015, 2016) Yes Yes

Hujdurovi�c et al. (2018) Strengthened to APX-hardness Yes Proved equivalence of problems MCRS and

MUB (from Sec. 2.3)

This paper Yes, based on MCRS equivalent to MUB

El-Kebir et al. (2015) For VAFF problem, does not apply

to MCRS

For VAFF problem, does not apply to MCRS

(a)

(b)

(d) (f)(c)

(e)

Fig. 1. Overview of the approach. In (a) we illustrate a tumor with six subclones labelled A; . . . ; F . In (b) we illustrate a binary matrix M 0 such that every row is a

tumor subclone, and every column is an SSNV found in at least one of the subclones (here the SSNVs are labeled c1; . . . ; c8). A 1 indicates presence and a 0 indi-

cates absence of that SSNV in a subclone. In (c) we show the perfect phylogeny tree that gave rise to these patterns of mutations; here every subclone is a leaf of

the tree and every SSNV labels an edge (and only one) of the tree. The SSNVs present in a subclone are the ones labeling the path from the root of the tree to the

corresponding leaf. For example, the SSNVs present in subclone A are fc1; c4; c6g, which are the same as the columns containing a “1” on row A in matrix M

from (b). In practice, each sequencing sample may generally contain more than a single subclone of a tumor. In (d) we show four samples r1; . . . ; r4 sequenced

from the tumor, some combining more than one subclone. In (e) we show the binary matrix M indicating presence/absence of the SSNVs in each of these four

samples. Observe that each row ri of M is the bitwise OR of the binary rows of M 0 corresponding to the subclones that are in sample ri. For example, sample r1

contains subclones A, B, C, and thus row r1 of M is the bitwise OR of rows A, B, C of M 0. Figure 1f shows the same perfect phylogeny tree as in (c), in which we

again mark the phylogeny nodes being combined in each sample ri. Matrix M is the input to our problem, and matrix M 0 and the phylogeny tree corresponding to

M 0 are the unknowns that must be reported in output

Minimum perfect unmixed phylogenies 771

Deleted Text: ,
Deleted Text:

“the maximum number of pairwise distinct rows (resp., columns) of

M”. Two rows (resp., columns) are considered distinct if they differ

as binary vectors. All binary matrices in this paper will be assumed

to contain no row in which all entries are 0.

DEFINITION 2.1. Given a matrix M, three distinct rows r, r0; r00 of M and

two distinct columns i and j of M, we denote by M½ðr; r0; r00Þ; ði; jÞ� the

3� 2 submatrix of M formed by rows r, r0; r00 and columns i, j (in this

order). Two columns i and j of a binary matrix M are said to be in con-

flict if there exist rows r; r0; r00 of M such that

M½ðr; r0; r00Þ; ði; jÞ� ¼

1 1
1 0
0 1

!
:

We say a binary matrix M is conflict-free if there exist no two

columns of M that are in conflict.

The rows of a binary matrix M are the leaves of a perfect phylo-

genetic tree if and only if M is conflict-free, see (Estabrook et al.,

1975; Gusfield, 1997). Moreover, if this is the case, then the corre-

sponding phylogenetic tree can be retrieved from M in time linear in

the size of M (Gusfield, 1991). As such, we formulate our problems

just in terms of finding optimal conflict-free matrices.

REMARK 2.1. We are following here the formalism on perfect phylogenies

from (Gusfield, 1991). Namely, each row of a matrix is a leaf of the

phylogenetic tree, and columns label edges. However, a leaf whose

in-coming edge has no label is in fact an internal node of the evolution,

that is, it has no “private” mutations. See for example Figure 1c where

leaves C and E have no labels on the in-coming edges. We follow the

same formalism in the trees output by MIPUP, see Figure 3.

DEFINITION 2.2. Let M 2 f0; 1gm�n. Label the rows of M as r1; r2; . . . ; rm. A

binary matrix M0 2 f0;1gm0�n is a row split of M if there exist a partition of

the set of rows of M0 into m sets R1;R2; . . . Rm such that for all

i 2 f1; . . . ;mg, ri is the bitwise OR of the binary vectors in Ri. The set Ri of

rows of M0 is said to be the set of split rows of row ri (with respect to M0).

For simplicity, we defined a row split as a binary matrix M0 for

which a suitable partition of rows exists. However, throughout the

paper we will make a slight technical abuse of this terminology by

considering any row split M0 of M as already equipped with an arbi-

trary (but fixed) partition of its rows R1; . . . ;Rm satisfying the above

condition.

We denote by cðMÞ the minimum number of rows in a conflict-

free row split M0 of M. Formally, the minimum conflict-free row

split problem is defined as follows:

MinimumConflict-FreeRowSplit (MCRS):

Input: A binary matrix M.

Task: Compute cðMÞ and find a conflict-free row split M0 of M

with cðMÞ rows.

Fig. 2. An example of a binary matrix M, its containment digraph DM, a branching B, and the resulting B-split MB of M. The row split MB is an optimal solution to

the MCRS problem given M. Pairs (r, v) for which r is underlined as an element of v in the figure showing B are exactly the uncovered elements with respect to B.

Figure adapted from (Hujdurovi�c et al., 2018)

Fig. 3. From left to right: the output of MIPUP, LICHeE and the tree reported in the original publication, for dataset RMH008 from (Gerlinger et al., 2014). The last

row of square gray nodes in the trees of MIPUP are the original samples. The oval nodes are the rows in which the input matrix is split. Notice that, due to our

tree building algorithm, they are drawn as leaves of the phylogeny. However, if their in-coming edge has no label (i.e., no mutations occurring on that edge) then

they are actually internal nodes of the evolution, recall Remark 2.1. For example, node R1 is internal to the evolution. Arrows indicate the composition of the ori-

ginal samples in terms of split rows. The legend contains the equalities among split rows; only one split row in each equality class is a node of the tree

772 E.Husi�c et al.

2.3 The branching formulation
In this section we review the formulation from (Hujdurovi�c et al.,

2018) of the MCRS problem in terms of branchings in a directed

acyclic graph (DAG). We refer the reader to (Hujdurovi�c et al.,

2018) for the proof of this equivalence. In Section 2.4 we will use

this formulation to write an ILP for the problem.

DEFINITION 2.3. Let D ¼ ðV;AÞ be a DAG. A branching of D is a subset

B of A such that (V, B) is a directed graph in which for each vertex v

there is at most one arc leaving v.

The following construction can be performed on any given binary

matrix M and results in a DAG. Given a column cj 2 CM, the sup-

port of cj is the set defined as fri 2 RM : Mi;j ¼ 1g and denoted by

suppMðcjÞ. Given a binary matrix M 2 f0; 1gm�n, the containment

digraph DM of M is the DAG with vertex set V ¼ fsuppMðcÞ : c 2
CMg and arc set A ¼ fðv; v0Þ : v; v0 2 V ^ v � v0g where � is the rela-

tion of proper inclusion of sets.

Let M 2 f0; 1gm�n be a binary matrix, let DM ¼ ðV;AÞ be the

containment digraph of M, and let B be a branching of DM. For a

vertex v 2 V, we denote by N�B ðvÞ the set of all vertices v0 2 V such

that ðv0; vÞ 2 B. A source of B is a vertex not entered by any arc of B.

For a vertex v 2 V, an element r 2 v (that is, a row of M) is said to

be covered in v with respect to B (or just B-covered) if r 2 [N�B ðvÞ.
Analogously, we say that r 2 v is uncovered in v with respect to B if

r is not covered in v. A B-uncovered pair is a pair (r, v) such that r

is a row of M, v is a vertex of DM (that is, the support of a column of

M), r 2 v, and r is uncovered in v with respect to B. For a row r of

M, we will denote by UBðrÞ the set of all B-uncovered pairs with first

coordinate r, and by U(B) the set of all B-uncovered pairs. We illus-

trate these notions in Figure 2, where two branchings B1 and B2 of

the arc set of DM are depicted, together with uncovered pairs (r, v)

with respect to each of the two branchings.

We denote with bðMÞ the minimum number of elements in U(B)

over all branchings B of DM. The corresponding optimization prob-

lem is the following:

MinimumUncoveringBranching (MUB):

Input:A binary matrix M.

Task: Compute bðMÞ and find a branching B of DM with jUðBÞj ¼ bðMÞ.

The announced equivalence between the MCRS and the MUB

problems is captured in the following result.

THEOREM 2.1: Hujdurovi�c et al. (2018). For every binary matrix M 2
f0; 1gm�n with exactly k distinct columns, we have cðMÞ ¼ bðMÞ.
Moreover, for any branching B of DM can be transformed in time

O(mkn) to a conflict-free row split of M with exactly jUðBÞj rows.

The following notion of B-split specifies how each branching B cor-

responds to a row split of M.

DEFINITION 2.4. Let M be a binary matrix with rows r1; . . . ; rm and columns

c1; . . . ; cn. For a branching B of DM, we define the B-split of M, denoted by

MB, as the matrix with rows indexed by the elements of the set U(B), and

columns c01; . . . ; c0n, as follows. Let V ¼ VðDMÞ and for all j 2 f1; . . . ; ng,
let vj ¼ suppMðcjÞ (so vj 2 V). For a vertex v 2 V, we denote by BþðvÞ the

set of all vertices in V reachable by a directed path from v in (V, B) [note

that v 2 BþðvÞ�. For all ðr; vÞ 2 UðBÞ and all j 2 f1; . . . ; ng, set:

MB
ðr;vÞ;j ¼

1; if vj 2 BþðvÞ;
0; otherwise:

�

See Figure 2 for an example of a binary matrix M with two

branchings B1 and B2 of its containment digraph and the corre-

sponding row splits.

The proof of Theorem 2.1 from (Hujdurovi�c et al., 2018) shows

that the B-split of M is conflict-free and has jUðBÞj rows. This means

that if we have a branching minimizing jUðBÞj, then the B-split of

this branching is an optimal solution for the MCRS problem.

2.4 ILP formulation
The notion of B-split can be used to transform an optimal solution

to the problem of computing one of the parameters fb; cg to an opti-

mal solution for the other parameter. The problem formulation in

terms of b is directly expressible in terms of packing and covering

constraints, and thus leads to a natural integer programming formu-

lation of the MUB problem. We will express the ILP only in terms of

finding the value bðMÞ. However, the optimal branching attaining

this value can be trivially retrieved from the values of the variables

in an optimal solution of the ILP.

REMARK 2.2. It is easy to check that the decision version of the MCRS

problem is in NP and thus admits a polynomially-sized certificate.

Furthermore, since Integer Linear Programming is NP-hard, it follows

that there exists a polynomially sized ILP formulation of the MCRS

problem. However, applying Theorem 2.1 allows to obtain a direct and

simple polynomially-sized ILP formulation for it, which will also turn

out to be efficient in practice.

Let M be the input binary matrix to the problem, and let DM ¼
ðV;AÞ be its containment digraph. Our goal is to find a branching B

of DM minimizing the number of elements in U(B). We introduce

the following binary variables:

• for every edge ðu; vÞ 2 A, we introduce a variable xu;v with the

intended meaning that xu;v ¼ 1 if and only if ðu; vÞ 2 B;
• for all v 2 V and for all r 2 v, we introduce a variable yr;v, mean-

ing yr;v ¼ 1 if and only if r is uncovered in v with respect to B.

Consider the following integer program: min
P

v2V

P
r2v yr;v

subject to

X
ðu;vÞ2A

xu;v � 1 8u 2 V (1)

yr;v þ
X

u2N�
A
ðvÞ:r2u

xu;v � 1 8r 2 v 2 V

xu;v; yr;v binary

(2)

THEOREM 2.2. The optimal value of the above integer program is bðMÞ.

PROOF. Let OPT denote the optimal value of the above ILP.

First, we prove that OPT � bðMÞ. Let B be a branching of DM

such that jUðBÞj ¼ bðMÞ. Define a binary vector x 2 f0; 1gA by

setting

xu;v ¼
1; if ðu; vÞ 2 B;
0; otherwise:

�

For every v 2 V and every r 2 v set yr;v ¼ 1 if and only if r is

uncovered in v with respect to B. The objective function value at

(x, y) equals to the sum, over all v, of the number of uncovered

Minimum perfect unmixed phylogenies 773

Deleted Text: (
Deleted Text:)
Deleted Text: (

elements in v with respect to B, that is, the size of U(B). The defin-

ition of a branching implies that constraints (1) are satisfied.

Consider now a constraint of type (1). Let v 2 V and r 2 v. If

yr;y ¼ 1, then the constraint holds due to the non-negativity of the

x-variables. If yr;v ¼ 0, then r is covered in v with respect to B.

This implies that there exists an arc ðu; vÞ 2 B such that r 2 u.

Since ðu; vÞ 2 B, it holds xu;v ¼ 1 and thus the constraint is satisfied

in this case. It follows that (x, y) is a feasible solution of the ILP with

objective function value jUðBÞj, therefore OPT � jUðBÞj ¼ bðMÞ.
The proof of the other inequality is similar. Let (x, y) be an opti-

mal solution to the ILP and let B be the set of arcs ðu; vÞ 2 A such

that xu;v ¼ 1. Constraints (1) guarantee that B is a branching of DM.

Constraints (2) and the optimality of (x, y) imply that for all v 2 V

and all r 2 v, we have yr;v ¼ 1 if and only if
P

u2N�
A
ðvÞ:r2u xu;v ¼ 0.

Indeed, if the above sum is at least 1, then setting yr;v to 0 would re-

sult in a feasible solution with strictly smaller objective function

value. Therefore, yr;v ¼ 1 if and only if ðu; vÞ 62 B for all u 2 N�A ðvÞ
such that r 2 u, which is in turn equivalent to the condition

r 62 [v02N�
B
ðvÞv

0, that is, r is uncovered in v (with respect to B). It fol-

lows that the objective function value at (x, y) equals the total num-

ber of uncovered pairs, that is, the size of U(B). We conclude that B

is a branching such that jUðBÞj ¼ OPT, which implies

bðMÞ � OPT. h

The above integer program has p ¼ jAj þ
P

v2V jvj binary varia-

bles and q ¼ jVj þ
P

v2V jvj constraints. In terms of the binary ma-

trix M, the numbers of variables and constraints can be described as:

p ¼ ‘þ o and q ¼ kþ o, where k, ‘, and o denote the number of

columns, the number of comparable pairs of columns (with respect

to the containment relation), and the number of ones in the matrix

obtained by taking from M exactly one copy from each set of identi-

cal columns, respectively. If M is m�n, then the number of varia-

bles is Oðnðmþ nÞÞ and the number of constraints is O(mn).

2.5 Implementation
MIPUP is implemented in Java and uses the CPLEX ILP solver.

MIPUP can report all optimal solutions, or at most a user-provided

number of optimal solutions.

The input format is the same as for LICHeE, namely a matrix

with VAF values of each SSNV in each sample. As input we also as-

sume a threshold t to transform VAF values into binary ones.

LICHeE applies a further filtering to the input matrix, namely

removing those weak SSNVs whose binary presence/absence pattern

in the samples appears strictly less than k times (option

minClusterSize) in the entire matrix (default k¼2). We also provide

a Python script that, given t and k, filters the matrix in this manner.

Apart from an optimal conflict-free row split binary matrix,

MIPUP also outputs the perfect phylogeny tree corresponding to it.

We label each edge of the tree with the set of mutations that occurred

along the edge. The label format is Sjnjmean6std, where S is an in-

ternal name for the group of mutations (the mutations corresponding

to each group are output in a separate file), n is the cardinality of S,

mean is the mean value of their VAF values, in all samples, and std is

the standard deviation of their VAF values. See the caption of Figure 3

for further details on the layout of the phylogenetic trees.

3 Experiments

3.1 Simulated data
We performed an evaluation of simulated data as done in (El-Kebir

et al., 2015) and in (Popic et al., 2015). Our evaluation pipeline is

freely available at https://github.com/huanyannizu/Data-simulation-

and-evaluation-in-MIPUP. We created uniformly at random a tree

with c nodes (i.e., clones), and randomly chosen a node as root.

This was done using an algorithm based on Prüfer’s encoding of a

labeled tree (Prüfer, 1918). We randomly assigned n mutations to

the nodes of this tree, making sure each node gets at least one muta-

tion. Our main experiments are with c¼10 and n¼100, as in

(El-Kebir et al., 2015). In order to see how the tools scale, we also

tested MIPUP, LICHeE, and Treeomics with c¼20, n¼200 and

c¼30, n¼300.

Note that, under the perfect phylogeny assumption, the muta-

tions in a node must be iteratively propagated to all descendants of a

node. To test also loss of mutation events, we added a further par-

ameter d 2 f0; 1; . . . ; 9g that denotes the number of times one of

these propagation events of a mutation in some node v (that may

have originated in v or in an ancestor of v) is not propagated to a

child u of v (and thus to none of the descendants of u). Note that

d¼0 corresponds to the perfect phylogeny assumption. We then

assigned to each node a random cell population size between 100

and 200.

We created a number of m samples from the tree as follows.

Each sample randomly selects 2–4 nodes of the tree, and will include

all cells and mutations in those nodes. As in (El-Kebir et al., 2015),

we then created three matrices, U, B, F: usage matrix U 2 R
m�c is

such that an entry (ri, cj) contains the fraction of cells of clone cj out

all the cells in sample ri; clonal matrix B 2 f0; 1gc�c is such that an

entry (ci, cj) equals 1 iff ci ¼ cj, or ci is a descendant of cj in the tree;

VAF value matrix F 2 R
m�c equals 1

2 UB and contains the true VAF

values of all mutations in each clone. See (El-Kebir et al., 2015,

Fig. 1) for details. We then unpack matrix F into Funpack 2 R
m�n,

which has a column for each mutation, so that the column corre-

sponding to mutation mj from clone ck is the same as column cj of F.

Note that tools MIPUP, LICHeE and CITUP accept in input

VAF values. However, tools AncesTree and Treeomics require reads

counts. For this reason, we simulated reads counts as in done in (El-

Kebir et al., 2015). Given a read coverage a 2 f100;1000;10 000g,
we draw the number of reads containing mutation mj in sample ri as

yri ;mj
� PoissðaÞ. We then draw the number of reads containing the

variant allele as xri ;mj
� Bionomialðyri ;mj

; Fri ;mj
Þ. The number of

reads containing the reference allele is yri ;mj
� xri ;mj

. The values

xri ;mj
=yri ;mj

are thus noisy VAF values that are used as input also for

MIPUP, LICHeE, CITUP.

For each m and each read coverage a 2 f100;1000;10 000g, we

simulated 100 trees and ran the tools on the above noisy read counts

and VAF values. For the main scenario ðc;nÞ ¼ ð10;100Þ [as in

(El-Kebir et al., 2015)], we chose m 2 f5; 10; 15; 20g. For

ðc; nÞ 2 fð20; 200Þ; ð30; 300Þg, where we were interested mainly in

the running times, we ran MIPUP, LICHeE, and Treeomics only for

m¼5 samples.

We evaluated how well the tools are able to reconstruct the ori-

ginal tree, as done in (Popic et al., 2015) and (El-Kebir et al., 2015).

Given the original tree, and given two mutations mi and mj in clones

ci and cj, we say that mi is an ancestor (resp. descendant) of mj if ci is

an ancestor (resp. descendant) of cj. An AD pair is an ordered pair

(mi, mj) of mutations such that mi is an ancestor of mj. Note that

two mutations in the same node are not an AD pair. Given an out-

put tree reported by each tool, we computed the fraction of AD pairs

in the original tree that were present in the output tree.

Note that MIPUP, CITUP, and Treeomics can report more out-

put “best” trees. (In MIPUP’s case, unless otherwise stated, we out-

put all optimal trees.) In this case, we report three results for them,

“Best”—the tree achieving the best results under our metric;

“Avg”—the average metric over all reported trees, and “Std”—their

774 E.Husi�c et al.

https://github.com/huanyannizu/Data-simulation-and-evaluation-in-MIPUP
https://github.com/huanyannizu/Data-simulation-and-evaluation-in-MIPUP
Deleted Text: -
Deleted Text: ,
Deleted Text: (
Deleted Text:)),
Deleted Text: &hx2013;

standard deviation. Note that results “Best” are usually unattainable

in practice.

The results for ðc;nÞ ¼ ð10;100Þ are in Table 2. For none, or

very few, losses of mutation (d � 2) MIPUP is generally the best

performing tool. As d increases, Treeomics becomes the best

performing tool. However, for large values of d, the results of all

tools are significantly worse than under the perfect phylogeny as-

sumption (d¼0). See Table 2 for results for d¼9 and the

Supplementary Material for all other values of d. While it appear

that Treeomics produces better results as we increase the number of

Table 2. The fraction of original AD pairs kept in the output trees by each method, for ðc;nÞ ¼ ð10; 100Þ and a number of d 2 f0; 1; 2; 9g of

loss of mutation events

d¼ 0 MIPUP LICHeE Treeomics CITUP Ances

Tree

m cov. Best Avg Std Best Avg Std Best Avg Std

d=0

5 100 0.734 0.718 0.04 0.672 0.702 0.681 0.02 0.111

1000 0.691 0.665 0.06 0.669 0.642 0.611 0.03 0.402 0.390 0.08 0.076

10000 0.720 0.702 0.04 0.680 0.654 0.614 0.04 0.383 0.368 0.09 0.084

10 100 0.871 0.855 0.04 0.734 0.825 0.810 0.01 0.017

1000 0.896 0.881 0.06 0.878 0.829 0.789 0.04 0.431 0.431 0.00 0.016

10000 0.878 0.856 0.06 0.843 0.758 0.710 0.05 0.397 0.392 0.14 0.018

15 100 0.897 0.888 0.03 0.732

1000 0.908 0.902 0.04 0.893

10000 0.924 0.918 0.04 0.909

20 100 0.934 0.918 0.05 0.684

1000 0.932 0.929 0.04 0.909

10000 0.949 0.945 0.04 0.928

d=1

5 100 0.650 0.621 0.07 0.541 0.637 0.619 0.02 0.095

1000 0.699 0.680 0.04 0.647 0.671 0.631 0.04 0.433 0.413 0.14 0.078

10000 0.663 0.644 0.04 0.594 0.619 0.593 0.03 0.412 0.396 0.11 0.089

10 100 0.773 0.757 0.03 0.633 0.756 0.737 0.02 0.016

1000 0.738 0.720 0.05 0.689 0.718 0.674 0.04 0.435 0.433 0.12 0.015

10000 0.792 0.775 0.05 0.715 0.730 0.650 0.07 0.459 0.458 0.20 0.015

15 100 0.799 0.785 0.03 0.630

1000 0.812 0.801 0.04 0.764

10000 0.832 0.827 0.02 0.787

20 100 0.826 0.819 0.02 0.645

1000 0.845 0.842 0.03 0.797

10000 0.828 0.825 0.03 0.774

d=2

5 100 0.555 0.537 0.03 0.443 0.556 0.525 0.03 0.095

1000 0.603 0.577 0.05 0.507 0.581 0.551 0.02 0.368 0.343 0.11 0.050

10000 0.619 0.585 0.06 0.520 0.618 0.573 0.04 0.412 0.390 0.14 0.047

10 100 0.691 0.671 0.04 0.577 0.720 0.687 0.03 0.017

1000 0.651 0.633 0.04 0.576 0.663 0.610 0.05 0.400 0.399 0.10 0.014

10000 0.684 0.665 0.05 0.594 0.661 0.589 0.07 0.434 0.426 0.13 0.014

15 100 0.692 0.679 0.04 0.555

1000 0.700 0.693 0.03 0.651

10000 0.735 0.722 0.06 0.677

20 100 0.670 0.660 0.03 0.534

1000 0.733 0.729 0.02 0.686

10000 0.683 0.681 0.01 0.645

d=9

5 100 0.223 0.197 0.20 0.158 0.307 0.277 0.03 0.019

1000 0.196 0.170 0.17 0.133 0.310 0.274 0.03 0.101 0.089 0.04 0.008

10000 0.228 0.199 0.20 0.164 0.344 0.323 0.02 0.127 0.112 0.05 0.012

10 100 0.178 0.165 0.16 0.139 0.336 0.308 0.03 0.005

1000 0.201 0.182 0.18 0.167 0.416 0.376 0.04 0.073 0.071 0.00 0.003

10000 0.255 0.237 0.24 0.216 0.530 0.461 0.06 0.099 0.099 0.00 0.004

15 100 0.187 0.182 0.18 0.160

1000 0.219 0.210 0.21 0.192

10000 0.195 0.190 0.19 0.173

20 100 0.204 0.201 0.20 0.174

1000 0.186 0.183 0.18 0.173

10000 0.215 0.213 0.21 0.198

Notes: Empty cells correspond to scenarios where the tools could not run (see the Supplementary Material for details). The best average results are in bold.

Minimum perfect unmixed phylogenies 775

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty683#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty683#supplementary-data

loss mutation events, it is worth noting that all models (MIPUP,

CITUP, Treeomics and LICHeE) do assume the perfect phylogeny

model.

Manually checking the outputs, we observe that one reason why

MIPUP performs better is that other tools (especially CITUP and

AncesTree) combine more parent-child nodes of the initial tree into

a single node, and thus are not able to recover the initial AD pairs

from these nodes (for example, in a few cases, AncesTree outputs a

tree made up of a single node).

As seen from Table 3, MIPUP (even when outputting all optimal

solutions) and LICHeE generally run in less than two seconds, and

Treeomics generally runs in less than one minute. The running time

of CITUP and AncesTree is an order of magnitude higher and more

variable.

3.2 Real data
We experimented on four real datasets: ultra-deep-sequencing of

clear cell renal cell carcinoma (ccRCC) (Gerlinger et al., 2014) (also

analysed by LICHeE), high-grade serous ovarian cancer (HGSC) by

(Bashashati et al., 2013), breast cancer xenoengraftment in immuno-

deficient mice (Eirew et al., 2015) and (four) clonally related uterine

leiomyomas (Mehine et al., 2015). The first three datasets are public

and were also considered by Popic et al. (2015). The public datasets

can also be found in the MIPUP repository, together with the experi-

ment results, and the scripts and parameters used to run them. We

ran only MIPUP and LICHeE on these real datasets.

In Supplementary Table S1 we show an overview of the sizes of

the input matrices. In Figure 3 we show the results on the RMH008

samples from the ccRCC study of Gerlinger et al. (2014). The results

on other samples are shown and discussed in the Supplementary

Material.

Even though the results of LICHeE and MIPUP generally agree,

in many instances there are many slight differences among them,

and MIPUP is generally closer to the original phylogenies proposed

in the papers analyzing the datasets. For example, on sample

RMH008 from Figure 3, MIPUP reports that samples R6 and R4

are combinations of two phylogeny nodes, which lie on a tree

branch together with R1, R2, and R3, and on a tree branch together

with R5, R7, and R8. This is in line with LICHeE’s prediction and

with (Gerlinger et al., 2014). However, there are some differences:

in line with (Gerlinger et al., 2014) (right branch), MIPUP reports

that R6 is made up of some SSNVs common only to R3, as opposed

to all of R1, R2, R3 in LICHeE’s case. It also reports that R6 is

made up of SSNVs common to R4, R5, R7 (node R6_2), in line with

(Gerlinger et al., 2014) (left branch), as opposed to all of R4, R5,

R7, R8 in LICHeE’s case.

Moreover, in order to run LICHeE accurately, the user must

guess many input parameters, while in MIPUP’s case the user must

fix only one, the threshold for converting a VAF value into a binary

one. In fact, for many of the samples in the ccRCC dataset analyzed

by LICHeE, the input parameters were chosen by LICHeE’s authors

as different from the default values.

4 Conclusion

MIPUP solves exactly and efficiently a natural problem related to

minimally unmixing sequencing samples so that they fit a perfect

phylogeny. We tested MIPUP against a large number of competing

tools, and shown that MIPUP reconstructs the original tree (under

the ancestor-descendant metric) significantly better. On real data,

MIPUP generally has more faithful reconstructions than LICHeE,

with much less input parameters to guess correctly. On the meth-

odological side, MIPUP’s novelty is in the reduction of a phylogeny

problem to a branching problem and in the search for the optimum

phylogeny embedded in the ILP formulation itself.

We believe that MIPUP’s performance stems from two ingre-

dients. First, from a much simpler problem formulation. Second,

MIPUP’s most significant increase in performance is for low read

coverage, where noisy data can have greater effects on methods

using VAF values explicitly. MIPUP transforms VAF values to bin-

ary ones. Since MIPUP does not try to reconstruct the proportion of

each clone in each sample, but only their ancestral relation, this

Table 3. Top: The running time (in seconds) of MIPUP, MIPUP limited to outputting only one optimal solution (MIPUP - one), LICHeE,

Treeomics, CITUP and AncesTree, for ðc;nÞ ¼ ð10; 100Þ. Bottom: The running time of MIPUP, MIPUP – one, LICHeE, Treeomics for ðc;nÞ 2
fð20; 200Þ; ð30; 300Þg and m¼ 5 samples

MIPUP MIPUP - one LICHeE Treeomics CITUP AncesTree

m coverage Avg Std Avg Std Avg Std Avg Std Avg Std Avg Std

5 100 0.22 0.06 0.17 0.02 1.30 0.09 5.05 0.53 9.85 59.48

1000 0.21 0.03 0.17 0.02 1.32 0.09 5.05 0.48 111.74 51.20 14.16 44.71

10000 0.21 0.03 0.17 0.02 1.31 0.09 5.33 0.60 118.15 63.62 12.93 10.56

10 100 0.23 0.05 0.17 0.02 1.36 0.09 37.77 1.97 125.58 221.44

1000 0.23 0.05 0.18 0.05 1.39 0.12 49.77 18.81 601.58 307.60 182.54 282.59

10000 0.22 0.03 0.17 0.02 1.36 0.09 56.88 20.02 693.58 377.32 143.07 258.04

15 100 0.29 0.20 0.16 0.02 1.36 0.09

1000 0.24 0.09 0.17 0.02 1.39 0.09

10000 0.23 0.02 0.17 0.02 1.38 0.09

20 100 0.27 0.11 0.18 0.02 1.39 0.09

1000 0.24 0.03 0.17 0.02 1.42 0.11

10000 0.24 0.04 0.17 0.03 1.40 0.11

MIPUP MIPUP - one LICHeE Treeomics

Avg Std Avg Std Avg Std Avg Std

20 nodes, 200 mutations 0.29 0.17 0.18 0.02 1.40 0.11 6.32 0.86

30 nodes, 300 mutations 0.36 0.21 0.18 0.02 1.46 0.14 7.21 0.95

776 E.Husi�c et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty683#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty683#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty683#supplementary-data

suggests that transforming VAF values into binary ones is actually a

more resilient choice for this scenario and thus an advantage for

MIPUP.

Acknowledgements

The authors thank Lauri Aaltonen and Mikko Kivikoski for fruitful discus-

sions and their support. They also thank the authors of LICHeE (Popic et al.,

2015) for e-mail support and making their experiment data and parameters

readily available.

Funding

This work has been supported in part by the Slovenian Research Agency (I0-

0035, research program P1-0285 and research projects N1-0032, N1-0038,

N1-0062, J1-7051 and J1-9110), the Academy of Finland (grant 274977) and

the Foundations of Computational Health program of the Helsinki Institute

for Information Technology HIIT.

Conflict of Interest: none declared.

References

Bashashati,A. et al. (2013) Distinct evolutionary trajectories of primary

high-grade serous ovarian cancers revealed through spatial mutational

profiling. J. Pathol., 231, 21–34.

Campbell,P.J. et al. (2008) Subclonal phylogenetic structures in cancer

revealed by ultra-deep sequencing. Proc. Natl. Acad. Sci., 105,

13081–13086.

Deshwar,A.G. et al. (2015) Phylowgs: reconstructing subclonal composition

and evolution from whole-genome sequencing of tumors. Genome Biol., 16,

35.

Eirew,P. et al. (2015) Dynamics of genomic clones in breast cancer patient

xenografts at single-cell resolution. Nature, 518, 422–426.

El-Kebir,M. et al. (2015) Reconstruction of clonal trees and tumor compos-

ition from multi-sample sequencing data. Bioinformatics, 31, i62–i70.

El-Kebir,M. et al. (2016) Inferring the mutational history of a tumor using

multi-state perfect phylogeny mixtures. Cell Syst., 3, 43–53.

Estabrook,G.F. et al. (1975) An idealized concept of the true cladistic charac-

ter. Math. Biosci., 23, 263–272.

Gerlinger,M. et al. (2014) Genomic architecture and evolution of clear cell

renal cell carcinomas defined by multiregion sequencing. Nat. Genet., 46,

225–233.

Gusfield,D. (1991) Efficient algorithms for inferring evolutionary trees.

Networks, 21, 19–28.

Gusfield,D. (1997). Algorithms on Strings, Trees and Sequences: Computer

Science and Computational Biology. Cambridge University Press, New York.

Hajirasouliha,I. et al. (2014) A combinatorial approach for analyzing

intra-tumor heterogeneity from high-throughput sequencing data.

Bioinformatics, 30, i78.

Hajirasouliha,I. and Raphael,B.J. (2014). Reconstructing mutational history

in multiply sampled tumors using perfect phylogeny mixtures. In

Algorithms in Bioinformatics - 14th International Workshop, WABI 2014,

Volume 8701 of LNCS, pp. 354–367. Springer, Berlin, Heidelberg.

Hujdurovi�c,A. et al. (2015). Finding a perfect phylogeny from mixed tumor

samples. In Algorithms in Bioinformatics - 15th International Workshop,

WABI 2015, Volume 9289 of LNCS, pp. 80–92. Springer, Berlin, Heidelberg.

Hujdurovi�c,A. et al. (2016) Complexity and algorithms for finding a perfect

phylogeny from mixed tumor samples. IEEE/ACM Trans. Comput. Biol.

Bioinformatics, 15, 96–108.

Hujdurovi�c,A. et al. (2018) Perfect phylogenies via branchings in acyclic

digraphs and a generalization of dilworth’s theorem. ACM Trans.

Algorithms, 14, 1.

Jiang,Y. et al. (2016) Assessing intratumor heterogeneity and tracking longitu-

dinal and spatial clonal evolutionary history by next-generation sequencing.

Proc. Natl. Acad. Sci., 113, E5528–E5537.

Jiao,W. et al. (2014) Inferring clonal evolution of tumors from single nucleo-

tide somatic mutations. BMC Bioinformatics, 15, 35.

Koboldt,D.C. et al. (2012) VarScan 2: somatic mutation and copy number al-

teration discovery in cancer by exome sequencing. Genome Res., 22,

568–576.

Malikic,S. et al. (2015) Clonality inference in multiple tumor samples using

phylogeny. Bioinformatics, 31, 1349–1356.

Mehine,M. et al. (2015) Clonally related uterine leiomyomas are common and

display branched tumor evolution. Hum. Mol. Genet., 24, 4407.

Newburger,D.E. et al. (2013) Genome evolution during progression to breast

cancer. Genome Research, 23, 1097–1108.

Nik-Zainal,S. et al. (2012) The life history of 21 breast cancers. Cell, 149,

994–1007.

Popic,V. et al. (2015) Fast and scalable inference of multi-sample cancer line-

ages. Genome Biol., 16, 1–17.

Prüfer,H. (1918) Neuer Beweis eines Satzes über Permutationen. Arch. Math.

Phys, 27, 742–744.

Reiter,J.G. et al. (2017) Reconstructing metastatic seeding patterns of human

cancers. Nat. Commun., 8, 14114.

Salari,R. et al. (2013) Inference of tumor phylogenies with improved somatic

mutation discovery. J. Comput. Biol., 20, 933–944.

Satas,G. and Raphael,B.J. (2017) Tumor phylogeny inference using

tree-constrained importance sampling. Bioinformatics, 33, i152–i160.

Schwartz,R. and Shackney,S.E. (2010) Applying unmixing to gene expression

data for tumor phylogeny inference. BMC Bioinformatics, 11, 42.

Strino,F. et al. (2013) Trap: a tree approach for fingerprinting subclonal tumor

composition. Nucleic Acids Res., 41, e165.

van Rens,K.E. et al. (2015) SNV-PPILP: refined SNV calling for tumor data

using perfect phylogenies and ILP. Bioinformatics, 31, 1133–1135.

Minimum perfect unmixed phylogenies 777

	bty683-TF1

