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A B S T R A C T   

Second messenger (p)ppGpp mediated stress response plays a crucial role in bacterial persistence and multiple 
drug resistance. In E. coli, (p)ppGpp binds to RNA polymerase and upregulates the transcription of genes essential 
for stress response while concurrently downregulating the expression of genes critical for growth and meta-
bolism. Recently, the family of alarmone molecules has expanded to pppGpp, ppGpp, pGpp & (pp)pApp as 
distinct members. These molecules may help in fine-tuning stress responses in different hostile conditions. Do all 
of these molecules bind to RNA polymerase? Do they compete with each other or complement each other’s 
functions is still not clear. Earlier, others and we have synthesized artificial analogs of (p)ppGpp that inhibited 
(p)ppGpp synthesis and long-term survival in M. smegmatis and in B. subtilis suggesting that analogs could 
compete with each other. Understanding the interplay of these molecules will allow deciphering novel pathways 
that can be potentially subjected to the therapeutic intervention. In this article, we have reviewed newly 
characterized second messengers and discussed their mode of action. We have also documented the progress 
made to-date in understanding the molecular basis of regulation of transcription by second messenger ppGpp, 
pppGpp, and pGpp.   

Introduction 

In 1969, Professor Mike Cashel reported the appearance of a magic 
spot (MS) on a thin layer chromatography sheet in the cell extract 
sample from E. coli cells subjected to amino acid starvation (Cashel and 
Gallant, 1969). This magic spot was identified as ppGpp, and it was 
observed to inhibit RNA synthesis (Cashel and Gallant, 1969). In the 
next few decades, (p)ppGpp was recognized for its critical role in heat 
stress response, tolerance to antibiotics, overall nutritional starvation 
response, and virulence (Kim et al., 2018; Kudrin et al., 2017; Li et al., 
2015; Pulschen et al., 2017). Interestingly, most antibiotics target 
pathways linked to the exponential growth phase, and such selective 
targeting leads to the relative accumulation of cells in other phases like 
the stationary phase. As (p)ppGpp is an important second messenger in 
the stationary phase and crucial for associated phenotypes including 
biofilm formation, targeting of (p)ppGpp associated pathways, could 
constitute a vital non-conventional therapeutic approach (Diaz-Salazar 
et al., 2017; Syal et al., 2017; Syal et al., 2017). Second messenger (p) 
ppGpp do not exist in humans, so targeting its synthesis or associated 
pathways in bacteria will not have any side effects. Further, the recent 
discoveries highlight its direct role in virulence, and antibiotic tolerance 
which makes it an ideal drug target (Chatnaparat et al., 2015; Holley 

et al., 2015). In E. coli, (p)ppGpp binds to RNA polymerase to give a 
stress response, but the binding site of ppGpp on RNAP remained 
controversial for a very long (Vrentas et al., 2008). In the late 1980s and 
early 1990s, multiple studies validated that ppGpp binds to RNA poly-
merase (RNAP) in Escherichia coli and plays a direct role in the regulation 
of transcription (Glass et al., 1986). Chatterji et al. used photo-
crosslinking methodology, where azido labeled ppGpp was used for 
crosslinking with RNAP and determined the C-terminal domain of the 
beta-subunit as the binding site (Chatterji et al., 1998; Reddy et al., 
1995). Hernandez et al. used a thio-derivative of ppGpp, and observed 
its binding to the N-terminal domain of beta’-subunit (Toulokhonov 
et al., 2001). Hernandez et al. explained the discrepancy with the former 
study based on the proximity of the N-terminal domain of beta’ to the 
C-terminal domain of the beta subunit. More importantly, the different 
positions of a crosslinking group are thio- and azido groups on guanine 
moiety of ppGpp molecule (Toulokhonov et al., 2001). In 2004, a 2.7 
Angstrom crystal structure of ppGpp-RNAP from Thermus thermophilus 
revealed the active site of RNAP as the binding site. But, the latter study 
was contested due to the lack of omega subunit in the RNAP crystal 
structure, contradictory mutational analysis, and the inability of Ther-
mus thermophilus to give a stringent response (Artsimovitch et al., 2004). 
More recently, Steitz et al. solved the crystal structure of RNAP from 
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E. coli and soaked it with ppGpp (Zuo et al., 2013). The latter group 
reported the binding site at the interface of β’− ω subunit. This study was 
further confirmed by a concurrent mutational analysis study from the 
Richard Gourse group (Ross et al., 2013). 

Did (p)ppGpp crystal structure with RNA polymerase solve the 
mystery of regulation of stringent response? 

It is worth considering that crystallization was carried out by soaking 
and not co-crystallization. The RNA polymerase in crystal structure 
presents only one conformation and soaking of ppGpp over it would 
indicate the binding of ppGpp to that specific conformation. Since RNAP 
is a highly active molecule, tracing of binding of ppGpp to one confor-
mation of RNAP cannot reveal the whole story. Also, what if RNAP binds 
(p)ppGpp in the presence of some other unknown factor? Evidently, 
Gourse et al. reported the DksA dependent binding site of ppGpp on RNA 
polymerase (Ross et al., 2016). So the possibility of more binding sites of 
(p)ppGpp on RNAP cannot be ruled out. In 2015, we used the DRaCALA 
assay to follow the binding of ppGpp and pppGpp to the RNA poly-
merase. DRaCALA assay was devised for c-di-GMP messenger and other 
small molecules (Roelofs et al., 2011). But, ppGpp and pppGpp were the 
exceptional cases as unlike c-di-GMP, which is a cyclic ring of two GMP 
molecules, ppGpp and pppGpp are different by a pyrophosphate from its 
precursor molecule GDP and GTP, respectively. So, we were unsure if we 
could precisely determine the binding of ppGpp or pppGpp by DRaCALA 
assay. We confirmed that ppGpp or pppGpp binding could also be fol-
lowed by the DRaCALA assay (Syal and Chatterji, 2015). Soon, other 
groups adopted the DRaCALA assay too for following the binding of 
ppGpp. We observed multiple crosslinked peptides by mass spectrom-
etry, where two of them pinpointed to the β’-ω subunit pocket that 
coincided with the studies from Gourse et al. and Steitz et al.. In contrast, 
the third peptide was located at the C-terminal domain of β- subunit 
(Syal and Chatterji, 2015). Interestingly, we observed that pppGpp binds 
more strongly to RNAP and has overlapped binding sites with ppGpp. 
With the discovery of potential functional differences in pppGpp, 
ppGpp, and pGpp, the investigations for deciphering the molecular basis 
of their binding, regulation, and function have become even more 
relevant. Also, how these nucleotide messengers cross-talk is worth 
pursuing. Previously, we have determined the biophysical parameters of 
binding of ppGpp to RNAP by isothermal titration calorimetry. We have 
shown that ppGpp and pppGpp compete to bind to RNA polymerase in 
in-vitro conditions. We have used 1:1 binding stoichiometry model for 
following the binding of ppGpp to RNAP from E. coli and observed the 
binding of ppGpp to RNAP in the order of micromolar range (Bhardwaj 

et al., 2018). However, the basal level of ppGpp is itself in micromolar 
range. It shoots to millimolar range in stress so we still do not understand 
the significance of micromolar binding affinity observed by us (Bhard-
waj et al., 2018) especially in physiological conditions. 

Earlier, Cashel group conclusively showed the differential regulation 
of transcription by ppGpp and pppGpp in E. coli. But, the mode of action 
was not clear. Then, we showed differential binding of ppGpp and 
pppGpp, explaining the different modes of regulation of transcription by 
ppGpp and pppGpp (Syal and Chatterji, 2015). 

These discoveries opened a new series of questions like-are ppGpp 
and pppGpp different or same (as they were considered for so long)? Do 
ppGpp and pppGpp perform different functions? Do they bind at the 
same site on RNA polymerase? Can one compete against the other? Are 
their effects cumulative? Which one is more effective? (Fig. 1) 

On top of it, do pGpp also have a role in stress response, and how it is 
connected to the function of (p)ppGpp is not clear. In Enterococcus fae-
calis, regulatory effects of pGpp synthesized by the Small Alarmone 
Synthetase have been investigated (Gaca et al., 2015). It would be worth 
investigating its binding kinetics to RNA polymerase too. 

Most have explored only the possibility of differential regulation of 
transcription by ppGpp and pppGpp (Fig. 2). What determines their 
proportion in the cell remains an open question. Is it a simple percentage 
of their substrates/precursors or some other factor? Even more inter-
esting would be the determinants of the stability of each of them inside 
the cell under different conditions? Are they completely interconvert-
ible? What triggers the interconversion? Can pGpp form ppGpp and 
pppGpp? pppGpp can be hydrolyzed to ppGpp and pGpp or ppGpp to 
pGpp. If they have the same or similar function, then why interconver-
sion? These are open questions that require extensive research (Syal 
et al., 2015a; Syal and Chatterji, 2018; Yang et al., 2020). 

(p)ppApp vs. (p)ppGpp 

Earlier, (p)ppApp was observed in actinobacteria and B. subtilis (Oki 
et al., 1976), and it was showed to increase the transcription of rRNA 
gene in vitro (Travers, 1978). Recently, the crystal structure of Escher-
ichia coli RNAP-(p)ppApp complex revealed the binding of ppApp near 
the active site. We have used PyMOL to overlay the structures of 
ppGpp-RNAP and ppApp-RNAP to have a visual understanding of the 
binding site of ppGpp and ppApp (Fig. 3). Bruhn-Olszewska et al. fol-
lowed the regulatory effects of (p)ppApp on E. coli rrnB promoter. As 
reported earlier, unlike (p)ppGpp, (p)ppApp activated the transcription 
at rrnB promoter, and interestingly DksA opposed such activation. The 
authors observed that ppGpp and pppApp when present together, the 

Fig. 1. (p)ppGpp family, precursors and byproducts (Yang et al., 2020)- The RSH enzymes mediate the synthesis of pGpp, ppGpp and pppGpp by transfer of a 
pyrophosphate group to GMP/GDP/GTP. Further, interconversion of pppGpp to ppGpp is processed by guanosine pentaphosphatase (GppA) and translational 
GTPases (Hauryliuk et al., 2015). 
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resulting effects are conditional and depend on the sequence of incu-
bation. However, the molecular mechanism of pppApp action on RNAP 
is still unknown (Bruhn-Olszewska et al., 2018). 

In 2019, Ahmad et al. characterized Tas1 enzyme that codes for an 
antibacterial toxin in Pseudomonas aeruginosa. Though it is structurally 
similar to RSH enzymes but it makes (p)ppApp and not (p)ppGpp 
(Ahmad et al., 2019). Interestingly, type VI secretion system injects it 
into competing neighboring cells, where it rapidly utilizes ATP and 
converts it into (pp)pApp leading to the quenching of metabolic pro-
cesses. (pp)pApp has been shown to directly bind to PurF thereby 
inhibiting purine biosynthesis (Ahmad et al., 2019). Like (p)ppGpp, too 
much of (pp)App is also toxic in hydrolase mutants, and it can be 
countered by corresponding hydrolase (Geiger et al., 2014). Do 
non-toxic accumulation of (p)ppApp helps in sporulation of B. subtilis 
cells is not understood and requires investigation. 

Many RSH enzymes, including 30 small alarmone synthetase (SAS), 
have been shown to produce (pp)pApp. Five of these SASs have been 
shown to be an integral part of the bicistronic toxin–antitoxin-like op-
erons (toxSAS) systems (Irving et al., 2021; Jimmy et al., 2020). (pp) 
pApp and (pp)pGpp have been realized as the vital constituent of genetic 
modules that involve toxin (that inhibits cell growth) and a cognate 
antitoxin (neutralizes the toxin or its effects). In E. coli, the RelP/Q group 
of SAS have been observed to be non-toxic in the presence of their 
cognate antitoxin. Upon expression of the SAS and in the absence of its 
cognate antitoxin, accumulation of ppApp and ppGpp lead to the inhi-
bition of cell growth. The toxin activity can be controlled by an anti-
toxins that can either bind and inactivate the toxin (Type II TA) or 
possess hydrolase activity thus breaking the accumulated alarmone 
molecules (Irving et al., 2021). 

pGpp- A new second messenger or a potential stress response 
switch 

In 1976s, the pGpp molecule was observed in the B. subtilis and 
actinobacteria but its physiological relevance was not clear for very long 
(Nishino et al., 1979; Oki et al., 1976). Jade Wang group from 
UW-Madison reported pGpp as a third alarmone molecule in Bacillus 
subtilis. It is worth mentioning here that stress response in B. subtilis does 
not involve (p)ppGpp mediated regulation of transcription (Yang et al., 

2020). Wang et al. performed a screening of potential binding partners 
of pGpp, ppGpp, and pppGpp. They observed that ppGpp and pppGpp 
interact with similar proteins involved in the same or overlapping 
pathways like purine biosynthesis pathways and GTPase. In contrast, 
pGpp interacted with the inhibitory cascades of purine nucleotide 
biosynthesis alone and not with GTPase responsible for the assembly of 
ribosomes. A NahA hydrolase was identified that could convert (p) 
ppGpp to pGpp and may have a potential role in fine-tuning the stringent 
response. Upon deletion of NahA, authors reported slow growth recov-
ery phenotype and survival (Yang et al., 2020). pGpp synthesis has also 
been confirmed by RSH enzymes in S. aureus (Yang et al., 2019), 
M. smegmatis (Petchiappan et al., 2020) and E. coli (Sajish et al., 2009). 
In gram-negative bacteria, the mode of action of pGpp remains largely 
unclear. Earlier, Gaca et al. showed that pGpp downregulated the 
function of GTP biosynthesis in E. faecalis (Gaca et al., 2015). They also 
reported inhibition (though lesser than (p)ppGpp) of transcription of 
rrnB in E. coli. Interestingly, both pGpp and ppGpp activated the RelA 
synthetase activity. Unlike Wang group, Gaca et al. concluded that pGpp 
function like (p)ppGpp and has similar regulatory functions in stress 
response (Gaca et al., 2015). 

Discussion 

The first and second binding sites of (p)ppGpp on RNAP have been 
reported to be at the interface of beta’-omega and RNAP/DksA, 
respectively (Ross et al., 2016).  With a thoughtful experiment, Gourse 
et al. followed the effects of (p)ppGpp on RNAP without nutrient star-
vation by RNA seq. They reported the list of 750 genes that are positively 
and negatively regulated by (p)ppGpp. However the promoter sequence 
preference of (p)ppGpp is still not well-understood (Sanchez-Vazquez 
et al., 2019).  The targets of (p)ppGpp have expanded beyond RNA 
polymerase in E. coli (Zhang et al., 2018). As discussed before, in 
B. subtilis, purine nucleotide biosynthesis enzymes have been reported to 
be the primary target and not RNA polymerase (Kriel et al., 2012). p) 
ppGpp is a highly charged species with structural similarity to its pre-
cursor (GTP), which makes it capable of binding to many binding 
partners. The identification and characterization of the relevant in-
teractions remain a challenge. Interestingly, DNA replication enzymes 
like primase have also been shown to be regulated by (p)ppGpp (Gourse 

Fig. 2. This schematic highlights cross-talk between ppGpp, pppGpp, and pGpp, and their corresponding binding sites with each other. How variable rates of hy-
drolysis and synthesis of pGpp, ppGpp and pppGpp regulates transcription is not well understood. Also, the dynamics of different binding sites and coordination with 
each other is incompletely understood (Yang et al., 2020). 
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and Keck, 2007). Evidently, (p)ppGpp regulates its own synthesis, and 
its analogs have been shown to inhibit ppGpp synthesis (Syal et al., 
2017; Wexselblatt et al., 2012; Syal et al., 2015b). Though the required 
concentration of ppGpp analogues to inhibit (p)ppGpp synthesis is high, 
but these studies are the proof of concept that ppGpp analogues can be of 
therapeutic value. Interestingly, excess of ppGpp has also been shown to 
be toxic for the cell, making the (p)ppGpp hydrolase an attractive target 
(Kriel et al., 2012). In the light of the rapid emergence of antibiotic 
resistance in the last few decades, targeting the ppGpp mediated stress 
response, and associated pathways has become more appealing. 

Additionally, attempts have been made to follow the cross-talk be-
tween c-di-GMP and ppGpp, if any. It should be noted that the reported 
concentrations of the two are extremely different, that is ppGpp shoots 
to the mM range in stress, but c-di-GMP never crosses the nano to 
micromolar range. We observed c-di-GMP binding affinity for Rel WT 
from M. smegmatis in the micromolar range (Syal et al., 2015a). Such 
high concentrations of c-di-GMP are difficult to achieve inside the cell. 
Still, it is possible that in invivo conditions, in a localized environment, 
or in the presence of some other factors, it may become significant. Also, 
the possibility of binding of ppGpp to the diguanylate cyclase is worth 
evaluating. 

More research into domains of the interconnection of (pp)pApp and 
(pp)pGpp-mediated regulation is necessary for deciphering the network 
of nucleotide signaling cascades and their role in bacteria. 
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Fig. 3. PyMOL was used for overlaying of the following crystal structures available in PDB database. A) ppGpp-RNAP (Steitz et al., Mol Cell, 2013; PDB ID: 4JKR) 
and ppApp-RNAP (Potrykus et al., Biochim Biophys Acta, 2018) B) ppApp-RNAP (Potrykus et al., Biochim Biophys Acta, 2018; PDB ID: 6BYU) and ppGpp/DksA- 
RNAP (Murakami et al., Mol Cell, 2018; PDB ID: 5VSW). 
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