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Abstract
By overcoming the diffraction limit in light microscopy, super-resolution techniques, such as

stimulated emission depletion (STED) microscopy, are experiencing an increasing impact

on life sciences. High costs and technically demanding setups, however, may still hinder a

wider distribution of this innovation in biomedical research laboratories. As far-field micros-

copy is the most widely employed microscopy modality in the life sciences, upgrading

already existing systems seems to be an attractive option for achieving diffraction-unlimited

fluorescence microscopy in a cost-effective manner. Here, we demonstrate the successful

upgrade of a commercial time-resolved confocal fluorescence microscope to an easy-to-

align STED microscope in the single-beam path layout, previously proposed as “easy-

STED”, achieving lateral resolution < λ/10 corresponding to a five-fold improvement over a

confocal modality. For this purpose, both the excitation and depletion laser beams pass

through a commercially available segmented phase plate that creates the STED-doughnut

light distribution in the focal plane, while leaving the excitation beam unaltered when imple-

mented into the joint beam path. Diffraction-unlimited imaging of 20 nm-sized fluorescent

beads as reference were achieved with the wavelength combination of 635 nm excitation

and 766 nm depletion. To evaluate the STED performance in biological systems, we com-

pared the popular phalloidin-coupled fluorescent dyes Atto647N and Abberior STAR635 by

labeling F-actin filaments in vitro as well as through immunofluorescence recordings of

microtubules in a complex epithelial tissue. Here, we applied a recently proposed deconvo-

lution approach and showed that images obtained from time-gated pulsed STEDmicros-

copy may benefit concerning the signal-to-background ratio, from the joint deconvolution of

sub-images with different spatial information which were extracted from offline time gating.

Introduction
The importance of light microscopy in general and fluorescence microscopy in particular as a
biophysical imaging tool for understanding life on the cellular and sub-cellular levels is unargu-
able [1,2]. The high degree of specificity achievable by fluorescent proteins or by tagging pro-
teins with organic fluorophores along with the mostly noninvasive character of this method are
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often cited as main reasons for the wide distribution of fluorescence microscopy in the biologi-
cal and biomedical sciences [2,3]. The main drawback of conventional fluorescence micros-
copy, especially when investigating cellular functions mediated by the interplay of proteins, is
the limitation of the spatial resolution to about half a wavelength of the excitation light. This
diffraction barrier, however, has been overcome by the invention and development of super-
resolution or diffraction-unlimited fluorescence imaging techniques within the last two
decades [4–6]. The manner in which the higher precision of nanoscopic information helps in
understanding biological processes has been reviewed recently [7–9].

Sharing the general principle of separating adjacent features by forcing the labeling fluoro-
phores within an area of diffraction-limited size to time-sequential emission, two main groups
of nanoscopy implementations are commonly distinguished [10,11]. In the stochastic
approaches (e.g. PALM, STORM), the fluorophores are kept in a dark non-emission state most
of the time. Only a small fraction, on average less than one molecule per diffraction-limited
volume, is allowed to be in the bright, fluorescent state, such that the fluorescence of all single
molecules detected by a camera at one time can be localized with diffraction-unlimited preci-
sion by centroid calculation. As labeling molecules switch stochastically between bright and
dark states, it is possible to reconstruct a super-resolution image through the thousand-fold
repeated detection and localization of molecule subsets, sparsely distributed over the sample
[6,12].

Being the first realized approach of optical far-field nanoscopy, STED is the main represen-
tative of the target-coordinated group of diffraction-unlimited techniques [13]. In contrast to
stochastic methods, the spatio-temporal fluorescence emission modulation in this group of
techniques is realized using special light patterns at well-defined sample coordinates [14]. In
the case of STED, stimulated emission by a laser beam that features at least one zero intensity
in the focal plane is employed to prevent fluorescence emission from fluorophores excited by
the focused excitation light. Therefore, the diffraction-limited spot of the focused excitation
beam is exactly superimposed with a doughnut-shaped focal light distribution by a red-shifted
depletion beam, bringing the excited fluorophores to their ground state through stimulated
emission, before they can emit fluorescence. Application of sufficient STED-laser intensity in
the doughnut crest results in the efficient de-excitation of all fluorophores except those located
in the center of the depletion beam. This yields an effective fluorescence spot of sub-diffraction
size that can be scanned across the sample to achieve diffraction-unlimited imaging [15].

Structured illumination microscopy (SIM) is normally not considered a diffraction-unlim-
ited nanoscopy method, but is still capable of improving the spatial resolution to about
one-half of the diffraction limit [16]. Here, several images of one specimen are acquired after
excitation of the fluorophores with a series of spatial light patterns in wide-field mode. Linear
post-processing of the images enables the recovery of higher spatial frequencies resulting in a
reconstruction with twice the normal resolution. Although the resolution enhancement is
moderate, SIM is of great importance for imaging living tissues when a long-term time course,
a large field of view and low phototoxicity are desirable [1,17].

In principle, the different nanoscopy techniques available nowadays should allow for most
of the relevant imaging modalities initially developed for conventional far-field microscopy,
but now at higher spatial resolution. The individual techniques, however, appear differently
well-suited or technically demanding for the implementation of an imaging modality when
applying e.g. two-photon excitation [18], fluorescence lifetime imaging [19], or dynamic single
molecule tracking [20]. Non-invasive, sub-diffractional multicolor and/or 3D-imaging of bio-
logical samples under physiological conditions has been demonstrated by applying techniques
from both the coordinate-targeted method and the individual molecule localization method
[21–26].
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While the 3D-imaging and multicolor (by spectral separation) modality can be argued to be
most easily integrated into a STORM or PALMmicroscope, STED nanoscopy seems particu-
larly well-suited when it comes to diffraction-unlimited fluorescence lifetime imaging [19] or
to spectroscopy at the molecular level [27]. The numerous realized biological applications with
impressive results previously unachievable, as well as the great potential for further technical
developments are the reasons for awarding the Nobel Prize in Chemistry 2014 to the inventors
of diffraction-unlimited fluorescence microscopy [28].

One may argue if today, where different super-resolution microscopes are already commer-
cially available, it is still reasonable to buy a research-grade fluorescence microscope without
super-resolution option at all. Actually, STED modality (based on the easySTED principle) has
also been added to the MicroTime 200, an old version of which served as a basis for the
upgrade in this work. We wondered about a different aspect of this development: Have thou-
sands of high-end microscopes used in research today become obsolete due to the upcoming
super-resolution?

Only relatively basic modifications are necessary to use standard wide-field microscopes
(not necessarily, but most simply, in total internal reflection fluorescence (TIRF) modality) for
diffraction-unlimited imaging applying the single molecule localization method, since it relies
more on the photochemical properties of the fluorescent dye used and the subsequent localiza-
tion analysis algorithms [29]. The corresponding choice to upgrade a confocal scanning micro-
scope would be the STED technology. Here, we explore the possibility of upgrading a
commercial time-resolved confocal scanning microscope [30] to perform time-resolved fluo-
rescence imaging of diffraction-unlimited spatial resolution, keeping technical and financial
demands at a relatively low level.

Several designs for the realization of STED microscopes have been published in the last few
years [31–35]. While, on the one hand, the improvement of spatial resolution, the reduction of
photobleaching, and the enhancement of acquisition speed have been in the focus of techno-
logical development [36–39], lately, on the other hand, emphasis has also been given to reduc-
ing complexity in order to make the technique more popular [40,41]. One development worth
noting in this latter context is the commercial availability of an easy-STED phase plate that cre-
ates the STED doughnut light distribution in the focal plane while leaving the excitation beam
unaltered when implemented into the joint beam path of excitation and STED light [42,43].
This offers the convenient possibility to coalign and spatially filter both beams by coupling
them into the same single-mode fiber, thus reducing the alignment of the excitation and STED
spot to the joint coupling into this common fiber. We successfully applied such a phase plate to
upgrade a time-resolved confocal microscope (MicroTime 200, PicoQuant, Berlin, Germany)
by adding just a handful of optical elements and a turn-key STED laser [44] to achieve diffrac-
tion-unlimited imaging with spatial resolution down to 40–50 nm.

Materials and Methods

STED upgrade of the confocal microscope
An inverted time-resolved confocal scanning microscope (MicroTime 200, PicoQuant, Berlin,
Germany) served as a basis for the upgrade to a super-resolution microscope (Fig 1) [30]. In
order to realize STED-based imaging in a confocal fluorescence microscope, it is, in principle,
only necessary to spatially overlay the focal spot of the excitation laser beam with a red-shifted
light distribution realizing a diffraction-limited focal zero-intensity minimum in its center.
Both continuous-wave [45] and pulsed STED laser sources are convenient for the upgrade,
with the pulsed option promising higher achievable resolution at the same average laser inten-
sity [46,47].

Single-Beam Path STEDMicroscope
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Relying on trains of excitation and depletion pulses, the pulsed modality requires thorough
temporal synchronization to guarantee the simultaneous or shortly delayed (with respect to the
excitation pulse) arrival of the STED pulse in the focal plane. While in the early implementa-
tions of STED microscopy often Ti:Sapphire laser systems were used to deliver the pulsed
STED light [36,48,49], nowadays more compact laser sources are available in the relevant
wavelength regions at much lower costs [33,43]. For an efficient STED process, the typical fs
pulses of a mode-locked Ti:Sapphire laser needed to be stretched in the past to avoid problems
caused by polarization effects, timing jitter and multiphoton excitation partly responsible for
photobleaching of fluorescent dyes used. Today’s commercial availability of (turn-key) fiber
lasers that already have STED-compatible pulse-widths of 0.1–1 ns significantly reduces the
technical complexity of setting up a (pulsed) STED microscope.

Fig 1. Setup realizing a STED upgrade.Components integrated into the MicroTime 200 confocal microscope (PicoQuant, Germany) in order to reach
diffraction-unlimited imaging are underlined. The laser beam inducing stimulated emission (766 nm) is coupled into the same polarization-maintaining (PM)
fiber as the excitation light from the ps-pulsed laser diode at 635 nm. The polarizer (Glan-Thompson prism from Artifex, Germany) is not mandatory, as the
linear polarization of the lasers used is preserved mostly by the fiber. Still, as the quality of the STED doughnut created by the EASYDOnut phase plate
(Abberior, Germany) depends on the polarization state of the 766 nm light, further polarization control may be beneficial. Arrows in inset (D) indicate the slow
axis’ direction of each of the phase plate’s segments. The achromatic quarter wave plate (λ/4) changes the polarization state to circular, the state the phase
plate works best with. Fluorescence was recorded with a 100 Plan Apo Lambda oil immersion objective from Nikon. Time-correlated single-photon counting
(TCSPC) electronics and analysis software were provided by PicoQuant. For single-photon detection, a single-photon avalanche diode (SPAD, PerkinElmer)
was used. Inset (A) shows the point spread functions of the excitation (yellow) and STED (red) light as measured by monitoring the backscattered light of an
80 nm gold bead. Inset (B) shows the corresponding profile plots along the white line in (A). In inset (C), the absorption and emission spectra of the dye
Abberior STAR635 are given together with the wavelengths of the chosen excitation and STED lasers. The detection window, realized by a 690/70 nm
bandpass filter in front of the detector, is indicated as a yellow box.

doi:10.1371/journal.pone.0130717.g001
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As a STED laser source, we have tested a newly developed fiber-amplified laser diode
LDH-P-FA-765 (PicoQuant, Berlin, Germany) that delivers an average power of up to 350
mW at 40 MHz repetition rate at a wavelength of (766 ± 3) nm [44]. The repetition rate can be
freely chosen between 1–80 MHz. The pulse width is about 80 ps, which is at the lower limit of
the 100–1000 ps regime in which the best STED efficiency is expected [46]. Recently, a modi-
fied fiber-amplified and frequency doubled laser diode from PicoQuant and fiber lasers from
other manufacturers are available that exhibit pulse widths of several hundred picoseconds.
These longer STED pulses (>300 ps) have been reported to be beneficial concerning the chal-
lenge of controlling photobleaching of marker dyes during the STED run [43]. Longer pulses
may also simplify the temporal synchronization of the experiment, as the exact delay of the
STED pulse becomes less critical for the performance of the microscope. Still, the 80 ps-pulses
used here are already appropriate for STED [50,51], and we achieved reasonable results,
indeed. At any rate, we note that there is potential for further improvement in the future.

For the excitation of marker dyes, a 635 nm laser diode (PicoQuant) with an average power
of approx. 5 mW was used. Both laser heads (excitation and depletion) were driven by a multi-
channel picoseconds laser driver (PDL 828 Sepia II, PicoQuant) and triggered by the same
oscillator module with a maximal repetition rate of 40 MHz. Time delay was thus very stable
and could be controlled to an accuracy of 50 ps via an adjustable electronic delay. The joint
coupling of both laser beams into the very same single-mode polarization-maintaining fiber
(630PM; Coastal Connections, CA, USA) enabled the mechanical de-coupling of the excitation
sources from the specimen and the detection unit.

The starting point when upgrading an existing microscope is slightly different from design-
ing and constructing a new nanoscope from scratch. One aspect is the limited space for the
integration of new optical components. The use of a single-beam path setup, in which excita-
tion and STED beam are aligned by coupling into the same single mode fiber, offers advantages
here. At the exit of the fiber, the beams are perfectly overlaid and co-linearly aligned if chro-
matic effects at the out-coupling collimation optics have a negligible influence on the light leav-
ing the fiber. Thus, there is no need to introduce further optical elements to the (limited) space
of the main optical unit of the microscope for focus adjustment or special xy-adjustment of the
STED beam.

The drawback of this coupling into only one fiber, on the other hand, is the very limited pos-
sibility to correct for displacement of the two beams due to chromatic effects induced by the
remaining optical elements in the joint optical path. Thus, chromatic effects should be elimi-
nated from the very beginning by using achromatic or apochromatic devices for collimation
and polarization control.

An α-BBO Glan-Thompson polarizer with an extinction ratio<510−6 (no. 50.230.00010;
Artifex Engineering, Emden, Germany) for rejecting STED light of polarization different from
the desired linear fraction was introduced into the setup’s beam path. As the fiber is polariza-
tion-maintaining, this polarizer is not absolutely necessary as long as the orientation of the
fiber’s slow axis is carefully aligned with the polarization of the STED laser. Additionally, the
effect of mode mixing with the fast axis due to mechanical stress on the fiber should be mini-
mized by controlling the polarization state at the exit of the fiber if the Glan-Thompson polari-
zer is removed.

An achromatic quarter wave plate (working range: 500–800 nm; Artifex Engineering,
Emden, Germany) was positioned in the light path in order to optimize the obtained circular
polarization of the 766 nm STED-light at the position of the segmented phase plate close to the
back aperture of the objective. For the separation of excitation and emission light, the dichroic
mirror exhibited a second reflection band at the STED wavelength. We chose a dualband
dichroic (zt635/766rpc, AHF Analysentechnik, Tübingen, Germany) to realize the reflection of
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excitation and STED light and transmission of the fluorescence signal in the spectral range
from 650–750 nm (and 780–920 nm). All optical elements integrated into the beam path were
purchased at λ/10 quality, to minimize distortion of the wave front.

The segmented phase plate that forms the focal STED doughnut from the 766 nm laser
beam, while leaving the Gaussian profile of the excitation light at 635 nm practically unaltered,
has been described in detail [42,43] and is commercially available (EASYDOnut phase plate
635 nm/765 nm, Abberior, Göttingen, Germany). The four segments of birefringent material,
each oriented in a way ensuring the slow axes of opposite segments form a right angle, are com-
bined to form the wave plate. Arrows in Fig 1D indicate the corresponding directions of the
slow axes. The thickness is chosen such that 765 nm light polarized along the slow axis is
retarded by 2.5 wavelengths, while the retardance for the 635 nm excitation light is 3.0 wave-
lengths. The polarization of the primarily circular polarized 765 nm light is manipulated in a
way resulting in the formation of a doughnut-like intensity distribution in the focal plane [42].
Fig 1A shows in red the backscattered STED light from a gold nanoparticle with a diameter of
80 nm (BBI Solutions, Cardiff, UK) in the focal plane of the objective (Nikon CFI P-Apo 100x
Lambda Oil, NA 1.45, WD 0.13). The intensity distribution of the backscattered light at 635
nm is shown in orange. The focal STED light distribution is not a perfect round doughnut, as it
can be created with a helical phase ramp [52], but rather shows a fourfold symmetry (which is
a consequence of the four segments of the phase plate). Important, however, is the fact that a
zero intensity in the center is surrounded by high light intensity in any direction. The EASY-
DOnut phase plate was mounted close to the xy-piezoscanner with an inhouse made holder
that allows micrometer-fine positioning of the xy-position of the phase plate relative to the
laser beams.

The chosen wavelength combination (635 nm excitation and 766 nm stimulated emission)
is adequate for STED imaging of different dyes having excitation maxima in the red domain of
the visible spectrum. Fig 1C shows as an example the absorption and emission spectra of the
dye STAR635 (Abberior, Göttingen, Germany). The wavelength ranges of the lasers used are
indicated, as well as the detection window used here for STED microscopy. Another dye that
has also been used successfully for STED is Atto647N (Atto-Tec, Siegen, Germany). Showing
similar spectral properties, with an absorption maximum of 644 nm close to the excitation
wavelength and a broad emission with a maximum at 669 nm, this dye also ensures sufficient
STED probability.

The microscope was equipped with an xyz piezo-scanner (Physik Instrumente, Karlsruhe,
Germany) that moves the objective for 2D-imaging within an area of maximally 80×80 μm2.
Even though the scan range is small compared to the beam diameter of 4 mm (1/e2-optical
power diameter) overfilling the objective by less than 1%, objective scanning may raise the
question of possible misalignment effects on the shape and relative position of the two PSFs in
the focal plane. To address that question, we imaged the backscattered light from 80 nm gold
beads at different positions along the extreme periphery of the scan range (S1 Fig). However,
no indication of degradation of the central minimum or intensity decrease of the maxima
toward the periphery of the scan range could be obtained.

Fluorescence was detected confocally (pinhole diameter of 50 μm) with a single-photon ava-
lanche photodiode (SPAD, SPCM-AQR-13, Perkin Elmer, Waltham, USA). Time-correlated
single-photon counting (TCSPC) was performed by the module PicoHarp 300 with time reso-
lution down to 4 ps, and fluorescence decay analysis occurred using the software SymPhoTime
64 ver. 1.6 (both PicoQuant, Berlin, Germany). Modification of imaging software for confocal
microscopy (here, PicoQuant’s SymPhoTime 64) was not necessary, as rendering images in
both confocal scanning mode and STED mode are identical. Only the pixel size needs to be
chosen smaller for diffraction-unlimited imaging, accordingly.

Single-Beam Path STEDMicroscope
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The overall cost for components necessary for the upgrade (see S1 Table for a list of compo-
nents), added up to almost 50,000 Euro (excluding tax and shipping costs), with the high
power STED laser accounting for the biggest part. We note that our MicroTime 200 had
already been equipped with the 635 nm excitation laser diode, the corresponding fiber coupler
and the TCSPC module for time resolved measurements. Coupling the STED laser into the sin-
gle mode fiber with two mirrors in precision kinematic mounts reaching high coupling effi-
ciency is perhaps the most time-consuming task in the upgrade. After changing the dichroic
mirror to the STED compatible one and controlling the polarization state of the light at the exit
of the fiber and at the position of the segmented phase plate, fine adjustment of the light path
in the microscope can be done with the 635 nm excitation light only as it is the standard way
for confocal microscopy. Coarse lateral alignment of the phase plate can be done using the
internal lamp of the microscope in transmitted light mode. The borders between the four seg-
ments of the phase plate can be made visible as a cross at a small setting of the field diaphragm
by lowering the condenser towards the phase plate. Super-imposing the center of the seg-
mented phase plate and the crosshair in the eyepiece will yield a well-aligned phase plate given
the microscope is also well aligned. Fine adjustment of the phase plate was done by imaging the
backscattered light of gold beads (S1 Fig).

Sample preparation
Bead probes for the determination of the spatial resolution were prepared by immobilizing 20
nm Crimson fluorescent beads (Life Technologies, Darmstadt, Germany) on (170±5) μm thick
high-precision coverslips treated with 0.1% poly-L-lysine (Plano, Wetzlar, Germany) and sub-
sequent embedding in Mowiol 4–88 (Carl Roth, Karlsruhe, Germany).

In vitro samples of F-actin filament networks were prepared by immobilization of pre-
formed F-actin filaments purified from rabbit skeletal muscle (Cytoskeleton, Denver, USA) on
a coverslip treated with 0.1% poly-L-lysine. Before labeling with phalloidin-coupled fluorescent
dyes (either STAR635 or Atto647N), a blocking step using 2% bovine serum albumin (BSA,
Sigma-Aldrich, Deisenhofen, Germany) was performed to reduce non-specific dye binding.
After 60 min of dye incubation in a final concentration of about 200 nM, residual dye mole-
cules were eliminated by three washing steps in phosphate-buffered saline (PBS), and the speci-
men was subsequently embedded in Mowiol 4–88 containing the anti-bleaching reagent
DABCO (25 mg/ml; Carl Roth, Karlsruhe, Germany).

Cryosections from salivary glands (10 μm thick) of blowflies, which were reared at the Dept.
of Animal Physiology (Univ. Potsdam), were prepared as described previously [53]. For direct
staining of F-actin cryosections were incubated for 1 h with STAR635-phalloidin (1:40). For
indirect immunofluorescence staining of microtubules, the cryosections were incubated over-
night at 4 C with the rat α-tubulin antibody YL1/2 (1:100; Thermo Fisher Scientific, Schwerte,
Germany) and subsequently reacted for 1 h with the goat anti-rat IgG secondary antibody
(1:200; Life Technologies, Darmstadt, Germany) conjugated to the fluorescent dye STAR635P
(Abberior, Göttingen, Germany). To avoid mechanical stress to the cryosections, spacers were
used when embedding the specimen in Mowiol 4–88 containing 25 mg/ml DABCO.

Time-gating and joint deconvolution approach
By performing rasterscanned imaging in combination with TCSPC detection, the whole tem-
poral information of the fluorescence emission of the excited fluorophores was recorded for
every image pixel (chosen time resolution of 8 ps resulted in a total time window of ~33 ns.)
This allowed for off-line time-gating of the pulsed STED images by simply selecting those pho-
tons recorded in a time-gate (of variable length) shifted by a (variable) time interval Δt relative
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to the excitation pulse [32,38]. In our implementation of STED (using excitation and STED
pulses of approx. 100 ps length), time-gating could considerably improve the quality of diffrac-
tion-unlimited images concerning the signal-to-background ratio (SBR) and thus indirectly the
resulting resolution, if this was background-limited. By setting a detection time gate starting at
the end of the STED pulse, for example, the SBR could be significantly increased, as back-
ground contributions due to scattering of the excitation and STED pulses were discarded.

In a perfect time sequence for a pulsed STED experiment, (rectangular-shaped) pulses that
are very short compared to the fluorescence lifetime of the fluorophore should interact with
the specimen in a sequence of the STED pulse following the excitation pulse with neither a
temporal delay nor an overlap. In such an idealized case, fluorophores are excited and de-
excited on a timescale that is short enough to keep the level of spontaneous fluorescence from
the periphery of the doughnut-formed point spread function (PSF) during the interaction of
the pulses negligibly low. An increasing pulse length as well as any delay of the STED pulse
with respect to the excitation pulse will increase the level of unwanted spontaneous emission
from the diffraction-limited excitation PSF-volume. Any temporal overlap of the two pulses,
on the other hand, will diminish the efficiency of the overall STED process, as the suppression
of fluorescence depends on the number of STED photons to which the molecule is exposed
while residing in the excited state [47]. However, excessively short STED pulses (<100 ps) have
been observed to increase the technical complexity concerning the temporal synchronization.
Synchronization jitter may be problematic when using laser diodes [46]. More importantly,
short pulses with their higher peak powers are more demanding to the fluorophore with respect
to photobleaching. As it is one known channel for permanent photobleaching, the rising prob-
ability of multiphoton excitation at higher peak powers may be cited to explain this effect of
enhanced photodamage at shorter STED pulse lengths [50,54,55].

In a practical application, using approx. 100-ps pulses and avoiding a major temporal over-
lap of excitation and STED pulse (thus using the available STED power most efficiently for
stimulated fluorescence quenching), STED images could always be improved by time gating
and discarding early photons emitted during the application of the laser pulses. The time-syn-
chronization protocol of laser flashes and the length and temporal shape of the laser pulses
determine how the spatial information gained from photons collected in different time gates
varies. The first photons detected after laser excitation (and before the application of the STED
pulse) result in diffraction-limited images with spatial information identical to that of a confo-
cal imaging modality. Depending on the instrumental response of the detection system and the
temporal shape of the STED pulse, the photons with the highest diffraction-unlimited spatial
information are collected with a certain delay to the end of the STED interaction.

The emission detected in the remaining intermediate time gate reveals a confinement to the
center (of the depletion doughnut) that rises as a function of time delay relative to the laser
pulse. Similarly to the case of continuous wave (cw)-STED, this effect can be described by a
time-dependent effective PSF of the STED system (in this time gate), that may be modeled as
the weighted sum of different Gaussian distributions with decreasing full width at half maxi-
mum (FWHM) and decreasing weight [47]. Accordingly, the image resulting from those pho-
tons can be imagined to be the sum of a stack of sub-images with different spatial resolutions,
starting at diffraction-limited resolution and converging toward the maximally achievable spa-
tial resolution of the highest resolved STED time gate.

All time gates described contain the spatial information of more or less resolved images of
the specimen. The best resolved gated STED image can be obtained simply by disregarding all
the photons arriving outside the “last” time gate. This procedure is unsatisfactory, however, as
the information from all the detected emission outside the gate is lost. It has thus been pro-
posed that diffraction-unlimited gated cw-STED images be further improved by methods of
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multi-image deconvolution that take into account the time-dependent effective PSF of cw-
STED microscopy [47,56].

The ‘time-dependent’ spatial information of the same structure, independently accessible in
different time gates of the pulsed STED modality (as described here), calls for the application
of similar strategies to further optimize the gain of information. While the effective PSFs of the
images constructed from the early emission after excitation (gate i) in Fig 2A) and the late
emission after completed de-excitation (gate iii) in Fig 2A) are mostly time independent and
can therefore be determined rather easily; this is not the case for the intermediate photons
(gate ii) in Fig 2A). We therefore decided to test an adaption of a multi-image deconvolution
whose usage for super-resolution microscopy has recently been suggested by Ingaramo and
coworkers [57]. Based on the Richardson-Lucy (RL) algorithm [58,59], this approach enables
joint deconvolution of images of the same structure at different resolutions and different
brightness levels. We jointly processed the two images comprising time gate i) with confocal
resolution and gate iii) with diffraction-unlimited STED resolution through the slightly modi-
fied implementation of this approach in the python programming language provided by Ingar-
amo and coworkers. Photons collected in gate ii) were discarded from image post-processing
in this study due to the more complex and time-dependent PSF of the system in this time gate,
as well as to the fact that scattering light from the STED laser corrupts the image exclusively in
this gate.

While the confocal PSF determining the blurring of the early photons can be described well
by a Gaussian [60], this is often not the case for the effective PSF of the STED imaging modal-
ity. Due to a non-perfect depletion of emission from the doughnut periphery, the PSF of the
STED system, as visualized by imaging nanobeads, shows strong pedestals [51]. Incomplete
depletion due to early photons (vide supra) can effectively be countered by time gating, while
residual fluorescence, also excited by the STED pulse itself, may explain the pedestals of the
PSF of time-gated STED images. In STED images of this study, the light distributions of struc-
tures with a diameter smaller than the actual resolution of the STED system were thus more
adequately simulated by Lorentzian peak functions than by Gaussian-shaped peaks (S2 Fig).

The simultaneous reconstruction of multiple images (blurred and corrupted by noise to dif-
ferent degrees) of the same object through multi-image deconvolution has shown its potential
to improve signal analysis in microscopy [56,57,61]. For an imaging process of the formm = P
(h � o) withm being the measured image, o the imaged structure (distribution of fluorophores),
h the system PSF (modeling the imaging process by convolution �), and P a representation of
the Poisson noise distribution, the Richardson-Lucy deconvolution iteratively reconstructs the
most probable density estimate, e, for o, from the measurementm, and the known PSF, h.
Being a relatively simple realization of the maximum-likelihood approach adapted to Poisson
noise [62], one iteration of a two-image RL deconvolution, as applied here, may be written in
the form of a matrix equation according to [56]:

elþ1 ¼ el
1

2

X2

i¼1
HT

i

mi

Hi el

� �
ð1Þ

In the case of 2D-image processing, the estimates at iteration l, el, were represented by u×v
matrices of the same size as the measured input image,m.Hi stands for the operator perform-
ing the discrete convolution with PSF hi; H

T is the corresponding convolution with the flipped
PSF hT(u,v) = h(-u,-v). Multiplication and division of matrices in Eq (1) are computed ele-
ment-wise.

The adaption of the joint deconvolution approach used in this study comprised basically
two changes to the algorithm proposed by Ingaramo et al. First, instead of using two Gaussian
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Fig 2. TCSPC approach for time-gated STED imaging. (A) Double-logarithmic TCSPC histogram of the
fluorescence signal of the F-actin marker Abberior STAR635-phalloidin under ps-pulsed excitation and ps-
pulsed stimulated emission. Three time gates are indicated: gate i) contains the fluorescence emitted by the
labeling dye before application of the STED pulse, the gate ii) intermediate gate contains residual
fluorescence emitted during the stimulated emission process, and the gate iii) STED gate contains the
fluorescence from the very center of the STED doughnut after the completion of the stimulated emission
process. (B) Fluorescence images of STAR635-phalloidin labeled in vitro F-actin obtained from the different
time gates i), ii), iii), and the sum of all three time gates, as indicated in (A). Gate i) comprises photons with the
confocal spatial information of the structure, gate iii) photons with the diffraction-unlimited STED information,
and gate ii) contains a mixture of fluorescence photons that differ in the spatial information they carry. (C)
Profile plots along the yellow line in the confocal and the STED image in (B), indicating the same F-actin
structure with different spatial resolutions.

doi:10.1371/journal.pone.0130717.g002
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functions differing in the FWHM as PSFs for the deconvolution of the two images, we used
one Gaussian with diffraction-limited FWHM and one 2D-Lorentzian peak function of width
w as PSF for the STED image (S2 Fig):

h2ðx; yÞ ¼
1

1þ x
w

� �2� � 1

1þ y
w

� �2� � 1

ðw2p2Þ : ð2Þ

Second, a weighting factor was tentatively introduced to adjust the relative influence of dif-
fraction-limited and diffraction-unlimited image to the reconstructed image, as has been pro-
posed similarly by Verveer and Jovin [61]. By scaling the input images in Eq (1) according to
ḿi = ci mi, a ratio c1/c2 > 1 will result in an increased relative importance of the confocal sub-
image. In some circumstances (one example where the STED signal of a filamentous structure
is very low is discussed in S3 Fig), the SBR of selected features in the convolved image were
found to benefit from an increased importance of the confocal sub-image. However, the addi-
tion of a further parameter to the algorithm that is promoted for having only one parameter
(the number of iterations) to be adjusted [57] counters the ease of use of the joint deconvolu-
tion approach. As we have not further investigated the nontrivial problem of estimating an
optimal value for this scaling parameter (caption in S3 Fig), we confined ourselves to showing
that the SBR of a biological specimen may be increased by the joint deconvolution in the form
given in Eq (1) (without relative scaling of the input images) compared to a conventional
deconvolution (S4 Fig).

The widths wi of the Gaussian- and Lorentzian-shaped PSFs entering the deconvolution
algorithm as a parameter are ideally determined from the input sub-images to be processed
themselves, as the diameter of the STED PSF depends on the depletion laser power and the
spectral emission of the applied dye at the STED wavelength. In the case of imaging F-actin
(filament diameter of ~7 nm) stained with small dye-phalloidin conjugates, it can be assumed
that the diameter of the fluorophore distribution perpendicular to the filament is clearly below
20 nm [63], thus allowing the determination of the PSF diameter (>50 nm) from cross-sections
of the fluorescence image of a single filament (S5 Fig).

Microtubules having an outer diameter of ~25 nm and stained via indirect immunofluores-
cence are not adequate for the determination of a STED PSF of the width of ~50 nm, as the
fluorescence-emitting structure itself has a similar diameter. To deconvolve images of microtu-
bules, we therefore determined the PSF from F-actin images measured at the same STED inten-
sity as the tubule images (S4 and S5 Figs).

Results and Discussion

Spatial resolution
To estimate the achievable spatial resolution of a microscopic system, beads are often used
whose diameter is smaller than the anticipated resolution. We used a sample of crimson beads
with a diameter of 20 nm. In Fig 3, images of the same sample with crimson beads on a glass
coverslip, measured in both conventional confocal mode and gated STED mode, are compared.
In the STED image, only fluorescence is considered that was detected after the STED process
was completed (see gate iii) in Fig 2A). The two laser diodes were driven at a repetition rate of
2.5 MHz for these measurements. By lowering the frequency of excitation and STED de-excita-
tion from the maximal possible value of 40 MHz to 2.5 MHz the pulse energy delivered by our
STED laser rose by a factor of approx. 2. The maximal average optical power of the 766 nm
laser at 40 MHz was about 350 mW. Due to coupling losses at the entrance of the single-mode
fiber and the summation of reflections at the filters, (dichroic) mirrors, and the objective in the
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Fig 3. Diffraction-unlimited imaging of crimson beads. (A) Confocal and STED image of the same
preparation of 20 nm crimson beads on a glass substrate, embedded in Mowiol/DABCO. STED power 14.5
mW (at the objective’s back aperture) at a repetition rate of 2.5 MHz. (B) Profile plots along the dashed white
line in (A). (C) Full width at half maximum (FWHM) values determined by fitting 2D-Gaussian single peaks to
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optical path, only a power of about 130 mW was detected at the back aperture of the imaging
objective. By lowering the repetition rate and thereby enlarging the peak power of each STED
pulse and thus enlarging the STED efficiency, the spatial resolution could be further improved
(see S6 Fig for a direct comparison of STED images acquired at laser repetition rates of 2.5
MHz or 40 MHz and otherwise identical experimental settings).

The spatial resolution in images of bead samples is generally determined as the FWHM of
intensity peaks of single beads. The exemplarily chosen profile plot (Fig 3B) demonstrates the
gain in information from the STED image as features become visible that cannot be resolved in
the corresponding confocal image. The resolution of a STED microscope is theoretically
expected to scale as the inverse square root of the applied STED intensity, ISTED [15] according
to Eq (3).

FWHM / l
NA

1þ ISTED
IS

� ��1
2

ð3Þ

The parameters thus determining the final spatial resolution are the wavelength λ, the objec-
tive’s numerical aperture NA and the fluorophore specific saturation intensity IS, which is
often chosen to be the STED intensity guaranteeing 50% de-excitation probability.

From Fig 3C it becomes obvious that this relation is fulfilled quite well for this sample of
crimson beads. Here, the mean FWHM values, determined by fitting 2D-Gaussians to an
ensemble of single peaks in STED images taken at different STED powers, are plotted. The
solid lines represent the result of simulations (least square fits) with the model described by Eq
(3). With the STED power available in the present setup (~15 mW at the objective’s back aper-
ture and at a 2.5 MHz laser repetition rate), the crimson beads could be imaged with a resolu-
tion of (55 ± 15) nm (N = 12). This was an improvement by a factor of ~5 compared to a
FWHM of (280 ± 30) nm in the confocal image.

The achieved resolution of approx. 50 nm was relatively robust with regard to fine adjust-
ment of the system. Thus, time-consuming exact alignment in daily maintenance concerning
the STED components was not necessary. Particularly an exact time delay between the laser
pulses was uncritical if time gating was applied in data evaluation. A lateral displacement of
excitation and STED beam in the focal plane of up to 50 nm and a certain deviation from a per-
fectly symmetric STED light distribution (Fig 1A) were also tolerable. The phalloidin coupled
dyes Atto647N-phalloidin and STAR635-phalloidin seemed similarly well suited for STED
imaging with our upgraded microscope. STED images of F-actin filaments stained with one or
the other dye acquired at a reduced STED intensity of 5 mW (at a repetition rate of 2.5 MHz)
are shown in Figs 4 and 5. Profile plots at indicated positions in the STED images (comprising
late photons only) indicate that single filaments are localized with FWHM values of 60–70 nm
(Fig 5C and S5 Fig).

TCSPC approach for time-gated STED imaging
The TCSPC histogram of a STED image of F-actin labeled with Abberior STAR635 under ps-
pulsed excitation and ps-pulsed stimulated emission is shown in Fig 2A. The timing of the two
lasers is directly accessible from this histogram. The rising edge is formed as the convolution of
the spontaneous fluorescence emerging from the arriving excitation pulse with the instrument

STED images taken at different STED powers. Each data point represents the mean FWHM value of 10–20
peaks with the corresponding standard deviation. The solid lines show the result of a simulation with a
function proportional to one over the square root of the STED intensity (Eq 3).

doi:10.1371/journal.pone.0130717.g003
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response function (IRF). After having reached its maximum, the fluorescence signal would
decay exponentially with the dye typical fluorescence decay time (τ~3.4 ns for STAR635). A
much faster decay becomes visible as the stimulated emission is induced by the arriving 766
nm depletion laser pulse. For the measurement shown, the delay of excitation and de-excitation
was chosen to be Δt~950 ps, as can be seen roughly from the delay of the rising edge to the fast
decay, marked as gray region i) in Fig 2A. The fast signal decay as a response to the STED pro-
cess is superimposed over the spontaneous fluorescence signal of those excited molecules in
the center of the doughnut that have not been brought to their ground state by stimulated
emission. The red line in Fig 2A represents a monoexponential simulation (tail fit) of the fluo-
rescence intensity decay as a function of time in the time gate when the STED process is termi-
nated, marked as red region iii).

Three time gates of overall interest have been indicated in Fig 2A. Gate i) contained the
spontaneous fluorescence emitted by the labeling dye before application of the STED pulse.
The intermediate gate ii) contained fluorescence with mixed spatial information emitted dur-
ing interaction of the STED pulse with the excited dye molecules. Finally, gate iii) contained
the fluorescence from the very center of the STED doughnut after the completion of the stimu-
lated emission process. In Fig 2B, images of one in vitro F-actin structure are shown, for which
the photons of the different time gates were taken into account. The best spatially resolved
STED image obviously resulted from the fluorescence captured in gate iii). Gate i) contained
the confocal spatial information of the specimen, as the photons were collected before

Fig 4. Joint deconvolution of STED images. Left: confocal and STED contribution, derived from offline time
gating of the emission from one pulsed STED image acquisition run (STED power of 5 mW at a 2.5 MHz
repetition rate) of STAR635-phalloidin labeled in vitro F-actin. Right: result of a joint deconvolution of both
contributions (joint dec.) and a simple deconvolution of only the STED image (STED dec.); both deconvolutions
applied the Richardson-Lucy algorithm. For the joint approach, one PSF of Lorentzian shape with a FWHMof
70 nm and one Gaussian with a FWHMof 300 nmwere applied. 108 iterations were performed, and the
weighting was 4:1 in favor of the confocal image. For the simple STED-only deconvolution, the same Lorentzian
PSFwas used as in the joint case, but only 11 iterations were calculated. Insets show the enlarged ROIs at an
adapted dynamic range to emphasize tiny differences in the results of the two deconvolution approaches.

doi:10.1371/journal.pone.0130717.g004
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application of the STED pulse. This TCSPC approach thus has the convenient side effect of
delivering a confocal reference image in addition to the STED image. This may be helpful in
evaluating the content of a STED image if very low signal intensities are encountered (S3 Fig).
Furthermore, lateral misalignment of the focal excitation spot and the focal intensity minimum
of the STED PSF can be diagnosed and corrected by taking a look at the offset between STED
and confocal reference image. The intensity peak in the STED image of a single bead, for exam-
ple, should be exactly in the center of the diffraction-limited intensity peak in the confocal
image. Lateral misalignment would result in displacement of the STED peak in the correspond-
ing direction. A laterally badly positioned segmented phase plate may cause this misalignment
of the focal light intensities and may be corrected by the described offset of STED and confocal
image.

A higher brightness of the reference image comes at the cost of a lower brightness of the
STED image, though, and is determined by the time delay of excitation and STED pulse, as
fluorescent molecules that have already contributed to the confocal image (early time gate)
cannot contribute to the STED image in the same excitation depletion turn. Longer delays
result in darker STED images. Towards longer time intervals, the achievable diffraction-unlim-
ited resolution is, in theory, not directly dependent on the time delay if time-gated detection is
applied [47,51,60]. However, as the STED signal decreases, the signal-to-noise ratio (SNR)
becomes more and more resolution limiting.

Fig 5. Measurements of in vitro F-actin filaments stained with Atto647N-phalloidin. (A) Diffraction-
limited and-unlimited images of a gated STED acquisition of a filament structure attached to the glass cover
slip and labeled with the dye Atto647N-phalloidin. STED power of 5 mW at a 2.5 MHz repetition rate. (B) The
marked region of the STED image in (A) is shown enlarged, and regions of interest (ROI) are marked by lines
(black and green) and a red box. (C) Profile plots of the ROIs simulated by single peak (Lorentzian) or double
peak functions. The specified FWHM indicates that a single filament is localized to an accuracy of 60 nm.
Crossing filamentous structures at a distance of ~80 nm appear distinguishable.

doi:10.1371/journal.pone.0130717.g005
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For the specimen discussed thus far, we were not able to determine a difference in the spatial
resolving power when varying the delay between 500–1000 ps. The thinnest actin filaments
were imaged with FWHM values between 40–50 nm (Fig 2C). Through application of time-
gated detection, constraints on the experiment’s temporal alignment therefore appeared
relaxed. A minimum delay time must be kept though, as the efficiency of the STED process suf-
fers from temporal overlap of excitation and de-excitation processes. The shortest possible
delay (reaching maximal resolution at maximal brightness in the STED image) thus depends
on the length of the laser pulses applied. If excitation and STED pulses are chosen to (partly)
overlap in time, the optimal delay should also depend on the fluorophore lifetime and the tem-
poral shape of the pulses.

Joint deconvolution approach
The joint deconvolution approach, which was applied to the confocal and diffraction-unlimited
contributions resulting from different gates of one image acquisition run, relies on parallel per-
forming Richardson-Lucy (RL) iterations [58,59] for both images with two different PSFs, and
at the end of each iteration calculating the mean of the two correction terms according to Eq
(1) as the basis for the next iteration [57]. A parameter controlling the weight of confocal and
STED contribution (by relative scaling of the intensities of the two input images) may be intro-
duced to vary the influences of either part in the minimization process.

The RL algorithm is known to converge towards an amplification of noise, and therefore it
is normally stopped after a certain number of iterations [64]. It is not easy to determine the
optimal number of iterations; different criteria have been proposed [65], but often it is the sub-
jective decision of the user. The appearance of characteristic spottiness in the reconstructed
image with a rising number of performed iterations is usually seen as a convergence of the algo-
rithm towards an implausible solution (dominated by noise) to the ill-posed problem of decon-
volution [64,65].

A conventional deconvolution by the RL algorithm of a STED image of F-actin showed
such speckle for filaments with low signal intensity (low SNR) after just a few steps (iteration
10 in S7 Fig). Brighter appearing filaments tended to be more robust against the formation of
spottiness. Probably due to the higher SNR, they showed a ‘continuous’ signal up to some tens
of iterations (S7 Fig). In contrast, for the confocal image at the same pixel size, the algorithm
could be iterated several hundred times before amplification of noise became relevant (S8 Fig).
Spatial frequencies present in the confocal image are obviously limited to a smaller bandwidth,
as visualized by the Fourier transform power spectra shown as insets in S7–S9 Figs. For the
joint deconvolution approach, the number of iterations that may be performed without reach-
ing a solution showing the characteristic spottiness (S9 Fig) lay in between these extremes of
pure STED or confocal image deconvolution. The joint deconvolution approach was tested
firstly by applying it to the images gained by gating the collected emission of pulsed STED
images from in vitro F-actin filaments. The differences between the classical RL-deconvolution
of the STED image only and the joint deconvolution of both differently well resolved images
was rather small (Fig 4). Taking a closer look, the insets revealed the reduction of spottiness in
the jointly deconvolved image, though. This ‘smoothing’ effect to the reconstructed image was
enlarged by increasing the relative scaling of the confocal input image (S3 Fig).

A common way to counter noise amplification in iterative deconvolution is to include con-
straints based on a-priori knowledge about the structure to exclude implausible spotty solu-
tions to the ill-posed problem of image restoration by deconvolution [62]. Castello et al. have
recently evaluated the application of multi-image deconvolution to two sub-images of gated
cw-STED microscopy [56]. The second sub-image (with less spatial information) was
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interpreted as such a constraint on the solution of the RL algorithm. From this point of view,
the scaling of the confocal sub-image can be regarded as a regularization parameter that bal-
ances between the solution to which the RL algorithm converges from the STED image, and a
‘smoothness’ term defined by the confocal sub-image. Accordingly, the spottiness of the recon-
structed image of the single filament is reduced, as the relative scaling factor of the confocal
sub-image is increased (S3 Fig).

To have a comparable stopping criterion for different RL deconvolutions, we monitored the
width of a characteristic feature in the resulting image as a function of the number of iterations.
Here, we chose the intensity distribution along the yellow line in (S3A Fig) that apparently
stems from a single actin filament (with a fluorescence active diameter < 20 nm). Correspond-
ing profile plots of chosen iteration steps are shown in the right column of S3 Fig. Specified
FWHM values were determined via simulation of the data (symbols) with Gaussian functions
(lines). The algorithm was stopped when the FWHMwidth reached a value of 50 nm that was
2.5 times the pixel size of 20 nm used in the imaging process, which implied a slight improve-
ment over the nominal resolution of 70 nm of the raw STED image (S5 Fig).

The number of iterations that were necessary to reach the anticipated width of 50 nm in the
deconvolved image of a single filament rose with increased importance of the confocal image.
While only 11 steps were necessary for the STED image alone (S3A Fig), the inclusion of the
confocal image at a weighting of 1:1 required 48 iterations to reach the stopping criterion.
Weighting the confocal image by 1:2 or 1:4 rose the number of iterations to 74 (S3C Fig) and
108 (S3D Fig), respectively.

The joint multi-image approach thus helped in finding more plausible solutions to the
deconvolution problem that benefit from increased SBR compared to the raw image or the con-
ventionally deconvolved image. This effect may be enlarged in some circumstances through
relative scaling of the input images. For multi-image deconvolution, it has been proposed to
weight different input images according to their SNR [66], but this way the different spatial
bandwidths of the images are not being taken into account. Further investigation may reveal
an estimate for the optimal choice of the scaling factor as a regularization parameter for time
gated pulsed STED images.

The in vitro preparations of F-actin showed almost no background fluorescence at all
(Figs 2 and 4). The general strength of image deconvolution may be seen in the enhancement
of the SBR by means of spatial confinement of the signal to its most probable location of origin.
STED images of more complex tissue showed much more background fluorescence, probably
mostly due to out of focus light. In such images (e.g. Fig 6), the joint deconvolution approach
worked very efficiently in improving the SBR (Fig 6E) and was robust against artefacts arising
from background fluorescence. A comparison of the reconstructed images of a conventional
single image deconvolution of the STED image and of a joint two-images deconvolution is pre-
sented in S4 Fig. It can be deduced that the SBR of the imagined microtubule network on top of
a rather featureless background is further improved for the joint approach. However, through
the enhancement of the SBR, also small features in the image may become invisible as is shown
exemplarily in S10 Fig (lower row) for a rather dark area of a gated STED image of F-actin
stained with Atto647N-phalloidin. Thus, each deconvolution result should be carefully com-
pared to the raw image and it should be kept in mind that, beside background and noise also
badly defined features at low brightness may be suppressed.

Proof of principle in a complex biological tissue
After demonstration of the proof of principle using well-defined, sparse structures, the realiza-
tion of diffraction-unlimited imaging from rather complex biosystems is still a demanding
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challenge. Here, the cytoskeleton of blowfly salivary glands was investigated. Insect salivary
glands in general are well-established model systems for studying transepithelial ion transport
processes and their underlying intracellular signaling pathways [67,68]. Within the abdominal
part of the tubular blowfly salivary glands, a monolayer of secretory cells surround an irregu-
larly-shaped lumen. The apical membrane of these secretory cells is deeply infolded, forming a
branched system of so-called canaliculi, which often range up to the basal region of the cell.
These canaliculi are further infolded, forming densely packed sheet-like microvilli (so-called
microplicae) containing F-actin filament bundles [69]. However, such regularly structured
microplicae as previously shown in TEM studies could not be resolved in STED images by
using F-actin staining, most probably due to the high packing density of the microplicea
(S11 Fig).

In comparison to the above mentioned densely packed bundles of F-actin filaments, micro-
tubules are thought to exhibit a more or less loosened network within the secretory cells. Thus,
microtubules have been localized by immunofluorescence confocal microscopy. Fig 6A shows
a confocal image of a salivary gland cross-section treated with the primary antibody YL1/2
against α-tubulin. Immunofluorescence could be detected using a secondary antibody coupled
to the fluorophore STAR635P. Within the cytosol, a microtubule network could be observed,
probably oriented in a basal-apical direction. The nuclei of the secretory cells (asterisk) and the
enclosed gland lumen (L) remained unlabeled, as they are free of microtubules (Fig 6A). Even
though the microtubule network is sparse compared to the bundles of F-actin in the apical

Fig 6. Immunofluorescence localization of microtubules in blowfly salivary glands.Gland cryosections
(10 μm thick) were treated with antibody YL1/2 against α-tubulin and fluorescence of secondary antibody
coupled to STAR635P was detected. (A-C) A confocal overview image as well as enlarged views of regions
indicated as yellow rectangles are shown. The gland lumen (L) and the nuclei (asterisk) are indicated. (D)
STED image of the region shown in (C) acquired at a STED power of 5 mW (2.5 MHz). (E) Image with
enhanced SBR as a result of a joint deconvolution of both images (C) and (D). Deconvolution parameter: 131
iterations, no scaling of input-images, FWHM values of 70 nm (Lorentzian) and 300 nm (Gaussian). (F)
Profile Plots along the yellow lines in (C), (D) and (E), indicating the samemicrotubule structure with a
different spatial resolution.

doi:10.1371/journal.pone.0130717.g006
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membrane, its three-dimensional extension in combination with the lack of diffraction-unlim-
ited resolution in the z-direction made diffraction-unlimited imaging challenging. Still the
STED image (Fig 6D) allowed for higher spatial resolution compared to the confocal modality
and thus enabled the separation of adjacent microtubules that are closer than the diffraction
limit. Strong background light could be further reduced through the joint deconvolution
approach (Fig 6E and 6F).

By using thinner cryo-sections one could perhaps minimize the difficulty of degradation of
the STED light distribution (central intensity minimum) by scattering and aberration in the
inhomogeneous sample that are expected for STED imaging of thick tissue. However, this will
be part of further studies.

Conclusions
The present study demonstrated the successful upgrade of a conventional confocal fluorescence
microscope to perform diffraction-unlimited imaging of biological targets in vitro and in situ.
With the priority laid on cost and time efficiency rather than optimal performance at the level
of commercial STED systems, we were able to realize this by just additionally implementing an
amplified and frequency-doubled laser diode and some optical components (listed in S1 Table)
to the existing confocal microscope. TCSPC detection and evaluation software from the confo-
cal microscope that was the basis for the upgrade did not need alteration and allowed for offline
time gating of images taken in the all pulsed modality as implemented here.

Background fluorescence, scattering, and out of focus light may be problematic in the dif-
fraction-unlimited imaging of complex biological tissues. Established deconvolution methods
can be easily used to improve the signal-to-background ratio, also of (2D-) STED images. Com-
paratively, we have applied a recently proposed Richardson-Lucy deconvolution approach and
showed that images gained from time-gated pulsed STED microscopy may benefit with regard
to the SBR from the joint deconvolution of sub-images with different spatial information that
are obtained from offline time gating. Further improvement may be expected in the future by
taking a third time gate with time-dependent PSF into account for multi-image deconvolution.

Multicolor imaging for separating different molecular species is an important issue for
many biomedical investigations. The simple STED upgrade presented here is already operable
for these kinds of studies. The all pulsed modality in combination with the TCSPC detection
allows for the separation of at least two dyes by their fluorescence decay times [19]. Thus, fluo-
rescence lifetime imaging microscopy (FLIM) can be used for co-localization studies without
modification of the setup, if the labels differ sufficiently in their fluorescence decays [70]. Mul-
ticolor STED imaging has also been shown to work with dyes that can be excited with the same
excitation laser wavelength and de-excited by the same STED wavelength, but show (subtle)
differences in their emission spectra [43].

Supporting Information
S1 Table. List of components.
(DOCX)

S1 Fig. Test for possible misalignment effects on the PSF shape due to scanning the objec-
tive over a range of 80×80 µm2. The backscattered light from gold nanoparticles (diameter of
80 nm) was imaged at different positions of the entire field of view accessible to the used piezo
scanner (80×80 µm2). The upper of the two beads in the center of (A) (dotted box #1) was
imaged at a higher resolution (20 nm per pixel), applying a pulse interleave technique that
relies on alternating pulsing of the two lasers (635 nm and 766 nm) both at a repetition rate of
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40 MHz. TCSPC detection allows the temporal distinction between the scattered light of differ-
ent wavelengths, as bursts of photons from either laser source are collected with a delay of
~12.5 ns. (B1) shows an overlay of the corresponding quasi simultaneously determined PSFs of
the 635 nm excitation and 766 nm depletion light in red and green, respectively. (C1) shows
the 766 nm PSF alone for inspection of the central minimum. By moving the microscope stage
relative to the central piezo scanner position of the objective, the same gold bead was moved to
different positions in the scan field (red boxes #2, #3, #4, and #5 in (A)) and imaged at high
spatial resolution. The resulting PSF images are shown in (B) and (C). As the scan range (-40
to + 40 μm) is small compared to the beam diameter of 4 mm (1/e2-diameter of spatial power
distribution) overfilling the objective’s back aperture by less than 1%, no effects of misalign-
ment (B) or deformation of the doughnut (C) are visible. (D) Profile plots through the intensity
minima of (C) confirm that effects of the displacement during scanning on the PSF are small.
Decreasing intensity toward the periphery of the scan range cannot be observed.
(TIFF)

S2 Fig. Effective point spread function (PSF). The lateral intensity distributions of 12 single
crimson beads (20 nm) imaged in the STED mode were averaged to determine the effective
PSF shape of the system (red dots). The upper graph shows a least-square fit of a 2D-Lorent-
zian function to the averaged intensity data. The lower graph shows a Gaussian-2D function
fitted to the same data. The Gaussian function did not describe the PSF precisely, particularly
the maximum at the peak’s center showed a strong deviation between simulation and experi-
mental data. Blue and black points represent the projections of the data to the xz- and yz-
planes.
(TIFF)

S3 Fig. Influence of relative intensity scaling of the sub-images merged by the multi-image
deconvolution on the reconstruction results. Images with different spatial information
extracted from offline time gating of a pulsed STED imaging run (S5 Fig) were jointly decon-
volved (B-D) and compared to a conventional Richardson-Lucy deconvolution of the STED
image (late photon gate) alone (A). To have a comparable stopping criterion for the iterative
algorithm, we monitored the width of a characteristic feature in the resulting image as a func-
tion of the number of iterations. Here, we chose the intensity distribution along the yellow line
in (A) that apparently stems from a single actin filament (with a diameter< 20 nm). Corre-
sponding profile plots of chosen iteration steps are shown in the right column. Specified
FWHM values were determined by simulation of the data (symbols) with Gaussian functions
(lines). The algorithm was stopped when the FWHMwidth reached a value of 50 nm, that is,
2.5 times the pixel size of 20 nm used in the image acquisition. As PSFs for the deconvolutions
resulting in (A–D), a 2D-Lorentzian peak function with FWHM of 70 nm and a 2D-Gaussian
(FWHM 300 nm) were applied for the STED and the confocal image respectively, as deter-
mined in S5 Fig. While in the joint deconvolution represented by (B) the two input sub-images
were processed without any intensity scaling, in (C) all pixel values of the confocal sub-image
were scaled by a factor of 2 and in (D) by a factor of 4 before starting the RL algorithm. The
number of iterations that were necessary to reach the anticipated width of 50 nm in the image
of a single filament rose with the increasing importance of the confocal image. Changes in the
deconvolved image that correlate with the scaling factor are discernible at the position marked
by the white arrow (in A). In the deconvolved STED image (A), only three relatively dark spots
remain as fluorescence signals from the filament. From the raw image (S5A Fig), it becomes
obvious that the signal in this region is very low, resulting in a bad signal-to-noise ratio. At this
special position, the extra signal from the confocal image, when included into a joint deconvo-
lution, increases the relative brightness of these spots (B). By further increasing the importance
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of the confocal sub-image, the spottiness of the deconvolved image of the single marked fila-
ment is further reduced. We note that we cannot exclude completely that the ‘spotty’ solution
of the algorithm may reveal the correct distribution of emitting fluorescent molecules. But, we
consider it implausible that the collected fluorescence at the discussed region of the filament
stems from molecules located precisely at the spots appearing in the deconvolved image. We
rather regard this as an artifact resulting from the extremely poor SNR at this position of the
image. A common way to counter noise amplification is to include constraints based on a-pri-
ori knowledge of the structure to exclude solutions to the ill-posed problem of image restora-
tion by deconvolution. The addition of the information of the confocal image in the joint
approach can be interpreted as such a constraint on the solution of the deconvolution, with the
scaling factor being the related regularization parameter.
(TIFF)

S4 Fig. Richardson-Lucy deconvolution of immunofluorescence localization of microtu-
bules in blowfly salivary glands using the dye STAR635P. The resulting reconstructed image
of a conventional RL deconvolution of a time gated STED image (A) is compared to that of a
joint multi-image deconvolution (B) of two sub-images with different spatial information won
by offline time gating the data of one single pulsed STED image acquisition run (see Fig 6). The
white box indicates a feature whose diameter was imaged as a function of calculated iteration
steps (right column) and served to define a comparable stopping criterion. Analogous to the
image deconvolution of actin filaments (S3 Fig), the algorithm was stopped when a diameter of
2.5 times the pixel size (of the raw images) was achieved. With a pixel size of 25 nm, this lead to
a diameter of 62.5 nm as a stopping criterion, which was achieved after 16 iterations in the case
of the single STED image deconvolution (A) and after 131 iterations in the case of the joint
two-image deconvolution (B). The PSFs were chosen to be a 2D-Lorentzian peak function
(FWHM = 70 nm) and a 2D-Gaussian (FWHM = 300 nm), like before. A weighting of the two
raw images was not applied, as the choice of an optimal value for this additional parameter has
not been investigated. A comparison of images (A) and (B) shows that, in the result of the joint
deconvolution, the SBR is further enhanced relative to the SBR in the single-image deconvolu-
tion. Here, we understand the bright strands in the image as signals from the labeled microtu-
bules, and the rather featureless and somewhat darker intensity distribution as the background.
As a local estimation of the SBR, the profile plots (right column) across one single strand can
be evaluated for a more quantitative statement. If the amplitude of the peak functions that were
used to simulate the cross section intensities are taken as a measure of the signal and the offset
of the peaks is taken as a measure of the local background we conclude the SBR to be 1.4 for
the raw STED image, 4.1 for the simple deconvolution and 5.8 for the joint deconvolution.
(TIFF)

S5 Fig. Estimation of the widths of the point spread functions as parameters for the joint
deconvolution of actin filament images. Intensity profiles along neighboring horizontal pixel
lines perpendicular to a filament (white boxes in (A) and (B)) were averaged in the STED and
the confocal image, respectively. (C) The resulting profiles were simulated with a Lorentzian
function for the STED image and a Gaussian function for the confocal image. The models
describe the data well and the FWHM values resulting from the simulation are indicated in the
graph. From the relative low brightness (compared to regions of the image in which several fila-
ments cross) and its isolated position (from other filamentous structures), it can be concluded
that at the chosen position (white box) a single filament is observed. Having a diameter of only
7 nm [63] and being stained with small phalloidin conjugates, the fluorescence labelled actin
filament should have a diameter well below 20 nm, and the fluorescence intensity profile in (C)
reveals the resolving power of the optical system not heavily influenced by the real diameter of
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the structure. From Crimson beads (diameter of 20 nm), a radial symmetry of the effective PSF
of our STED setup was derived (S2 Fig). For the deconvolution of STED images of F-actin we
chose symmetric 2D-Lorentzian (STED) and 2D-Gaussian (confocal) peak functions with a
diameter determined as a cross-section of a single filament from the images to be deconvolved.
STED imaging of F-actin labeled with STAR635-phalloidin (A) with an average depletion
power of 5 mW at a repetition rate of 2.5 MHz. See (S7–S9) for corresponding deconvolution
results.
(TIFF)

S6 Fig. Comparison of the resolving power of the STED upgrade at laser repetition rates of
2.5 MHz and 40 MHz in imaging Crimson beads. Crimson beads embedded in Mowiol were
imaged in gated STED mode under identical experimental settings (pixel dwell time 1 ms, pixel
size 20 nm) except for the repetition rate of the lasers that was changed from 2.5 MHz (A) to
40 MHz (B). The mean STED power of 90 mW at 40 MHz corresponded to a mean power of
10 mW at 2.5 MHz, resulting in a higher per pulse energy at the 16 times lower repetition rate.
Accordingly, the resolving power was higher at 2.5 MHz as the mean values of FWHM values
of single peaks in (A) and (B) indicate. Arrows in (A) and (C) mark peaks that were simulated
by means of least square fitting a Lorentzian function (B and D) to determine FWHM values.
(E) Statistic box plots where the mean value is given as open square, the box indicates the inter-
quartile range, and the thick line in the box represents the median value. The error bars give
the standard deviation and outliers are plotted as diamond shaped symbols. As expected due to
the higher pulse energy accessible by our STED laser at lower repetition rates, the spatial reso-
lution determined as the FWHM of the intensity peaks of Crimson beads in the STED image,
seems to be higher at 2.5 MHz.
(TIFF)

S7 Fig. Results of a Richardson-Lucy deconvolution of the time gated STED image at differ-
ent iteration steps. The raw STED image assembled by electing only counts in the third time
gate (Fig 2A) was deconvolved via application of the RL algorithm using a Lorentzian PSF with
FWHM diameter of 70 nm. Reconstructed images after 1, 10, 30, 100, and 300 iterations are
shown. The insets (lower left corner) give the power spectra of the discrete Fourier transform
(performed using Fiji [71]) of each image. Obviously, there are higher frequencies present in
the raw STED image compared to the confocal image (S8 Fig). Amplification of the high fre-
quencies of the RL algorithm thus requires a lower number of iterations. As a result (and prob-
ably also due to a lower signal-to-noise ratio), amplification of noise visible as ‘spottiness’ in
the reconstructed image becomes an issue already after a few iterations in the darker regions
and after some tens of iterations in the brighter structures.
(TIFF)

S8 Fig. Results of a Richardson-Lucy deconvolution of the confocal ‘early time gate’ image
at different iteration steps. The raw confocal image assembled by electing only counts in the
first time gate (Fig 2A) was deconvolved via application of the RL algorithm using a Gaussian
PSF with FWHM diameter of 300 nm. (Pixel size of raw image and deconvolved images: 20
nm). Reconstructed images after 1, 10, 100, 1000, and 10000 iterations are shown. The insets
(lower left corner) give the power spectra of the discrete Fourier transform (performed using
Fiji [71]) of each image. It can be seen qualitatively how noise is suppressed by blurring with
the Gaussian PSF in the first step and how the high frequencies are recovered with an increas-
ing number of iterations. Depending on the relative intensity of features, ‘spottiness’ as a result
of noise amplification becomes visible after ~100 iterations in the darker part of the image and
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after ~1000 iterations in the brighter parts.
(TIFF)

S9 Fig. Results of a Richardson-Lucy deconvolution for the joint processing of images with
different spatial information gained through offline time gating at different iteration
steps. The sum of the raw STED image (counts in the third time gate) and the raw confocal
image (counts in the first time gate) is shown together with the power spectrum of the discrete
Fourier transform (inset), see Fig 4 (left column). Joint deconvolution of the raw images was
performed as described by the application of the RL algorithm using a Lorentzian PSF with a
FWHM diameter of 70 nm and a Gaussian PSF with a FWHM diameter of 300 nm. Recon-
structed images after 1, 10, 30, 100, and 300 iterations are shown. Higher frequencies are recov-
ered faster (less iterations) than in the case of confocal deconvolution only (S8 Fig). Compared
to the STED-only deconvolution (S7 Fig), more iterations are required to reconstruct the high
frequencies in the image. For a detailed comparison of the joint multi-image deconvolution
with the deconvolution of the STED image alone, see S3 Fig.
(TIFF)

S10 Fig. Joint deconvolution of fluorescence images of F-actin filaments stained with
Atto647N-phalloidin acquired in gated STED mode. (A) Diffraction-limited and-unlimited
images of a gated STED acquisition of a filament structure attached to the glass cover slip and
labeled with the dye Atto647N. STED power of 5 mW at 2.5 MHz repetition rate. In the bottom
row, the marked region of the STED image is shown enlarged and compared to the results of a
Richardson-Lucy deconvolution of the STED image (STED dec.), and the result of a joint
deconvolution (joint dec.). At the position marked by the white triangle two adjacent filaments
may be assumed in the raw image, while in the jointly deconvolved image this feature appears
suppressed stronger than in the case of the conventional deconvolution. This demonstrates
that through the relative reduction of background and noise in the deconvolved image also
badly defined features at low brightness may be suppressed. Parameter for the conventional
deconvolution: 12 iterations with a Lorentzian functions of width 60 nm (determined from
Fig 5C); 49 Iterations with Lorentzian function (60 nm) and Gaussian (300 nm) weighting
input images by 1:1.
(TIFF)

S11 Fig. F-actin filaments in blowfly salivary glands. Gland cryosections (10 µm thick) were
labeled with the F-actin probe Abberior STAR635-phalloidin. (A-C) A confocal overview
image as well as enlarged views of regions indicated as yellow rectangles are shown. The basal
region of the secretory cells showed weak fluorescence (thick arrow) indicating only marginal
infoldings compared to the apical membrane [72,73]. In contrast, the canaliculi appeared as
brightly fluorescent structures with widths in the micrometer range, indicating F-actin filament
bundles lining the canaliculi (thin arrow). (D) STED image of the region shown in (C). TEM
studies have unraveled further infolding of the canaliculi forming densely packed sheet like
microvilli (so-called microplicae) with a microplicae having a thickness of 60–80 nm, while
exhibiting variable lengths and widths. In addition, the microplicae are closely packed forming
a fine extracellular space of approx. 10–20 nm between two adjacent microplicae [69]. Thus,
this microplicae arrangement could represent an appropriable target for STED microscopy.
However, no substructures of the canaliculi could be observed in confocal images (B-C). In the
corresponding STED image (D) substructures within the canaliculus could be assumed, which
were blurred out in the corresponding confocal image in (C). Nevertheless, the dense micropli-
cae arrangement and thus the high density of F-actin seems to be hindering STED imaging,
especially with diffraction-limited resolution in z-direction. The dense F-actin packing most
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probably influences the labeling efficiency, complicating the access of dye molecules to differ-
ent parts of the microplicae. Thus, the labeled structure could differ from the defacto F-actin
filament bundles, resulting in a heterogeneous fluorescence signal distribution as can be seen in
(D).
(TIFF)
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