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Epstein-Barr virus (EBV) is highly ubiquitous in human population and establishes a

lifelong asymptomatic infection within the infected host unless the immune system

is compromised. Following initial infection in the oropharyngeal epithelial cells, EBV

primarily infects naive B-lymphocytes and develops a number of B-cell lymphomas

particularly in immune-deficient individuals. In vitro, EBV can also infect and subsequently

transform quiescent B-lymphocytes into continuously proliferating lymphoblastoid cell

lines (LCLs) resembling EBV-induced lymphoproliferative disorders in which a subset of

latent transcripts are detected. Genetic studies revealed that EBNA-3 family comprising

of three adjacent genes in the viral genome—EBNA-3A and -3C, but not -3B, are critical

for B-cell transformation. Nevertheless, all three proteins appear to significantly contribute

to maintain the overall proliferation and viability of transformed cells, suggesting a critical

role in lymphoma development. Apart from functioning as important viral transcriptional

regulators, EBNA-3 proteins associate with many cellular proteins in different signaling

networks, providing a suitable platform for lifelong survival of the virus and concurrent

lymphoma development in the infected host. The chapter describes the function of each

these EBV nuclear antigen 3 proteins employed by the virus as a means to understand

viral pathogenesis of several EBV-associated B-cell malignancies.
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INTRODUCTION

Epstein-Barr virus (EBV) nuclear antigen, EBNA-3, comprising of three closely related proteins
namely EBNA-3A, -3B, and -3C, was suggested to be generated by a series of gene duplication
events during gammaherpesvirus evolution as they share limited but significant amino acid (aa)
sequence homology (Saha and Robertson, 2013). Interestingly, unlike of the other viral genes there
are no known viral homologs in other closely related primate lymphocryptoviruses. They share a
similar gene structure with a shorter 5′- and a longer 3′-exons arranged in a tandem array in the
EBV episome. All EBNA-3 transcripts are alternatively spliced from very long mRNAs initiated
at the latency C-promoter (Cp), which is active in EBV transformed lymphoblastoid cell lines
(LCLs) but blocked in several EBV-associated cancers through hypermethylation [reviewed in
(Robertson et al., 1995; Saha and Robertson, 2013; Allday et al., 2015)]. Although, EBNA-3 proteins
demonstrated extensive redundant biological functions, genetic studies using recombinant viruses
revealed that only EBNA-3A and -3C but not -3B are essential for B-cell transformation in vitro
(Maruo et al., 2005, 2006, 2011; Saha and Robertson, 2013).
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Initial Detection of EBNA-3 Proteins in EBV
Infected B-Cells
The EBNA-3 proteins or rather EBNA-3 was initially identified
as an extra 142-kDa band along with other previously identified
latent proteins—EBNA-1, EBNA-2 and LMP-1, in latently
infected B-cell cultures using EBV positive patient’s sera
(Hennessy et al., 1985). Initial experiments demonstrated that
EBNA-3 was generated from the BamHI digested fragment
(named as ‘E’) Rightward open reading Frame 1 (BERF1) of
EBV episome (reviewed in Hennessy et al., 1986; Saha and
Robertson, 2013). Interestingly, a number of human sera were
tested demonstrated slightly higher molecular weights than
EBNA-3 that was previously detected, signifying that EBNA-
3 might be composed of several related proteins within same
family in EBV transformed B-lymphocytes. Following studies
demonstrated that indeed EBNA-3 was composed of three
proteins—in addition to the initially identified BERF1 fragment
encoding EBNA-3A, BamHI BERF2b fragment expressed a
165 kDa protein named EBNA-3B (or EBNA-4) and the most
rightward short and long BamHI E fragments (BERF3 and
BERF4) expressed a 155 kDa protein named EBNA-3C (or
EBNA-6) (Petti and Kieff, 1988; Petti et al., 1988; Saha and
Robertson, 2013). Interestingly, EBNA-3C was detected nearly in
all EBV positive B-cells except Raji as it was found later that there
was a deletion of the BERF4 segment of the EBV episome in this
cell line (reviewed in Saha and Robertson, 2013).

EBNA-3 Proteins Are Restricted to Nucleus
Sub-cellular localization of all EBNA-3 proteins was found to be
restricted to the nucleus using affinity chromatography purified
human anti-sera. Subsequent studies in order to delineate
the functional domains of EBNA-3A demonstrated that the
aa residues 147-157 contain a nuclear localization sequence
(NLS). Computational prediction analyses in combination with
molecular cell biology experiments using GFP-tagged constructs
and site directed mutagenesis further confirmed that EBNA-
3A contains 5, EBNA-3B contains 2 and EBNA-3C contains 3
functional NLSs (Krauer K. et al., 2004; Buck et al., 2006; Burgess
et al., 2006).

EBNA-3 Expression Is Restricted to
Latency III Program
The characterized expression pattern of latent genes in EBV-
transformed LCLs is known as “latency-III program.” This
pattern is also observed in most of the post-transplant
and immune-compromized patients’ associated EBV positive
lymphomas. In this program, all the latent genes are expressed—
a subset of 12 transcripts, which include six nuclear proteins
EBNA-1, EBNA-2, EBNA-3A, EBNA-3B, EBNA-3C, and EBNA-
LP, three membrane proteins LMP-1, LMP-2A, and LMP-
2B along with three non-coding unpolyadenylated transcripts
EBER-1 and EBER-2, and BARTs (Saha et al., 2010; Saha and
Robertson, 2011a). Although infected cells contain only a few
copies of EBNA-3 transcripts, the EBNA-3 protein products are
relatively stable in vivo. It has been demonstrated that the latency-
III program can be simultaneously developed in conjunction

with acute EBV infection in nascent B-cells prior to the proper
establishment of latently infected memory B-cells, which serves
as a latent reservoir of virus particles and subject to temporal
activation of different latency programs (Young and Rickinson,
2004).

EBNA-3A and -3C, But Not -3B, Are
Essential for In vitro B-Cell Transformation
A series of experiments using genetically engineered viruses
confirmed that only EBNA-3B of EBNA-3 proteins can be
expendable for EBV-mediated B-cell growth transformation
in vitro (Chen et al., 2005; Maruo et al., 2006, 2011).
Initial molecular biology experiments with recombinant EBV
containing stop codons inserted into the ORFs of other
family members established that both EBNA-3A and -3C
are indispensable for B-cell growth transformation in vitro
(Tomkinson et al., 1993). Whilst recombinant virus encoding
an EBNA-3A protein with a stop codon inserted after aa 302
lost its ability to transform naive B-cell, a parallel expression
of wild-type EBNA-3A was typically shown to restore the
transforming ability of the mutant virus. In corroboration to
this, kempkes et al. also demonstrated the importance of EBNA-
3A in maintaining EBV transformed B-cell outgrowth using a
71 kbp of EBV episome termed as mini-EBV with a single C
residue deleted at EBNA-3A ORF (Kempkes et al., 1995). Similar
studies using recombinant virus containing a stop codon at aa
365 in EBNA-3C ORF demonstrated its essentiality in B-cell
transformation, whereas recombinant virus encoding an EBNA-
3B protein with a stop codon inserted after aa 109 was unable to
show any difference in B-cell transformation when compared to
wild-type virus (Tomkinson and Kieff, 1992; Tomkinson et al.,
1993). In addition, recently EBNA-3B was rather described as a
tumor suppressor protein in comparison to an intense oncogenic
activities exerted by the other two family members EBNA-3A
and -3C (reviewed in Allday et al., 2015).

Although, EBNA-3B was shown to dispensable for EBV-
induced B-cell growth transformation, fascinatingly all
the EBNA-3 proteins were recognized as major antigenic
targets for cytotoxic T-cell (CTL) responses against EBV-
transformed B-lymphocytes (Murray et al., 1992), signifying the
importance of each of the EBNA-3 members in primary EBV-
infection and subsequent B-cell lymphoma development.
Herein we aim to summarize the work of more than
two decades focussing on EBNA-3 proteins in terms of
their molecular interactions with multiple host cellular
networks.

TRANSCRIPTIONAL REGULATION

EBNA-3 Proteins Are Non-DNA Binding
Potent Transcriptional Regulators
Regardless of their minimal structural resemblance, all EBNA-3
proteins function as transcriptional regulatory proteins through
interacting with numerous cellular DNA binding proteins and
other accessory transcription factors, instead of directly bind to
the DNA (Table 1).
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TABLE 1 | EBNA-3 interacting cellular partners.

Interacting proteins Deregulated function References

EBNA-3A

RBP-Jk Recruits RBP-Jκ activity to regulate both viral and cellular

gene transcription

Robertson et al., 1996; Maruo et al., 2005; Calderwood

et al., 2011

CtBP Recruits CtBP to regulate gene transcription, for example

p16INK4A
Hickabottom et al., 2002; Skalska et al., 2010

Chk2 Releases G2/M cell-cycle block Krauer K. G. et al., 2004b

WDR48, WDR20, and USP46/UP12 Forms a deubquitylation complex consisting of WDR48,

WDR20, and USP46/USP12), possibly required to maintain

LCL outgrowth

Ohashi et al., 2015

MIZ-1 Blocks the interaction between MIZ-1 and nucleophosmin

and overall inhibits p15INK4B expression

Bazot et al., 2014

20S proteasome Not yet described Touitou et al., 2005

Chaperones Induces all of the factors necessary for an active Hsp70

chaperone complex including Hsp70, Hsp70B/B′, Bag3,

and DNAJA1/Hsp40

Young et al., 2008

XAP-2 Increased nuclear localization; however, precise function

has not yet been described

Kashuba et al., 2000

TCP-1 Not yet described Kashuba et al., 1999

AhR Enhances ligand dependent transactivation Kashuba et al., 2006

UK/UPRT Increased nuclear localization; however, precise function

has not yet been described

Kashuba et al., 2002

EBNA-3B

RBP-Jκ Recruits RBP-Jκ activity to regulate both viral and cellular

gene transcription

Robertson et al., 1996

Cyclin A Not yet described Knight and Robertson, 2004

WDR48, WDR20, and USP46/UP12 Forms a deubquitylation complex consisting of WDR48,

WDR20, and USP46/USP12)

Ohashi et al., 2015

20S proteasome Not yet described Touitou et al., 2005

EBNA-3C

RBP-Jκ Recruits RBP-Jκ activity to regulate both viral and cellular

gene transcription

Robertson et al., 1996; Lee et al., 2009; Calderwood et al.,

2011; Kalchschmidt et al., 2016

CtBP Recruits CtBP to regulate gene transcription, for example

p16INK4A
Touitou et al., 2001; Lee et al., 2009

Prothymosin-α Recruits prothymosin-α along with p300 to regulate gene

transcription

Cotter and Robertson, 2000

p300 Recruits p300 activity to regulate cellular gene transcription Subramanian et al., 2002a

Gemin3/DDX20 Stabilizes and promotes a complex formation with p53 and

thereby negatively affecting p53 transcriptional activity

Cai et al., 2011

HDAC1 and HDAC2 Recruits HDAC1/2 activity to regulate cellular gene

transcription

Radkov et al., 1999; Knight et al., 2003

mSin3A and NCoR Functions in a complex with mSin3A and NCoR and

represses transcription, for example p16INK4A
Knight et al., 2003; Jiang et al., 2014

Spi1/PU1 Recruits to regulate both viral and cellular gene transcription Zhao and Sample, 2000

Nm23-H1 Modulates intrinsic transcriptional and anti-metastatic

activities

Subramanian et al., 2001

20S proteasome Not yet described Touitou et al., 2005

Cyclin A Enhances Cyclin A/CDK2 kiase activity Knight and Robertson, 2004; Knight et al., 2004

Cyclin E Not yet described Knight et al., 2004

Cyclin D1 Enhances the kinase activity of Cyclin D1/CDK6 which

enables subsequent ubiquitination and degradation of pRb

Knight et al., 2004; Saha et al., 2011b

GSK3β Increases Cyclin D1 nuclear localization by blocking GSK3β

activity

Saha et al., 2011b

p53 Blocks p53 mediated transcriptional and apoptotic activities Saha et al., 2009, 2011a; Yi et al., 2009

Mdm2 Enhances the intrinsic ubiquitin ligase activity of Mdm2

toward p53

Saha et al., 2009

ING4 and ING5 Suppresses both ING4 and ING5 assisted p53

transcriptional activity

Saha et al., 2011a

(Continued)
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TABLE 1 | Continued

Interacting proteins Deregulated function References

E2F1 Represses E2F1 transcriptional activity in response to DNA

damage signals

Saha et al., 2012

pRb Facilitates pRb degradation in an ubiquitin-proteasome

manner

Knight et al., 2005a

Chk2 Releases the G2/M checkpoint block of cell-cycle Choudhuri et al., 2007; Nikitin et al., 2010

Gadd34 Activates the upstream component of the UPR

(eIF2α-phosphorylation) and blocks downstream UPR

events (XBP1 activation and ATF6 cleavage)

Garrido et al., 2009

SCFSkp2 Recruits of SCFSkp2 E3 ligase activity to facilitate

degradation of p27KIP1 and pRb

Knight et al., 2005a,b

c-Myc Stabilizes and enhances transcription Bajaj et al., 2008

Sumo1/3 Recruits SUMO-1/3 for EBNA-2 mediated transctivation Rosendorff et al., 2004

MRPS18-2 Releases E2F1 and thereby facilitates G1-S transition of the

cell-cycle

Kashuba et al., 2008

Aurora kinase B Negatively regulates p53 and pRb activities through

stabilizing Aurora kinase B activity

Jha et al., 2013, 2015

IRF4/8 Stabilizes IRF4 and dowregulates IRF8; Recruits for

modulating cellular gene transcription

Banerjee et al., 2013; Jiang et al., 2014

H2AX Destabilizes H2AX and restricts H2AX expression into

nucleus

Nikitin et al., 2010; Jha et al., 2014

USP46/USP12 Recruits USP46/USP12 dubiquitination activity to regulate

p14ARF transcription

Ohashi et al., 2015

p73 Blocks p73 mediated apoptosis Sahu et al., 2014

RBP-JK—A Common Mediator of EBNA-3
Mediated Transcriptional Repression
A large number of interacting proteins for EBNA-3 have been
identified and subsequently suggested to be crucial for EBV
induced B-cell transformation. Of these, RBP-JK (or CBF1), a
downstream regulator of Notch signaling pathway, was the first
established transcription factor required for LCL growth (Lee
et al., 2009; Maruo et al., 2009). The initial clue that EBNA-3
proteins can function as transcriptional regulators was derived
from the seminal observation that all EBNA-3 proteins share
a common binding site of RBP-JK (Waltzer et al., 1996; Saha
and Robertson, 2013). EBNA-2, another essential latent antigen
for in vitro B-cell transformation, was also found to act as a
non-DNA binding transcriptional activator for both viral (LMP-
1 and LMP-2) and cellular genes (CD23) through recruiting
RBP-JK activity (Wang et al., 1991; Waltzer et al., 1996).
Interestingly, all three EBNA-3 proteins can antagonize EBNA-2
induced transcriptional activation through competing with RBP-
JK binding (Waltzer et al., 1996). Using simple reporter assays
it has later been revealed that all EBNA-3 proteins are strong
transcriptional repressors. Most of the earlier work on EBNA-3
mediated transcriptional repression was particularly focussed on
EBNA-3C protein. Two putative repressive domains for EBNA-
3C have been identified—one lies at aa 280-525 represents
as strong repressor domain and another lies at aa 580-992
represents as relatively weaker repressive domain (Subramanian
et al., 2002b; West, 2006; Saha and Robertson, 2013). As similar
to EBNA-3C, an inherent transcriptional repression domain
of EBNA-3A was mapped within aa 100-364. Additionally,

a RBP-JK-independent repression domain of EBNA-3A was
also mapped to aa 524-666. For example, EBNA-3A can
efficiently suppress EBNA-2 mediated activation from the EBV
Cp promoter, while the repressive effect was not observed once
the RBP-JK binding site in the promoter region was absent
(Cludts and Farrell, 1998). Given the viral Cp promoter regulates
the transcription of all EBNA genes, it can be easily speculated
that the EBNA-3 proteins might have an auto-regulatory function
in order to control their own expression in latently infected
B-lymphocytes.

All the three EBNA-3 proteins were shown to interact with

RBP-JK through their homology sequences located at the N-

terminal region (Robertson et al., 1996; Waltzer et al., 1996). In

case of EBNA-3A, the binding domain was mapped at aa 1-138,

in which aa 125-138 were found to be important (Bourillot et al.,
1998). Interestingly, several other groups subsequently mapped

the RBP-JK binding domain spanning different aa residues
located either at 173-223 or 224-566 of EBNA-3A (Zhao et al.,

1996). The RBP-JK binding domain of EBNA-3B was mapped at

the conserved N-terminus region spanning aa 1-311 (Robertson
et al., 1996). Likewise EBNA-3C binding domain to RBP-JK has

also been mapped at the N-terminal region spanning amino

acid residues 1-183 (Robertson et al., 1996). Interestingly, all
the EBNA-3 proteins were shown to interact with a RBP-JK

homolog, RBP-2N (Krauer et al., 1996). However, the functional
significance of these interactions is not yet explored.

More recently, it has been clearly demonstrated the interaction
between EBNA-3 proteins with RBP-JK is vital for maintaining
LCL growth, where EBNA-3 mediated suppression of EBNA-2
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induced Cp promoter might play an important role (Maruo
et al., 2005, 2009). LCLs established with recombinant viruses
that have deleted portions of both EBNA-3A and -3C binding
sites for RBP-JK were unable to grow, whereas ectopic expression
of individual wild-type cDNAs maintained the proliferation
(Maruo et al., 2005, 2009). However, whether two seemingly
different functions - EBNA-3 mediated suppression of EBNA-2
transactivation and LCL growth maintenance are directly linked
to each other remain an open question. This is only can be
answered when the complete molecular profile of these protein
complexes would be identified in near future.

Transcriptional Activation—Intrinsic
Activity and Structural Resemblance with
bZIP Domain
In addition to transcriptional repression, EBNA-3C can also
function as a transcriptional activator. For example, EBNA-
3C mediated transactivation of LMP-1 promoter, although this
activity was seemed to be independent of RBP-JK interaction.
Initial experiments using EBNA-3 proteins in order to unravel
its effect on phenotypic changes in B-cell surface markers
led to the discovery of EBNA-3C induced CD21 expression
(Allday et al., 1993). The activation domain of EBNA-3C was
mapped within the C-terminal aa 724-826, which shares a
sequence homology with the transactivation domain of cellular
transcription factor Sp1 (Marshall and Sample, 1995). However,
the transactivation ability was not as strong as its repression.
EBNA-3C was further recognized as a strong transcriptional
regulator by showing interaction with a TATA-box binding
protein, or containing a basic leucine zipper (bZIP) sequence
located within the N-terminal residues 244-291 (West, 2006).
However, the EBNA-3C bZIP domain portrays a non-canonical
bZIP sequence without any appropriate sequence homology or
structural resemblance with any known cellular bZIP domains,
apart from a tandem repeats of four leucine residues (Amoutzias
et al., 2007). Perhaps the lack of DNA binding ability of
EBNA-3C corroborates the lack of proper bZIP sequence
homology. Further in depth analyses of this bZIP domain
through typical biochemical methods such as circular dichroism
(CD) spectroscopy and analytical ultracentrifugation imply that
this domain does not form stable coiled-coil structures or
promote dimerization, which are the common characteristics
among well-known leucine zipper domains of DNA binding
transcription factors (West, 2006; Amoutzias et al., 2007). On
the other hand, substitution of the repeated four leucine residues
with prolines resulted in dramatic reduction of RBP-JK binding
and also resulted in a change in the length of the predicted
helical structure of the zipper. Likewise, modifications in the
charged residues of the basic portion of the EBNA-3C bZIP
domain inhibited the RBP-JK interaction and so as EBNA-
3C mediated transcriptional repression (West, 2006; Saha and
Robertson, 2013). These results suggests that though EBNA-
3C contains a non-canonical bZIP sequence which affect the
DNA-binding ability, maintaining proper secondary and tertiary
structure within this sequence is essential for downstream
activity.

Carboxy-terminal Binding Protein (CtBP)
CtBP, initially identified as adenovirus E1A Carboxy-terminal
Binding Protein, is a transcriptional co-repressor that can adapt
a transcriptionally active chromatin into a transcriptionally
silent state (Chinnadurai, 2002, 2009). CtBP is now referred
as two closely related transcription factors - CtBP1 and CtBP2
(Chinnadurai, 2002, 2009). Although these two proteins share a
substantial aa sequence homology, it is yet to be known that at
what extent these proteins are functionally redundant. However,
unquestionably both proteins largely function as transcriptional
co-repressors and being recruited by factors that have the
conserved CtBP-binding ProLeu-Asp-Leu-Ser “PLDLS” motif
(Chinnadurai, 2002, 2009). Both EBNA-3A and -3C were shown
to strongly interact with CtBP1 via the CtBP binding motifs.
As both EBNA-3C and EBNA-3A interact with CtBP1 via the
typical CtBP binding motif (Touitou et al., 2001; Hickabottom
et al., 2002), it is conceivable that they also can form complex
with CtBP2. However, to the best of our knowledge this has
not yet been verified. The initial functional relevance of this
conserved motif was determined using simple reporter assays.
In contrast to the wild-type EBNA-3C, deletion mutant amino
acid residues 728-732 “PLDLS” fused with Gal4 DNA binding
domains resulted in activation of a CAT reporter, suggesting
that CtBP1 might play a critical role in attenuating the EBNA-
3C transactivation domain at the C-terminal region (Touitou
et al., 2001). Moreover, alteration of this conserved region also
impaired the transforming ability of EBNA-3C in cooperation
with oncogenic Ha-ras (Saha and Robertson, 2013). In contrast
to EBNA-3C, EBNA-3A contains two non-consensus bipartite
CtBP binding motifs located at the C-terminal region spanning
aa 857-861 “ALDLS” and 886-890 “VLDLS” (Hickabottom et al.,
2002). As similar to EBNA-3C, these binding residues of EBNA-
3A were found to be critical for both transcriptional repression
as well as transforming ability (Hickabottom et al., 2002).
Nevertheless, the precise role of CtBP1 in EBNA-3 regulated B-
cell transformation process became more evident when analysis
of p16INK4a expression in LCLs established by using three
individual CtBP-binding motif mutant viruses for EBNA-3A, 3C
and for both -3A and -3C revealed that CtBP recruitment is
absolutely critical in the EBNA-3A and -3C-mediated epigenetic
repression of the p16INK4a promoter (Skalska et al., 2010).
However, interestingly no EBNA-3A or -3C/CtBP complexes
have been demonstrated on the p16INK4a promoter, there are
consistent reports that showed that the CtBP-binding motif is
typically essential for LCL growth maintenance using conditional
EBNA-3C-expressing LCLs and subsequent rescue studies (Lee
et al., 2009).

In contrast, a recent investigation using ChIP-Seq and ChIP-
qPCR techniques demonstrated that EBNA3-enriched sites were
specifically located in CtBP2 locus instead of CtBP1 locus
(McClellan et al., 2013). Interestingly, earlier results from
different group demonstrated that only CtBP2 expression is
negatively controlled by EBNA-3A (Hertle et al., 2009). However,
EBNA-3B and -3C had no effect on CtBP2 expression in
corresponding expression-deficient LCLs (White et al., 2010;
Skalska et al., 2013). In contrast to CtBP2, similar investigation
on CtBP1 expression demonstrated a relatively higher expression
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level in all EBV-infected cells irrespective of EBNA-3 expression
(White et al., 2010; Skalska et al., 2013), signifying a differential
regulation pattern of CtBP1 and CtBP2 in response to EBV
infection. Consistent with EBNA-3A mediated repression of
CtBP2 locus, it has been further demonstrated that only EBNA-
3A but not the other bound EBNA-3 proteins including EBNA-2
blocked chromatin looping of the enhancer sequence required for
transcriptional initiation (McClellan et al., 2013).

DP103/Gemin3 and Survival of Motor
Neurons (SMN) Protein—Possible Role in
RNA Processing
Gemin3 (also named as DDX20 or DP103), a member of
ATP-dependent RNA helicase family plays several important
roles in RNA metabolism (Yan et al., 2003; Fuller-Pace et al.,
2007). This family of proteins contain several conserved motifs
including the “ASP-Glu-Ala-Asp” or “DEAD box” motif (Yan
et al., 2003). The protein along with survival of motor neurons
(SMN) complex was initially identified as cellular interacting
partners of both EBNA-2 and EBNA-3C using a yeast-2 hybrid
screening (Grundhoff et al., 1999). The binding domain of EBNA-
3C was mapped within the C-terminal aa 534-778 (Grundhoff
et al., 1999). Gemin3 was shown to play a role in gene
transcription regulation, through interacting with a number of
cellular transcription factors including steroidogenic factor 1 (SF-
1), early growth response protein 2 (Egr2), forkhead transcription
factor FOXL2 and mitogen Ets repressor METS (Cai et al.,
2011; Saha and Robertson, 2013). However, the precise role
of Gemin3 in EBV transformed B-lymphocytes was still in
debate. Interestingly, Gemin3 was simultaneously identified as
a component of SMN complex, which plays an important role
in small nuclear ribonucleoproteins (snRNP) proteins assembly
(Grundhoff et al., 1999; Battle et al., 2006). The speckled fashion
of nuclear expression pattern of EBNA-3 proteins appeared
to be stable throughout the cell-cycle. GFP-tagged expression
constructs encoding EBNA-3C truncations identified aa 733-808
as the mediator of this nuclear localization pattern. Remarkably,
both EBNA-3C and EBNA-3A appeared to co-localize to
the identical granular structures, and subsequent analysis
demonstrated that EBNA-3C but not EBNA-3A associates with
SMN complex in these granules (Krauer K. et al., 2004; Krauer, K.
G. et al., 2004a), suggesting possible involvement of EBNA-3C in
RNA processing. However, to date no such phenomena has been
established for EBNA-3 proteins. Interestingly, a different role for
Gemin3 has recently been demonstrated in connection to EBNA-
3C mediated transcriptional activity. EBNA-3C induces Gemin3
accumulation in EBV-transformed primary B-lymphocytes and
stabilizes a complex formation with p53 tumor suppressor
where it acts as a negative regulator through attenuating p53
transcription and apoptotic activities (Cai et al., 2011).

EBNA-3 Proteins Target c-Myc
Transcriptional Activity In vitro
Both c-Myc translocation and EBV infection status concurrently
play critical roles in the development of Burkitt’s lymphoma (BL)
(Brady et al., 2007). Besides its direct role in transformation,

c-Myc can also promote double-stranded DNA breaks and
chromosomal aberrations and thereby inducing apoptosis
utilizing ATM/Chk2/p53 signaling cascade (Hoffman and
Liebermann, 2008). In general, BL expresses a restricted latency
I program with only EBNA-1 expression (Molyneux et al., 2012).
However, it has been suggested that a subset of in vitro generated
BL clones may retain the expression of EBNA-3 proteins in either
a Wp-restricted latency program with EBNA-2 deletion or a rare
EBNA-2(+)/LMP-1(−) latency associated program, indicating
the importance of EBNA-3 proteins, in particular EBNA-3A
and -3C, in regulating BL pathogenesis thorough blocking
cellular apoptosis (Kelly et al., 2005, 2006; Anderton et al.,
2008). While EBNA-2 accelerates c-Myc transcription, EBNA-
3A downregulates c-Myc expression through recruiting RBP-JK
activity (Kaiser et al., 1999; Cooper et al., 2003). Later, EBNA-
3C was independently shown to deregulate c-Myc transcription
in a luciferase based reporter assay using a c-Myc responsive
telomerase reverse transcriptase promoter (Bajaj et al., 2008).
In this study, EBNA-3C mediated c-Myc transactivation could
be influenced by either a direct protein-protein interaction
or enhancing its protein stability through blocking ubiquitin-
proteasomal degradation (Bajaj et al., 2008). Interestingly, the
EBNA-3C binding domain was mapped at the N-terminal region
flanking aa 130-190, responsible to recruit SCFSkp2 E3 ligase
activity (Bajaj et al., 2008). Since, c-Myc employs Skp2 as its
transcriptional cofactor (von der Lehr et al., 2003); it is tempting
to speculate that EBNA-3C may also alter its binding capacity
toward Skp2 in order to regulate c-Myc transcription. However,
as of now there is no direct evidence that confirms EBNA-3
mediated c-Myc deregulation in BL-biopsy samples.

Role of Chromatin Remodeling Factors in
EBNA-3 Mediated Transcriptional Activities
Using Chromatin immunoprecipition (ChIP) and ChIP-Seq
techniques, it is now known that EBNA-3 proteins either
individually or in group (particularly EBNA-3A and -3C
together) extensively modulate more than 1000 cellular genes
throughout the genome via recruiting chromatin remodeling
activities (Skalska et al., 2010; White et al., 2010; Allday et al.,
2015).

The idea has begun with an initial yeast-two hybrid study
with the C-terminal domain of EBNA-3C revealed an interaction
with a highly conserved histone H1 interacting protein,
prothymosin α (Pro-α), involved in cancer propagation through
chromatin remodeling and subsequently alter gene transcription
(Subramanian et al., 2002a; Ioannou et al., 2012). The Pro-
α binding domain of EBNA-3C was mapped within aa 366-
393. Interestingly, EBNA-3C was shown to compete with Pro-α
for binding with p300, a transcriptional activator with histone
acetyltransferase (HAT) activity (Subramanian et al., 2002a; Iyer
et al., 2004). Interestingly, both EBNA-3C and Pro-α were shown
to interact with p300 at two distinct sites including the CH1
N-terminal region and the bromodomain comprising of CH3
and HAT domains (Subramanian et al., 2002a). Two distinct
interacting domains of EBNA-3C were identified—one at the
N-terminal region containing both RBP-JK binding and bZIP
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domains, and the other at the C-terminal region containing
proline and glutamine rich domain required for transcriptional
activation. While Pro-α along with p300 activate transcription
using a GAL4 DNA binding domain fused promoter assay, the
overall activity is down-regulated in the presence of EBNA-3C
(Subramanian et al., 2002a).

EBNA-3Cwas also shown to interact with histone deacetylases
- both HDAC1 and HDAC2, suggesting an additional role in
transcriptional repression as addition of an HDAC inhibitor
rescued EBNA-3C mediated transcriptional suppression of viral
Cp promoter (Knight et al., 2003). Interestingly, the HDAC
binding domain of EBNA-3C was found to be overlapped with
RBP-JK interacting region spanning aa 1-211. Moreover, EBNA-
3C was shown to form stable transcription repression complex
containing mSin3A and NcoR1 directly interacting with Pro-α
(Knight et al., 2003). Overall, the results indicate that EBNA-
3C recruits HDAC activity embedded within a large protein
complex comprising several important transcription factors
including RBP-JK for transcriptional repression—such as from
Cp promoter.

In addition to modifying HAT and HDAC activities, EBNA-3
proteins precisely EBNA-3A and -3C were also shown to recruit
DNA-methyltransferase (DNMT) activity in order to suppress
Bim (BCL2L11) tumor suppressor expression in Burkitt’s
lymphoma cells (Anderton et al., 2008; Paschos et al., 2009)
(discussed in more details in later section). Later, ChIP analyses
demonstrated that EBV infection leads to the recruitment of
polycomb repressive complex (PRC)2 core subunits and the
trimethylation of histone H3 lysine 27 (H3K27me3) at the
Bim locus resulted in transcriptional repression. It has been
suggested that EBV infection is essential to recruit histone methyl
transferases both SUZ12 and EZH2 to establish functional PRC2.
Since formation of PRC2 complex at the Bim locus appeared to
be reliant on both EBNA-3A and -3C expression, It has been
suggested that EBNA-3 proteins might directly interact with
PRC2 (Paschos et al., 2012; McClellan et al., 2013; Jiang et al.,
2014). However, the precise molecular mechanism by which
EBV latent proteins recruit polycomb complexes to restrain Bim
expression is yet to be determined.

Both EBNA-3A and -3C were shown to downregulate
expression levels of multiple Cyclin dependent kinase inhibitors
(CDKI), such as p14ARF, p15INK4a, p16INK4a via epigenetic
regulation (Skalska et al., 2010, 2013). While suppression of
p16INK4a expression revealed to play a central role in EBV
induced B-cell transformation process (Maruo et al., 2006, 2011;
Skalska et al., 2010, 2013), precise roles of p15INK4b and p14ARF

in connection to the inhibition of B-cell transformation or
LCLs outgrowth, remain largely unclear. Using ChIP analyses
on genetically engineered LCLs expressing conditionally active
EBNA-3A and -3C, it has been clearly demonstrated that both
EBNA-3A and -3C repress p16INK4a expression by recruiting
a repressive H3K27me3 epigenetic mark on corresponding
CDKN2A locus (Skalska et al., 2010, 2013; Maruo et al.,
2011). In addition, recruitment of CtBP1 by EBNA-3A and -
3C were also shown to be important for efficient deposition of
H3K27me3 on p16INK4a gene locus for its repression (Skalska
et al., 2010). Similarly, EBNA-3A was shown to repress p15INK4a

gene (CDKN2B) transcription through recruiting MIZ1 and
H3K27me3 repressive histone modification (Bazot et al., 2014).

CELL-CYCLE REGULATION

EBNA-3 Proteins Extensively Modulate
Cell-Cycle Machinery
The role of the EBNA-3 proteins on cell-cycle regulation was
initially demonstrated using an EBV positive Burkitt’s lymphoma
derived cell line—Raji, where the EBNA-3C gene was deleted
(Allday et al., 1993; Allday and Farrell, 1994). Raji (1EBNA-
3C) cells at high density could be arrested in the G1 phase
of the cell-cycle, whereas the cell-cycle activity can be restored
by EBNA-3C expression (Allday and Farrell, 1994). Precisely,
EBNA-3C was shown to induce LMP-1 transcription and
pRb phosphorylation (Allday and Farrell, 1994). In agreement
with pRb hyperphosphorylation, EBNA-3C was also shown to
transactivate an E2F responsive promoter B-myb (Parker et al.,
1996). These results signified for the first time that one of the
EBNA-3 proteins might play a prominent role in G1-S phase
transition of the cell-cycle by targeting the putative pRb-E2F
complex. Similarly, EBNA-3C expression in NIH3T3 and U2OS
cells rescued the growth arrest at G1 phase caused by serum
starvation. Moreover, EBNA-3C was shown to downregulate
one of the cyclin dependent kinase inhibitor (CDKI) p27KIP1

expression and suppress the pro-metaphase arrest. Collectively,
results portrayed a model where EBNA-3C expression led to
a complete disruption of multiple cell-cycle checkpoints at
both G1/S and G2/M (Parker et al., 2000). In a series of
studies we and others have demonstrated that EBNA-3C can
physically interact with a number of important proteins involved
in cell-cycle regulation at both G1/S and G2/M checkpoints,
such as tumor suppressor proteins—pRb and p53, E3-ubiquitin
ligase—SCFSkp2, oncoproteins—c-Myc, cyclin A, cyclin D1, p53
regulatory proteins—Mdm2, ING4, and ING5, DNA damage
responder—E2F1, Chk2, H2AX, and Aurora kinase B among
many others (Jha et al., 2013, 2014; Saha and Robertson, 2013).

As earlier discussed that EBNA-3A and -3C but not -3B
are essential for B-cell transformation in vitro, it was still not
clear whether EBNA-3 proteins are important in maintaining
LCLs growth once transformed. Using LCLs with conditionally
expressed EBNA-3 proteins and trans-complementation assays
it has been clearly demonstrated both EBNA-3A and -3C are
indispensible for LCLs survival (Maruo et al., 2005, 2006). Using
this system it has been determined that EBNA-3C specifically
targeted CDK inhibitor p16INK4A (Maruo et al., 2011). Using
the similar conditional EBNA-3A and -3C expressing LCL
models, it has been further confirmed that RBP-JK binding
and CtBP motifs are important for maintaining LCL growth
(Maruo et al., 2005, 2009). In the similar study, it has been
suggested that the N-terminal residues EBNA-3C that have been
shown to recruit various important cell-cycle proteins—SCFSkp2,
pRb, p53, Mdm2, E2F1, Cyclin A, Cyclin D1 among others are
important for maintaining LCLs growth (Maruo et al., 2009). In
a recent report, EBNA-3A was shown to interact with a Myc-
interacting zinc-finger protein-1 (MIZ1) and that is required
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FIGURE 1 | Schematic represents multiple functions of the EBNA-3 family of proteins in developing EBV associated B-cell lymphomas.

for down-regulation of the CDK inhibitor p15INK4b in LCLs
(Bazot et al., 2014), suggesting a possible role in EBV-infected
B-cell proliferation. Taken together, it is seemingly evident that
both EBAN-3A and -3C proteins regulate B-cell transformation
and subsequently induce B-cell lymphoma development through
targeting major cell-cycle regulators including cyclin-cyclin
dependent kinase (CDK) complexes, CDK inhibitors (CDKI),
and checkpoint regulators (Figure 1).

EBNA-3C Interacts with All Major Cyclins
Cell-cycle progression is dependent on the activity of cyclins, a
family of proteins whose levels oscillate in synchrony with cell-
cycle progression, and its functional partner CDKs (Hochegger
et al., 2008). An initial yeast-two hybrid study using C-terminal
aa 890-992 of EBNA-3C revealed an interaction with Cyclin
A, which was subsequently confirmed by both in vitro and
in vivo binding experiments (Knight and Robertson, 2004).
EBNA-3C was also shown to block CDKI p27Kip1 actions on
Cyclin A/CDK2 regulated kinase activity, suggesting a potential
mechanism for facilitating G1/S transition of the cell-cycle
(Knight and Robertson, 2004). As CDK2 form complexes with
both Cyclin A and Cyclin E during the G1 to S phases of the
cell-cycle, it was further confirmed that the effect was specific for
Cyclin A, as co-expression of Cyclin E/CDK2 with EBNA-3C was
not able to retrieve p27-mediated inhibition. However, EBNA-3C
could physically interact with all the cyclins including Cyclin A,
D1 and E in an in vitro interaction study. Interestingly, although
the Cyclin A binding domain was initially mapped at extreme
C-terminal region amino acid residues 957-990, following studies
revealed a stronger interaction domain at the N-terminal
region amino acid residues 130-159, surrounding the conserved
homology domain of the EBNA-3 proteins (Knight et al., 2004).

Indeed, in an in vitro study EBNA-3B but surprisingly not
EBNA-3A demonstrated a modest binding activity (Knight et al.,
2004). In addition, the N-terminal binding domain of EBNA-
3C was appeared to be responsible for restricting p27Kip1-
mediated inhibition of Cyclin A/CDK2 kinasing activity, whereas
C-terminal binding domain perhaps plays as a stabilizing element
of this complex (Knight and Robertson, 2004; Knight et al., 2004).

In a recent work it has been shown that EBNA-3C can
form a stable complex with Cyclin D1/CDK6 in both stably
expressing as well as EBV-transformed B-cells. Whether
the interaction between EBNA-3C with different cyclins
is dependent on different cell-cycle stages and how these
interactions eventually trigger EBNA-3C mediated B-cell
transformation, is remain unexplored. It has been proposed
that Cyclin D proteins (D1, D2, and D3) besides initiating
cell-cycle at G1 phase, may have distinct biological activities
at specific steps of B-cell differentiation, and their expression
can be differentially regulated in response to EBV-infection
(Palmero et al., 1993; Saha et al., 2011b). Indeed, in contrast
to the previously published results, in vitro EBV infection
in primary B-lymphocytes along with EBV-positive BL
derived cell lines resulted in significant up-regulation of
all the D-type cyclins (Palmero et al., 1993; Saha et al.,
2011b, 2015). Elevation of Cyclin D1 protein level without
affecting its genetic structure, has been shown to be one
of the potential mechanisms for its deregulated activities
at G1-S phase transition of the cell-cycle (Musgrove et al.,
2011). Moreover, Cyclin D1 expression is strictly cell-cycle
dependent and its expression is regulated by both sub-cellular
localization and ubiquitin-targeted proteosomal machineries
(Musgrove et al., 2011). During G1-S transition of the cell-
cycle, Cyclin D1 appeared to be more nuclear localized
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with reduced proteolytic activity and inhibited GSK-3β
kinasing function which phosphorylates at T286 cyclin D1
leading to cycltoplasmic localization for ubiquitin-proteasome
mediated degradation (Alao, 2007; Musgrove et al., 2011).
Remarkably, EBNA-3C was shown to play a dual role that
leads to an increasing nuclear localization of Cyclin D1 by
blocking its poly-ubiquitination level assisted with inhibition
of GSK-3β mediated phosphorylation (Saha et al., 2011b).
Given that overexpression of Cyclin D1 is directly linked
to development of cancer development through integrating
the control of pRb phosphorylation with the transcriptional
activity of E2F transcription factors, targeting Cyclin D1
degradation would offer as a potential therapeutic mechanism
in EBV associated B-cell lymphomas, where EBNA-3C is
expressed.

Targeting pRb Provides a Best Possible
Link to Facilitate G1 to S Phase Transition
of the Cell-Cycle
As discussed earlier, the initial clue for a possible interaction
between EBNA-3C and pRb came from the observation that
ectopic EBNA-3C expression can rescue Raji cells arrested at G1
phase through increasing the pRb phosphorylation (Allday and
Farrell, 1994). In addition, EBNA-3C as similar to other tumor
virus encoded oncoproteins such as adenovirus E1A and HPV
E7 was shown to interact in vitro with pRb and regulate its
downstream activities through E2F transcription factors (Parker
et al., 1996). Moreover, all these viral oncoproteins contain a
pRb interactive motif LxCxE (Parker et al., 1996). This led
researchers to further investigate on both upstream regulators
such as CDK inhibitors and downstream effectors such as E2F
mediated transactivation process. Later, EBNA-3C was shown to
form a complex with pRb in cell (Knight et al., 2005a; Kashuba
et al., 2008), in which a mitochondrial ribosomal protein S18-2
(MRPS18-2) acts as a bridging protein between EBNA-3C and
pRb and plays an important role in deregulating its downstream
activities (Kashuba et al., 2008). Interestingly, the binding
between pRb and EBNA-3C was shown to be stabilized in the
presence of proteasomal inhibitor (Knight et al., 2005a), indicates
that EBNA-3Cmight also be involved in pRb degradation besides
regulating its phosphorylation status. Indeed, EBNA-3C was
shown to enhance pRb polyubiquitination through recruitment
of SCFSkp2 complex E3 ligase in an in vitro setting (Knight et al.,
2005a). The pRb interacting domain was mapped at aa 130-159,
where aa 140-149 was shown to be important for facilitating pRb
degradation (Knight et al., 2005a). In contrast, studies using LCLs
with conditionally active EBNA-3C expression, it has been shown
that EBNA-3C was not responsible for pRb degradation rather it
maintains a hyperphosphorylation status of pRb (Maruo et al.,
2006; Zhao et al., 2010). As noted earlier, EBNA-3C can enhance
the kinase activities of both G-phase cyclin–Cyclin D1/CDK6
and S-phase cyclin–Cyclin A/CDK2 complexes, which altogether
phosphorylate pRb (Knight et al., 2004; Saha et al., 2011b). It has
been suggested that EBNA-3C mediated phosphyrylation of pRb
act as a prerequisite for accelerating G1-S phase transition of the
cell-cycle.

Chk2: Effect of EBNA-3 Proteins at G2/M
Phase
In general, EBV-negative BL derived cell lines are more
susceptible to genotoxic agents in comparison to EBV positive
lines including LCLs and thereby experiencing cell-cycle arrest
at the G2/M checkpoint (Wade and Allday, 2000). In addition,
BL derived cell lines stably expressing individual EBNA-3 family
proteins but not EBNA-2 or EBNA-LP could also bypass cell-
cycle arrest at the G2/M checkpoint (Parker et al., 2000). This
led researchers to further study on plausible involvement of
ATM/ATR kinase family of proteins in G2/M arrest. In fact, in
two separate studies, both EBNA-3A and -3C were demonstrated
to form stable complexes with Chk2 protein, a downstream
checkpoint kinase of ATM mediated DNA damage response
pathway (Krauer K. G. et al., 2004b; Choudhuri et al., 2007). The
interaction between EBNA-3C and Chk2 eventually resulted in a
phosphorylation of Cdc25c at S216, which subsequently promotes
its own sequestration in the cytoplasm through interaction with
14-3-3 and in so doing allows the kinase activation of Cyclin
B/Cdc2 complex and helps in circumventing the G2/M block
induced by drug nocodazole (Choudhuri et al., 2007). This study
was the first attempt in order to demonstrate a underlying
mechanism by which EBNA-3C disrupts the G2/M checkpoint
signaling to maintain the continuous proliferation of EBV-
transformed B-cells (Choudhuri et al., 2007). In agreement with
this finding, a recent study also showed that EBNA-3C expression
is absolutely required to attenuate ATM-Chk2 mediated DNA
damage responsive signaling for B-cell transformation (Nikitin
et al., 2010; Li and Hayward, 2011).

INHIBITION OF APOPTOTIC MACHINERIES

Cancer cells sustain mutations in many important cellular
components that disrupt normal mechanisms controlling
proliferation. Remarkably, both pRb–E2F1 and Mdm2–p53
signaling network are found to be defective in most tumors,
emphasizing the central role of these cascades in regulating cell-
cycle progression. Two apoptotic pathways exist in mammals -
intrinsic and extrinsic, ultimately converge with the activation
of cysteine proteases named caspases (Elmore, 2007; Jendrossek,
2012). Interestingly, EBNA-3 proteins in particular EBNA-3Cwas
shown to extensively regulate many tumor suppressor proteins
via intrinsic apoptotic pathway (Figure 1).

EBNA-3C Regulates p53-Induced
Apoptosis by Multiple Mechanisms
The p53 tumor suppressor is perhaps represents one of the most
important drug targets in cancer therapy as the corresponding
gene has been found to be mutated or deleted in half of all
malignant tumors, whereas the other half express wild-type p53
and in one way or another is functionally blocked (Essmann and
Schulze-Osthoff, 2012; Mirzayans et al., 2012). As similar to pRb,
tumor viruses have evolved multiple strategies to inhibit directly
p53 functions or its upstream or downstream effectors are being
inactivated indirectly affecting p53 mediated transcriptional as
well as apoptotic activities (Saha et al., 2010). As similar to
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many other tumor virus encoded antigens, EBNA-3C was also
shown to attenuate p53-induced apoptosis employing multiple
mechanisms (Saha and Robertson, 2013). EBNA-3C forms a
complex with p53 and the interacting domain was mapped near
the N-terminal region comprising aa 130-190 (Yi et al., 2009).
Interestingly, these binding residues, as described in the earlier
section, have been previously shown to interact with several
other important cell-cycle proteins, such as SCFSkp2, pRb, c-
Myc, Cyclin A, Cyclin E, Cyclin D1, and RBP-Jκ, signifying its
critical involvement in cell-cycle deregulation (Robertson et al.,
1996; Knight et al., 2005a,b; Bajaj et al., 2008; Saha et al., 2011b;
Saha and Robertson, 2013). Additionally, genetic study using
recombinant EBV virus expressing conditionally active EBNA-
3C revealed that absence of this particular domain was unable
to maintain LCLs growth (Maruo et al., 2009). Importantly,
EBNA-3C interacts with p53 with its central DNA-binding
and C-terminal oligomerization domains (Yi et al., 2009),
providing clues that EBNA-3C might regulate its transcription
activities. Indeed, reporter assays using p53 responsive promoter
element demonstrated that EBNA-3C appreciably inhibits p53
transactivation and subsequent apoptotic activities (Yi et al.,
2009). Since p53 regulated transcription can be modulated by
several means, it has been speculated that EBNA-3C could
employ other potential mechanisms.

In order to investigate other potential mechanisms by which
EBNA-3C could affect p53 mediated transcription and as a result
apoptotic regulation, EBNA-3C was shown to interact with p53
modulators ING4 and ING5 belong to ING (inhibitor of growth)
family (Saha et al., 2011a). The best known function of ING
proteins, whose expression was shown to be significantly reduced
in many cancer types, is their cooperation with p53 in tumor
suppression (Russell et al., 2006; Jafarnejad and Li, 2011). EBNA-
3C interacts with both ING4 and ING5 in a p53 independent
manner as binding studies were performed in p53 positive in vitro
EBV transformed LCLs, EBNA-3C stably expressing BL derived
cell line BJAB where p53 is genetically defective and ectopic
expression systems in Saos-2 where p53 is deleted (Saha et al.,
2011a). However, the binding region of EBNA-3C was shown
to be overlapped with p53 interacting site at the N-terminal
region covering aa 129-200 (Saha et al., 2011a), suggesting
that interaction with ING-proteins may influence its binding
affinity toward p53. In fact, increasing dose of p53 concentration
appreciably impeded the complex formation between EBNA-
3C with ING proteins (Saha et al., 2011a). Additionally, the
binding domains for both EBNA-3C and p53 were mapped at
the identical residues of ING proteins—comprising the bipartite
nuclear localization domain (NLS1 and NLS2) of ING4 and
the conserved PHD domain of ING5 (Saha et al., 2011a). The
PHD domain through recruiting HAT and HDAC activities
represents as a central structural identity of ING proteins
(Russell et al., 2006). However, whether EBNA-3C and/or p53
modulate its chromatin remodeling functions remains unclear.
Similarly the interaction of ING4 NLS domain with EBNA-3C
and p53 affects its sub-cellular localization is still speculative.
Nonetheless, EBNA-3C substantially antagonizes ING4 and
ING5 promoted p53mediated ant-proliferative activities possibly
through blocking the interaction of ING proteins with p53 (Saha

et al., 2011a) and thus restoration of ING functions in order
to activate p53 induced apoptosis offers a potential therapeutic
approach against EBV associated B-cell lymphomas.

The ubiquitin-mediated proteasomal degradation of p53 by
Mdm2, one of its many negative regulators, symbolizes as
one of the most important regulations in p53 mediated tumor
suppressive activities (Di et al., 2011; Essmann and Schulze-
Osthoff, 2012). It has been shown that in vitro EBV transformed
LCLs expressing wild-type p53 are sensitive to Nutlin-3a
mediated growth suppression, which exclusively targets p53-
Mdm2 interaction and thereby increasing p53 stability and
apoptosis (Forte and Luftig, 2009). In parallel with this finding,
EBNA-3C was shown to recruit Mdm2 E3 ligase activity in
order to facilitate p53 degradation (Saha et al., 2009). As
discussed earlier, EBNA-3C efficiently deregulates the ubiquitin-
proteasome machinery and that profoundly affects stability of
many tumor suppressor proteins—p27Kip1 and pRb through
enhancing their degradation as well as increases the stability
of products of several proto-oncogenes such as Cyclin D1
and c-Myc (Knight et al., 2005a,b; Bajaj et al., 2008; Saha
et al., 2011b). In this study, the authors evidently demonstrated
that other than regulating its own polyubiquitination, EBNA-
3C can also obstruct Mdm2-ployubiquitination and thereby
increasing its stability as similar to Cyclin D1 and c-Myc
(Bajaj et al., 2008; Saha et al., 2009, 2011b). In addition to
negatively affecting p53 transcription and apoptotic activity,
Mdm2 can also deregulate apoptotic function of pRb and E2F1,
which were also shown to interact with EBNA-3C (Knight
et al., 2005a; Polager and Ginsberg, 2009; Saha et al., 2012).
However, so far there is no direct evidence that shows EBNA-
3C recruits Mdm2 activity in order to control the pRb-
E2F1 arm at the G1-S phase of the cell-cycle. Interestingly,
EBNA-3C utilizes the similar N-terminal domain comprising
aa 130-190 formerly identified as interacting region of many
important cell-cycle regulators including p53, in order to
recruit Mdm2 E3 ligase activity toward p53 degradation (Saha
et al., 2009). In addition, the central acidic domain of Mdm2
was shown to be responsible for interaction with EBNA-3C
(Saha et al., 2009). Interestingly, a number of earlier studies
revealed that this central acidic domain plays an important
role in regulating Mdm2 mediated E3 ligase activity toward
p53 degradation through interacting with many positive such
as p14ARF and pRb as well as negative regulators including
p300 (Kawai et al., 2003). Collectively, this study along with
the study with Nutlin-3a implicated a potential therapeutic
mechanism through targeting p53-Mdm2 complex against many
EBV associated B-cell lymphomas expressing functionally
active p53.

As discussed in the previous section, the interaction
between EBNA-3C and DP103/Gemin3 (belongs to DEAD-box
RNA helicase family) has been implicated in p53 mediated
transcriptional as well as apoptotic activities (Yan et al., 2003;
Cai et al., 2011). In agreement with previously described
EBNA-3C regulated p53 activities, this work further appended
as a potential mechanism through which p53 is deregulated
in EBV associated B-cell lymphomas. Although Gemin3 has
previously been characterized as a transcriptional repressor, the
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precise mechanism by which Gemin3 regulates transcriptional
activity is not completely known beside its role in RNA
metabolism (Yan et al., 2003). Since, Gemin3 through recruiting
HDAC and sumo activities represses transcriptional activation,
it has been suggested that EBNA-3C/Gemin3 complex can also
alter p53-dependent anti-proliferative activities by affecting its
acetylation and sumoylation status. Given that the critical role
of Gemin3 in cancer development, prompted us to speculate
that high throughput screening of helicase inhibitors would
result in prospective therapeutic strategy against EBV associated
B-cell lymphomas possibly through initiating p53 regulated
apoptosis.

In a recent study, EBNA-3C was additionally shown to
block p53 expression and subsequent transcription and apoptotic
activities through stabilizing and recruiting Aurora kinase B
mediated kinase activity (Jha et al., 2013, 2015).

EBNA-3C Antagonizes E2F1-Regulated
Apoptosis in Response to DNA Damage
Signals
As discussed in earlier sections, EBNA-3C targets a number of
upstream components of the E2F1 signaling pathway involved
in cell-cycle, DNA repair, differentiation as well as apoptosis
in both p53 dependent and independent manner (Krauer K.
G. et al., 2004b; Knight et al., 2005a; Saha et al., 2011b). The
interaction between EBNA-3C and pRb led further investigation
to determine whether EBNA-3C can also form a complex with
its downstream regulator, E2F1 and thereby facilitating the G1-
S transition of the cell-cycle. Indeed, EBNA-3C was shown
to physically interact with E2F1 (Saha et al., 2012), however
in a pRb independent manner, suggesting that EBNA-3C may
regulate E2F1 activity through a different mechanism. Since
p53 has been found to be mutated or functionally deactivated
in most of the cancers, targeting E2F1-mediated apoptosis in
response to DNA damage signals can provide as an additional
therapeutic means (Polager and Ginsberg, 2009; Wu and Yu,
2009). In accordance with this notion, EBNA-3C was shown to
inhibit E2F1 dependent apoptotic activities through targeting its
downstream apoptotic regulators such as p73 and Apaf-1 in EBV
positive B-cells (Saha et al., 2012). In this connection, another
group has recently shown that EBNA-3C forms a stable complex
with p73 and blocks doxirubicin induced p73 mediated apoptosis
(Sahu et al., 2014). The N-terminal DNA binding domain of E2F1
aa 1-243, liable to apoptotic regulation, binds to two discrete
regions of EBNA-3C, positioned at N-terminal aa 100-200 and
C-terminal aa 621-700 (Saha et al., 2012). Importantly, while the
N-terminal binding domain of EBNA-3C previously shown to
interact with many other cell-cycle proteins as discussed earlier
directly interacts with E2F1, the C-terminal region requires
unidentified cellular protein(s) to form a complex with E2F1
(Saha et al., 2012). Moreover, using trans-complementation
assay in LCLs expressing conditionally active EBNA-3C, this
N-terminal binding domain but not the C-terminal region of
EBNA-3C was shown to be critical in maintaining LCLs growth
(Maruo et al., 2009). Another group demonstrated that EBNA-
3C is absolutely essential in attenuating DNA damage response

induced during early stage of viral infection of primary B-
lymphocytes in order to facilitate B-cell transformation (Nikitin
et al., 2010). In harmony with this finding, EBNA-3C knockout
EBV was also shown to be lacking its ability in restraining
E2F1 mediated DNA damage response during the early stages
of infection of nascent B-cells (Saha et al., 2012). As similar to
p53, DNA damage signals led to an induction and stabilization
of E2F1 expression, where both ubiquitin-tagged proteasomal
degradation and dissociation from pRb at G1-S phase of the cell-
cycle play important roles (Wu and Yu, 2009). Since SCFSkp2 as
one of the many E3 ligases involved in E2F1 degradation (Harper
and Elledge, 1999), it is tempting to speculate that EBNA-3Cmay
also recruit this E3 ligase activity for regulating E2F1 stability
and thus transcription. Although it remains elusive that whether
EBNA-3C specifically employs SCFSkp2 E3 ligase activity, EBNA-
3C accelerates E2F1 degradation in an ubiquitin-proteasome
dependent manner (Saha et al., 2012). In addition, DNA damage
sensor components such as ATM-Chk2 and ATR-Chk1 stabilize
E2F1 expression through phosphorylation and thereby regulating
E2F1 mediated apoptotic signaling cascade (Wu and Yu, 2009).
As previously discussed EBNA-3C mediated deregulation of
ATM-Chk2 cascade demands further investigation in controlling
E2F1-targeted apoptosis in the context of EBV associated B-cell
lymphomas. Overall, these findings suggest E2F1 as a potential
therapeutic target regardless of p53 functional status against
several EBV associated B-cell lymphomas.

EBNA-3A and -3C Regulate Bim-Mediated
Apoptosis through Epigenetic Regulation
The tumor suppressor protein Bim or BCL2L11 represents one
of the crucial members of Bcl-2 (B-cell lymphoma 2) family
that induces apoptosis (Hughes et al., 2006). Bim plays an
important role during B-cell lymphomagenesis as deletion of
even a single allele can radically increase B-cell lymphoma
development in Eµ-Myc transgenic mice with constitutive c-
Myc expression within B-cells (Egle et al., 2004; Richter-Larrea
et al., 2010). As earlier discussed deregulation of c-Myc activity
due to chromosomal translocations is a characteristic feature
of Burkitt’s lymphoma (BL) and interestingly, Bim regulated
apoptosis was also shown to be coupled with c-Myc deregulation
that ultimately helps in developing B-cell lymphoma (Richter-
Larrea et al., 2010). Analysis of EBV latent gene expression
patterns in different EBV-positive BL derived cell lines revealed
that the EBNA-3 proteins might play an important role in
regulating Bim mediated apoptosis. Indeed, using genetically
engineered EBV, lacking individual EBNA-3 ORFs, EBNA-3A
and -3C but not -3B blocked Bimmediated apoptosis in response
to multiple cytotoxic drugs in a BL derived cell line, providing
a possible explanation by which EBV contributes to BL-
pathogenesis (Anderton et al., 2008). In addition, Bim expression
was drastically increased in response to both EBNA-3A and -3C
knockout viruses in contrast to cells infected with either wild-
type or mutant virus lacking expression of other EBNA genes
including EBNA-3B (Anderton et al., 2008). The suppression of
Bim expression in EBV positive B-cells by EBNA-3 proteins was
established at transcriptional level via epigenetic modification
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as treatment with HDAC and DNA-methyltransferase enzymes
(DNMT) inhibitors enhanced Bim expression (Anderton et al.,
2008). Epigenetic regulations including hypermethylation of
cytosine residue at CpG islands and covalent modifications
most prominently methylation and acetylation to the N-terminal
tails of histones, regulate gene expression through varying the
chromatin structure in a heritable manner and thus characterized
as a hallmark of cancer development (Bártová et al., 2008;
Sandoval and Esteller, 2012). As discussed in the earlier section,
EBNA-3C can recruit many chromatin modification enzymes
in order to regulate gene transcription (Radkov et al., 1999;
Cotter and Robertson, 2000; Knight et al., 2003; Skalska
et al., 2010). However, whether EBNA-3A or -3C may also
recruit DNMT activity, which is a common mechanism for
silencing transcriptional activation of many tumor suppressor
genes in most cancers, are unknown. Nevertheless, it has been
proposed that EBNA-3A and -3C repress Bim expression and
subsequently its apoptosis in BL through histone modification
H3K27-Me3 (trimethylation of histone H3 lysine 27) and CpG
hypermethylation at the Bim promoter (Paschos et al., 2009).
Interestingly, recently using a PCRmicroarray its has been shown
that EBV infection in primary B-lymphocytes led to a global
transcriptional repression of an array of tumor suppressor genes
through recruiting hypermethylation activity (Saha et al., 2015),
suggesting a commonmechanism by which EBV promotes B-cell
immortalization.

ROLE IN METASTASIS

EBNA-3C Regulates Nm23-H1 Mediated
Anti-Metastatic Activities
Nm23-H1 belongs to nucleoside diphosphate kinases (NDPKs)
family, was identified as the first anti-metastatic protein
significantly implicated in cancer progression through regulating
various signaling pathways (Murakami et al., 2009; Marshall
et al., 2010). However there are many conflicting data, an altered
Nm23-H1 expression, both at protein and RNA levels coupled
with its metastatic activity was shown to directly associate
with many cancer types, including tumor virus associated B-
cell lymphomas (Marshall et al., 2010; Saha and Robertson,
2011b). Undoubtedly, EBNA-3C represents as one of the best
studied Nm23-H1 interacting partners, which was initially
identified in a yeast two hybrid screening (Subramanian et al.,
2001; Saha and Robertson, 2011b). Using series of truncated
EBNA-3C regions in both in vitro and in vivo settings, the
binding site was mapped at aa 657-675 (Subramanian and
Robertson, 2002). The interaction of EBNA-3C with Nm23-
H1 resulted in salvaging Nm23-H1 induced anti-proliferative
effects on cell migration examined in multiple cell lines
(Subramanian and Robertson, 2002). Contradictorily, EBNA-3C
can also accelerate Nm23-H1 mediated transcriptional activity
on multiple promoters - Cox-2, αv-integrin and MMP-9 (Saha
and Robertson, 2011b). Remarkably, EBNA-3C co-expression
leads to relocation of Nm23-H1’s cytoplasmic signal to mostly
nucleus, providing a possible explanation of enhanced Nm23-H1
mediated transcriptional activity (Subramanian et al., 2001; Saha

and Robertson, 2011b). However, how these changes eventually
influence Nm23-H1’s anti-metastatic activities is not clear. In
this context, an in vivo study using nude mice as model
system was conducted to determine the magnitude of EBNA-
3C’s ability in suppressing Nm23-H1 mediated anti-metastatic
potential (Kaul et al., 2007). The study demonstrated that EBNA-
3C significantly inhibits Nm23-H1 activity and induces the
initial tumor formation, while at the later stage both EBNA-
3C and Nm23-H1 seemed to have no function regarding tumor
progression (Kaul et al., 2007). This study also corroborated with
a previous study aimed to analyze Nm23-H1 expression levels in
established EBV-positive and negative B-cells with no apparent
change, indicating that Nm23-H1 might not be important once
the cancer has already developed (Murakami et al., 2009; Saha
and Robertson, 2011b). Since genetically engineered EBV lacking
EBNA-3C ORF is unable to transform primary B-lymphocytes,
EBNA-3C may regulate Nm23-H1 activities at early stage of
infection. In fact, a recent study using a PCR microarray showed
that EBV infection in nascent peripheral B-lymphocytes led to an
increased hypermethylation pattern of Nm23-H1 promoter and
thereby affecting its transcription (Saha et al., 2015). However,
whether EBAN-3C has any direct role in Nm23-H1 promoter
hypermethylation and subsequently expression level is currently
under investigation.

Blast analysis of the Nm23-H1 binding residues of EBNA-
3C revealed a considerable sequence homology with another
metastasis suppressor Necdin, a member of the melanoma-
associated antigen (MAGE) family of proteins comprising of
more than 60 genes that share the highly conserved MAGE
homology domain (MHD) (Kaul et al., 2009). Necdin acts as
a transcriptional repressor either by directly bind to the DNA
or through its interaction with major transcription regulators
such as p53, E2F1, and Hif-1α (Matsumoto et al., 2001).
Notably, elevated CpG-methylation of Necdin promoter in
EBV transformed B-lymphocytes was observed as compared to
nascent B-lymphocytes, suggesting that EBV latent antigens may
regulate Necdin expression and subsequently its function (Kaul
et al., 2009). In addition, Necdin expression level was shown
to be particularly lower in EBV-positive BL cells than that of
negative counterpart, further suggesting epigenetic regulation
might play an important role in Necdin expression in EBV
positive B-cells (Kaul et al., 2009). However, whether EBNA-3C
or any other EBV latent antigens recruit epigenetic machineries
in order to control Necdin expression is yet to be known.
On the other hand, EBNA-3C coupled with Nm23-H1 was
shown to deregulate Necdin mediated growth suppression and
anti-angiogenic property possibly through affecting at both
transcriptional and subcellular localization levels (Kaul et al.,
2009; Saha and Robertson, 2011b). Overall, this study suggests
a novel role for Necdin in regulating virus-associated human
cancers development.

CONCLUSION

Over the last decade a significant progress has been made toward
our understanding of how the EBNA-3 proteins contribute to
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the induction and subsequently development of several B-cell
lymphomas particularly in an immune-compromised scenario.
EBNA-3 proteins—particularly EBNA-3A and -3C deregulate a
number of cellular pathways including cell-cycle, apoptosis, and
metastasis largely through direct protein-protein interaction.
EBNA-3C, in particular regulates an array of cellular protein
level through manipulating ubiquitin-targeted proteasomal
machinery. In addition, both EBNA-3A and -3C deregulate
gene transcription through recruiting several chromatin
remodeling factors. Newer technological advancements such as
genetically modified viruses, microarray based techniques, and
whole transcriptomic analyses have essentially demonstrated
that these proteins play a major role in EBV induced B-
cell lymphomagenesis and therefore may facilitate in the
development of targeted therapeutics in near future.
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