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Reduction of 4,4′-diselanediyldianiline (1) followed by the reactionwith bromo-

4-(bromomethyl)benzene afforded the corresponding 4-((4-bromobenzyl)

selanyl)aniline (2) in 85% yield. N-Maleanilic acid 3 was obtained in 94% yield

via the reaction of selenoamine 2 with toxilic anhydride. Subsequent

dehydration of N-maleanilic acid 3 using acetic anhydride furnished the

unexpected isomaleimide 5-((4-((4-bromophenyl)selanyl)phenyl)imino)furan-

2(5H)-one (4) instead of the maleimide 5. The molecular structure of

compound 4 was confirmed by mass spectrometry, 1H- and 13C-NMR

spectroscopy, and X-ray diffraction analysis. Their cytotoxicity was assessed

against two oligodendrocytes, and their respective redox properties were

evaluated using 2′,7′-dichlorodihydrofluorescein diacetate (H2-DCFDA)

assay. Furthermore, their antiapoptotic potential was also evaluated by flow

cytometry. The compound crystallizes in triclinic P-1 space group with unit cell

parameters a = 5.7880 (4) Å, b = 9.8913 (6) Å, c = 14.5951 (9) Å, V = 1731.0 (3) Å3

and Z = 2. The crystal packing is stabilized by intermolecular hydrogen bonding,

π···π, C-Br···π stacking interactions, and other non-covalent interactions. The

mapping of different Hirshfeld surfaces and 2D-fingerprint were used to

investigate intermolecular interactions. The interaction energies that stabilize

the crystal packing were calculated and graphically represented as framework

energy diagrams. We present a computational investigation of compound 4’s

molecular structure at the Density Functional Theory level using the B3LYP
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method and the 6-31G ++ basis set in this paper. The optimized structure

matches the experimental outcome. The global reactivity descriptors and

molecular electrostatic potential (M.E.P.) map emphasize the molecule’s

reactive locations, allowing reactivity prediction. The charge transfer

properties of molecules can be estimated by examining Frontier molecular

orbitals.

KEYWORDS

isomaleimide, organoselenium, crystal structure, antioxidant, hirshfeld surface
analysis, DFT calculations, 3D energy framework

1 Introduction

Organoselenium compounds (OSe) have recently acquired

significant interest as an exciting family of organic molecules

with diverse applications in medicinal and organic chemistry

(Phadnis, 2021; Chuai et al., 2021). They also possess enormous

applications in advanced materials (Liao and Zhao, 2021). These

special activities are due to the extraordinary properties of the

selenium (Se) center (Handy et al., 2021). The non-metal bio-

trace element Se is essential for the immune system’s normal

function and protects cells from oxidative damage (Liao and

Zhao, 2021; Makhal et al., 2021; Nogueira et al., 2021). It presents

in most the living organisms as part of the selenoproteins and the

antioxidant enzymes [e.g., thioredoxin reductases (TrxR) and

glutathione peroxidase (GPx)] (Xu et al., 2020; Makhal et al.,

2021; Radomska et al., 2021). Furthermore, the Se lower

electronegativity (2.55), larger size (1.17 Å), and higher

polarizability (3.8 Å) compared to sulfur (2.58, 1.02 Å, and

2.9 Å, respectively) made OSe compounds generally better

nucleophiles (Sarma and Mugesh, 2005). Therefore, OSe

compounds can react with O2-free radicals and thus attenuate

oxidative stress-related disease progression (Rathore et al., 2019).

Recently, OSe compounds have become promising candidates in

cancer therapeutics (He et al., 2020). They have also manifested

good histone deacetylase inhibitor activity (Adimulam et al.,

2021). On the other hand, OSe compounds were extensively used

as semiconductors in advanced materials, including photovoltaic

cells and sodium-ion batteries and catalysts for the H2 evolution

(Arora et al., 2021). Additionally, the pharmacological properties

of OSe naturally occurring and drug molecules are attributed to

the presence of the Se atom as a part of their scaffolds.Within this

context, the selenocysteine (I), selenomethionine (II), and

selenocystine (III) amino acids are present in the structure of

several selenoproteins and selenoenzymes essential for the

maintenance of metabolic rate, and immune responses, and

oxidative homeostasis (Scheme 1) (Barbosa et al., 2017;

Bartolini et al., 2017; Nogueira et al., 2021).

Furthermore, ebselen (IV) and ethaselen (VI) are among the

most investigated OSe compounds with exciting GPx- and TrxR-

like activities, respectively (Scheme 1) (Wang et al., 2012; Benelli

et al., 2021). Indeed, they have recently entered clinical trial II as

possible drugs for Meniere’s disease and non-small lung cancer,

respectively (Wang et al., 2012; Shaaban et al., 2016a). We have

recently directed our research toward synthesizing OSe-base

maleimides (Shaaban et al., 2015a; Shaaban et al., 2015b;

Shaaban et al., 2015c; Shaaban et al., 2018; Cherkaoui-Malki

SCHEME 1
OSe compounds and naturally occurring maleimides.

Frontiers in Chemistry frontiersin.org02

Shaaban et al. 10.3389/fchem.2022.961787

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.961787


et al., 2019). The latter are privileged scaffolds found in many

pharmacologically active drug molecules such as oxaleimide A

(VI) and farinomalein (VII) (Viveki et al., 2021). Moreover, they

are widely used in material science with industrial relevance, such

as optoelectronic devices, resins, adhesives, rubber, and

aerospace applications (Tonglairoum et al., 2016; Ravasco

et al., 2019).

Toxilic anhydride reaction with amine is the common

method used to prepare N-maleamic acids (Chen et al., 2007;

Alam et al., 2022). Subsequent dehydration of the N-maleamic

acids and ring closure affords the corresponding maleimides and

isomaleimides, depending on the reaction conditions (Haval

et al., 2006). Maleimides are the typical thermodynamically

controlled product, whereas isomaleimides are usually

kinetically controlled (Haval et al., 2006; Alam et al., 2022).

Despite the numerous application and attention paid to

maleimides, the synthesis of isomaleimides has gained little

concern. Since the report of the 1st naphthyl-isomaleimide

(Tsou et al., 1955) and new protocols are emerging describing

the synthesis of such potential scaffolds; however, most of these

evolving methods are limited to the dehydration of the respective

maleamic acid with dehydrating agents under specified

conditions. The dehydrating agents used include cyanuric

chloride, oxalyl chloride, ethyl chloroformate, N,N′-
dicyclohexylcarbodiimide, and 2-chloro-1,3-

dimethylimidazolinium chloride, as well as triflouroacetic

anhydride and propanephosphonic acid anhydride (Tsou

et al., 1955; Burkitt and Gilbert, 1989; Haval et al., 2006;

Guevara-Salazar et al., 2011; Haratake et al., 2011;

Tonglairoum et al., 2016; Gao et al., 2019; Ravasco et al.,

2019; Alam et al., 2022). Unfortunately, these protocols are

limited by the lack of dehydrating agent with wide substrate

scope and harsh conditions and long reaction time as well as the

poor selectivity often associated with the formation of the

undesired maleimide side product. Therefore, the development

of an alternative, efficient, and general synthetic methods of

isomaleimides remains a challenge.

We herein report the accidental synthesis and crystal

structure of isomaleimide 4. Its cytoprotective activity was

evaluated against oligodendrocytes. Furthermore, its

antioxidant and antiapoptotic actives were also assessed. The

Hirshfeld surface analysis description was used to characterize

the nature of intermolecular interactions in crystal packing.

Moreover, DFT simulations were used to optimize compound

4’s structure in its isolated condition. Furthermore, global

reactivity descriptors and complementary interaction sites in

isomaleimide 4 were identified using Frontier molecular

orbitals (F.M.O.) and M.E.P. mapping studies.

2 Materials and methods

2.1 Synthesis of isomaleimide 4

Isomaleimide 4 was synthesized in good yield (77%) over

three steps by the reduction of the diselenide 1 using NaBH4 and

subsequent reaction with bromo-4-(bromomethyl)benzene

followed by reaction with toxilic anhydride and subsequent

ring closure using acetic anhydride and sodium acetate

(Scheme 2) (Shaaban et al., 2018). Diselenide 1 was

synthesized starting from aniline according to our reported

method (Shaaban et al., 2018).

SCHEME 2
Reagents and conditions: (i) 4,4′-diselanediyldianiline (1) (2.5 mmol), bromo-4-(bromomethyl)benzene (3 mmol), EtOH (30 ml), NaBH4

(12.5 mmol); (ii) 4-((4-bromobenzyl)selanyl)aniline (2) (2.5 mmol), toluene (15 ml), toxilic anhydride (2.5 mmol), 4 h, r.t.; (iii) N-maleanilic acid 3
(2.5 mmol), Ac2O (8 ml), 250 mg NaOAc, 3 h, 40–50°C.
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2.1.1 Synthesis of 4-((4-bromobenzyl)selanyl)
aniline (2)

Compound 2 was synthesized from the reaction of diselenide

1 (344 mg, 1 mmol), 4-bromobenzyl bromide (550 mg,

2.2 mmol), aliquat 336 (45 mg, 5% mol) and sodium

tetrahydridoborate (189.15 mg, 5 mmol) in ethylactetae and

water mixed solvent (40 ml, 1:1) under reflux for 3 h. The

formation of compound 2 was followed by TLC (petroleum

ether: EtOAc = 6:1). The solvent was evaporated and the

product was purified by column chromatography (petroleum

ether: EtOAc = 6:1.5) as white solid; Yield: 310.31 mg (91%); mp

156–158°C (see supporting information for the analytical details).

2.1.2 Synthesis of 4-((4-((4-bromobenzyl)
selanyl)phenyl)amino)-4-oxobut-2-enoic
acid (3)

Compound 3 was synthesized from the reaction of

compound 2 (344 mg, 1 mmol) and maleic anhydride (98 mg,

1 mmol) in dry toluene (5 ml) with stirring at r.t. for 3 h. The

formation of compound 3 was monitored by TLC (chloroform:

methanol = 8:1). The product was purified by column

chromatography (chloroform: methanol = 6:1) to give yellow

solid; Yield: 412.66 mg (94%); mp 215–217°C (see supporting

information for the analytical details).

2.1.3 Synthesis of 4-((4-((4-Bromobenzyl)
selanyl)phenyl)imino)-1H-pyrrol-2(5H)-one (4)

Compound 4 was synthesized from the gentle heating of

compound 3 (439 mg, 1 mmol), acetic anhydride (3 ml), and

sodium acetate (100 mg) for 2 h at 50–60°C. Water was added

and the resulting mixture was extracted with CH2Cl2 (200 ml),

dried with Mg2SO4, CH2Cl2 was evaporated and the residue was

purified by silica gel chromatography. The progress of the

product formation was followed by TLC petroleum ether:

EtOAc = 8:1, Rf = 0.45, purified by column silica gel

chromatography with petroleum ether: EtOAc = 6:1. Yellow

solid; Yield: 324.17 mg (77%), mp 185–187°C. 1H NMR

(300 MHz, CDCl3) δ 7.47–7.29 (m, 4H, Ar-H), 7.25–7.14 (m,

2H, Ar-H), 7.04–6.96 (m, 2H, Ar-H), 6.76 (d, J = 5.5 Hz, 1H,

CH=), 6.62 (d, J = 5.5 Hz, 1H, CH=), 4.01 (s, 2H, SeCH2); 13C

NMR (75 MHz, CDCl3) δ 166.94, 150.34, 143.16, 142.77, 137.50,

134.29, 134.02, 131.59, 130.49, 127.93, 125.94, 120.83, 31.52; MS

(ESI):m/z = found 478.92 [M+ + CH3COO
−]; calcd. 420.92 [M+];

HRMS calcd. for C17H12BrNO2Se [M+ + 1]: 475.93688, found

477.93289 [M+ + CH3COO
−].

2.2 Biological evaluation

The antiproliferative activities of OSe compounds 2, 3, and 4

were assessed against two oligodendrocyte cell lines, namely,

158 N and 158 JP, by the M.T.T. assay using 7-ketocholesterol as

reference control (Supporting info, Supplementary Table S1)

(Vejux et al., 2005; Nury et al., 2014). The redox profile of the

compounds was evaluated using the H2-DCFDA assay, and their

antiapoptotic potential was also assessed by flow cytometry

(Wilhelm et al., 2009; Karlsson et al., 2010; Shaaban et al., 2018).

2.3 Crystal structure measurement

A suitable crystal of compound 4 was mounted on a glass

fiber loop. At 100 K, X-ray data were collected using a Bruker

D8 VENTURE diffractometer and graphite-monochromated

Mo(Kα) radiation (λ = 0.71073 Å). The full data set was used

to calculate and refine unit cell parameters. S.A.D.A.B.S. Krause

et al. (2015) was used to scale reflections and apply absorption

corrections. The structure was solved using the ShelXT (Wilhelm

et al., 2009; Karlsson et al., 2010) structure solution program

using Direct Methods and refined using the ShelXL (Wilhelm

et al., 2009) refinement package using Least Squares

minimization using Olex2 (Krause et al., 2015). Hydrogen

atoms were placed in calculated positions (C-H =

TABLE 1 Crystal data and structure refinement for compound 4.

Empirical formula C17H12NO2SeBr

Mr 421.15

Temperature/K 99.99

Crystal system Triclinic

Space group P-1

a (Å) 5.7880 (4)

b (Å) 9.8913 (6)

c (Å) 14.5951 (9)

α (°) 102.785 (2)

β (°) 100.935 (2)

γ (°) 103.971 (2)

Volume (Å3) 764.22 (9)

Z 2

ρcalc (g/cm3) 1.830

μ (mm−1) 5.076

F (000) 412.0

Crystal size (mm3) 0.37 × 0.37 × 0.12

θ min/θ max (°) 5.972–55.534

Index ranges −7 ≤ h ≤ 7, −12 ≤ k ≤ 12, −19 ≤ l ≤ 19

Reflections collected 32,442

Independent reflections 3,565

Data/restraints/parameters 3,565/0/199

Goodness-of-fit on F2 = GOOF 1.132

R1 [F2 > 2 σ (F2)] 0.0254

wR2 (F
2) 0.0527

ρmax/ρmin (e Å−3) 0.70/−0.62

a, b and c are the unit cell parameters
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0.95–0.99 Å) and were constrained to ride on their parent atoms,

with Uiso(H) = 1.2Ueq(C). The crystal packing and molecular

packing were drawn using the program Diamond 3 (Sheldrick,

2008) and MERCURY (Macrae et al., 2020). The details of

structural refinement and crystal data are reported in Table 1.

Crystallographic data from the structural analysis have been

deposited with the Cambridge Crystallographic Data Center,

Nos CCDC-1472956 Copies of this information may be

obtained free of charge from: The Director, C.C.D.C.,

12 Union Road, Cambridge CB2 1EZ, United Kingdom. Fax:

+44(1223)336-033, e-mail: deposit@ccdc.cam.ac.uk, or http://

www.ccdc.cam.ac.uk.

2.4 Hirshfeld surface, 2D-fingerprint plot,
and interaction energy calculations

Hirshfeld surfaces (Spackman and Jayatilaka, 2009) were

mapped with property dnorm, and 2D-fingerprint plots were

created with CrystalExplorer 17 (Spackman and Jayatilaka,

2009). Hirshfeld surfaces and 2D-fingerprint plots are

excellent visualization tools for comparing intermolecular

interactions in constructing various supramolecular motifs in

the crystal structure. The 2D-fingerprint plot decomposes

Hirshfeld surfaces into the contributions of different

intermolecular interactions found in the crystal structure. The

red, white, and blue colors on the Hirshfeld surface indicate

shorter, equal, and longer contacts than the sum of the van der

Waals radii, respectively. Furthermore, the crystal structure was

analyzed using TONTO (Spackman and Jayatilaka, 2009;

Spackman et al., 2021), with the CE-HF···HF/3-21G energy

model (Sloot et al., 2003), starting with the .cif files derived

from single-crystal X-ray diffraction data. An energy framework

is a one-of-a-kind tool for visualizing crystal structures’

supramolecular architecture. To allow for comparison, total

energy (Etot) is divided into electrostatic (Eele), polarization

(Epol), dispersion (Edis), and repulsion (Erep) contribution

energies, with cylinders representing the relative strength of

the molecular packing and fixed at a scale factor of 200 and

cutoff energy of 5 kJ/mol.

2.5 Theoretical calculations

The Gaussian 09 software (Shaaban et al., 2016b) was used

for all calculations. The B3LYP functional (Becke’s three-

parameter nonlocal exchange function with the Lee-Yang-Parr

correlation function) (Hughes and Appel, 2019; Shaaban et al.,

2021) was employed with the Density Functional Theory (DFT)

approach. The geometrical optimizations were carried out in the

gas phase and at the minima, and frequency calculations were

used to confirm them; they accorded well with the experimental

structure data. As a result, it was possible to compare energy and

other physicochemical parameters with confidence. Chemical

potential (μ), electronegativity (χ), electrophilicity index (ω) and

chemical hardness (η), and softness (S) were all calculated using

the corresponding HOMO and LUMO energies (Allen, 2002;

Shaaban et al., 2019).

3 Results and discussion

3.1 Design and synthesis of isomaleimide 4

4,4′-Diselanediyldianiline (1) was used as the starting

building block to prepare the target isomaleimide 4 (Shaaban

et al., 2016b). In this regard, reduction of 1with NaBH4 furnished

the respective sodium phenylselenolate, which in turn trapped in

ethanol and reacted with bromo-4-(bromomethyl)benzene to

give Ose amine 2 in 85% yield (Scheme 2). The reaction of

FIGURE 1
The molecular structure of isomaleimide 4 with atomic labeling.
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Ose amine 2 with toxilic anhydride in toluene at room

temperature furnished the respective N-maleanilic acid 3 in

excellent yield (94%). Surprisingly, gentle heating of

compound 3 with Ac2O in the presence of NaOAc afforded

the unexpected kinetically controlled isomaleimide 4 instead of

thermodynamically controlled 1-(4-((4-bromobenzyl)selanyl)

phenyl)-1H-pyrrole-2,5-dione (5) (Scheme 2) (Shaaban et al.,

2018).

3.2 Charachterization of compound
isomaleimide 4

The structure of isomaleimide 4 was established by 1HNMR

and 13CNMR spectroscopy. 1HNMR of isomaleimide 4 showed

the characteristic upfield singlet signal of the methylene fragment

(CH2) at δ 4.01 ppm with a coupling constant (J) at 5.5 Hz. The

characteristic isomaleimide vinylic protons appeared at δ

4.01 ppm δ 6.76 and 6.62 ppm. The rest eight aromatic

protons appeared as multiplet signals at δ 7.47, 7.25, and

7.04 ppm. Furthermore, the isomaleimide 4 showed 13 carbon

signals in the 13CNMR spectroscopy. The aliphatic methylene

carbon appeared upfield at δ 31.52 ppm. On the other hand, one

carbonyl signal appeared downfield at δ 166.94 ppm and the

azomethine (N=C) at δ 150.34 ppm. The vinylic carbons

appeared at δ 137.50 and δ 127.93 ppm. The rest eight

aromatic carbons appeared at δ 143.16–120.83 ppm.

3.3 Biology

Oligodendrocytes are susceptible to deterioration by oxygen and

nitrogen reactive species (R.O.S. and R.N.S.), affecting the

transmission of the neuronal signal and the proper axon function

(Shaaban et al., 2018; Hughes and Appel, 2019; Shaaban et al., 2021).

OSe compounds have recently manifested potential

chemoprotective and antioxidant properties (Shaaban et al.,

2015a; Shaaban et al., 2016b; Shaaban et al., 2019). The

cytoprotective properties of OSe compounds 2, 3, and 4 were

assessed in 158N and 158 JP cells. Interestingly, OSe compounds

2 and 4 did not show any apparent toxicity (IC50 ≥ 100 µM),

whereas the N-maleanilic acid 3 showed moderate-low cytotoxicity

(Supporting info, Supplementary Table S1). These results encourage

the further assessment of their redox properties. Considering that

OSe compounds are good nucleophilic reductants, they can react

with R.O.S. and R.N.S. to protect tissues from oxidative damage

(OD) (Sarma and Mugesh, 2005; Chuai et al., 2021; Nogueira et al.,

2021). Oligodendrocytes are usually vulnerable to OD; thus, our

main objective is further to estimate the antioxidant potential of

compounds 2, 3, and 4 using the H2-DCFDA (Supporting info,

Supplementary Table S1). Interestingly, all compounds significantly

diminished the R.O.S. levels in 158N and were evenmore significant

than vitamin E.

Furthermore, the antiapoptotic activities of compounds 2, 3, and

4 were also evaluated by flow cytometry in 158N cells stained with

P.I. using 7Kc as apoptosis stimulator and the positive reference

(Supporting info, Supplementary Figure S1). Among the tested

compounds, the N-maleanilic acid 3 lowered, in a concentration-

dependent manner, the formation of SubG1 peak. To this point,

N-maleanilic acid 3 showed antioxidant and antiapoptotic activities

probably via diminishing the R.O.S. levels. The N-maleanilic acid 3

amphiphilic characters favor its crossing through the cell membrane

and, therefore, its better activity.

3.4 Analysis of the molecular packing

The isomaleimide 4 crystallized in the triclinic with space

group P-1. Its molecular structure is shown in Figure 1. The main

body of the (A) structure consists of a Furan ring (Cg1) which has

an α,β-unsaturated carbonyl group, and two benzene rings

TABLE 2 Selected bond distances and angles of isomaleimide 4.

Bond distances (Å)

C1-C2 1.500 (3) C9-C10 1.390 (3)

C1-Se 1.968 (2) C10-C11 1.401 (3)

C2-C7 1.391 (4) C11-C12 1.400 (3)

C2-C3 1.391 (4) C11-N 1.414 (3)

C3-C4 1.386 (3) C12-C13 1.387 (3)

C4-C5 1.386 (3) C14-N 1.266 (3)

C5-C6 1.381 (3) C14-O2 1.389 (3)

C5-Br 1.903 (2) C14-C15 1.459 (3)

C6-C7 1.388 (3) C15-C16 1.331 (3)

C8-C13 1.396 (3) C16-C17 1.469 (3)

C8-C9 1.401 (3) C17-O1 1.195 (3)

C8-Se 1.913 (2) C17-O2 1.405 (3)

Bond Angles (°)

C2-C1-Se 108.13 (16) C9-C10-C11 120.9 (2)

C7-C2-C3 118.5 (2) C12-C11-C10 118.8 (2)

C7-C2-C1 121.5 (2) C12-C11-N 126.6 (2)

C3-C2-C1 120.0 (2) C10-C11-N 114.6 (2)

C4-C3-C2 121.3 (2) C12-C13-C8 120.6 (2)

C3-C4-C5 118.7 (2) N-C14-O2 126.1 (2)

C6-C5-C4 121.4 (2) N-C14-C15 125.9 (2)

C6-C5-Br 119.52 (18) O2-C14-C15 107.99 (19)

C4-C5-Br 119.07 (18) C16-C15-C14 108.7 (2)

C5-C6-C7 119.0 (2) C15-C16-C17 108.1 (2)

C6-C7-C2 121.0 (2) O1-C17-O2 120.0 (2)

C13-C8-C9 119.3 (2) O1-C17-C16 132.6 (2)

C13-C8-Se 122.20 (17) O2-C17-C16 107.4 (2)

C9-C8-Se 118.47 (16) C14-N-C11 126.4 (2)

C10-C9-C8 119.8 (2) C14-O2-C17 107.77 (18)

C13-C12-C11 120.4 (2) C8-Se-C1 98.29 (10)
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(Cg2 and Cg3). The planarity of the Cg1 (C14-C17-O1/O2), Cg2

(C2-C7/Br1/C1), and Cg3 (C8-C13/Se1) is evident by the root-

mean-square (rms) deviation of 0.0096 of Cg1, 0.0065 of Cg2,

and 0.0084 Å of Cg3. The dihedral angle between Cg2 and Cg3 is

72.32 (9)°. The central Se atom shows a bent geometry [C1-Se1-

C8 = 98.29 (10)°]. All bond distances and angles in isomaleimide

4 are within the acceptable ranges (Table 2) (Allen, 2002; Gouda

et al., 2022; Shaaban et al., 2022).

The molecules in isomaleimide 4 are linked together by weak

non-classical Hydrogen-bonding chains (C16-H16···O1iii and

C15-H15···Nii [symmetry codes: (ii) −x−1, −y+1, −z;

(iii) −x, −y+2, −z]), (Figure 2; Table 3). It is worth noting that

the proximity of donor atoms C12 and acceptor atom O2 allows

for the formation of one intramolecular hydrogen bond C12-

H12···O2. Bromine atoms play an essential role in crystal packing

stabilization because they are involved in C12-H12···Bri hydrogen
bonding [symmetry code: (i) −x+2, −y+1, −z+1], (Figure 2). The

main characteristics of the hydrogen bonds data are listed in

Table 3. Slipped π-stacking interactions strengthen the chains of

molecules along a axis. The centroid-to-centroid separation of

Cg1 and Cg3 is 3.564(1) Å (Figure 3; Table 3). The crystal

packing of 4 is also dominated by C-Br···Cg1 (dBr···Cg1 =

3.7321(11) Å), Se···Br and Se···O interactions (Figure 4;

Table 3). The closest intermolecular Se···Br distance is

FIGURE 2
Isomaleimide 4 packing diagram, viewed along a axis, showing the hydrogen-bonded chains structure (dashed line). C-H···O (Red), C-H···N
(Cyan), and C-H···Br (Green).

TABLE 3 Hydrogen bonds, Y-X...Cg interactions, π···π interactions parameters for isomaleimide 4.

D-H···A D-H (Å) H···A (Å) D···A (Å) D-H···A (°)

C12-H12···O2 0.95 2.23 2.857 (3) 123

C12-H12···Bri 0.95 3.06 3.834 (2) 140

C15-H15···Nii 0.95 2.48 3.389 (3) 161

C16-H16···O1iii 0.95 2.40 3.320 (3) 162

Y···X (Å) d(X···Cg1) (Å) d(Y···Cg) (Å) Y-X···Cg
C5-Br···Cg1iv 1.903 (2) 3.7321 (11) 4.553 (3) 102.92 (7)

Cg(I) ···Cg(J) α Cg(I)perp Cg(J)perp

Cg1···Cg3(v) 3.5641 (14) 3.63 (12) 3.2730(10) 3.3491(9)

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x−1, −y+1, −z; (iii) −x, −y+2, −z; (iv) 1−x,1−y, 1−z; (v) −x, 1−y, −z. Cg(I) = Plane number I, Cg(J) = Plane number J, Alpha = Dihedral Angle

between Planes I and J (Deg), CgI_Perp = Perpendicular distance of Cg(I) on ring J (Ang.), CgJ_Perp = Perpendicular distance of Cg(J) on ring I (Ang.).
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3.8251(5) Å, which is greater than the sum of the van der Waals

radii for these two elements (3.75 Å) (Bondi, 1964).

3.5 Hirshfeld surfaces, fingerprint plots,
and energy framework

The Hirshfeld surface of isomaleimide 4 is mapped over

dnorm (Figure 5A) in the ranges −0.2503 to 1.4928 Å, shape

index (Figure 5B) in the range (−0.9976 to 0.9980 Å),

curvedness (Figure 5C) in the range −4.1687 to 0.2406 Å

and fragment patches (Figure 5D) in the range

0.000–14.000 Å.

Around the C.H. and the carbonyl group in the Furan ring

and the N-atom of isomaleimide 4, the H.S. has intense red spots,

which indicates that these specific atoms are promising in the

H-bonding interactions (C15-H15···N and C16-H16···O1). By
plotting H.S., we can not only visualize H-bonding interactions

FIGURE 3
Slipped π-stacked dimers of isomaleimide 4.

FIGURE 4
(a) C-Br···Cg (Green dashed lines), Se···O (Purple dashed lines), and Se···Br (Pink dashed lines) interactions in isomaleimide 4.
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but also investigate other non-covalent interaction types, such as

stacking interactions. To visualize this interaction, the H.S. is

plotted on a shape index and curvedness. The presence of

triangular regions of red and blue around the furan and

aromatic rings on the shape index (Figure 5B) and a flat

region around the phenyl rings and furan rings in curvedness

(Figure 5C) indicates the presence of π-stacking interactions. The
nearest molecules’ neighbor environment is determined by the

color patches (Figure 5D) on the Hirshfeld surface and their

proximity to adjacent molecules.

FIGURE 5
(A) dnorm mapped on Hirshfeld surfaces for visualizing the intermolecular interactions, (B) shape-index, (C) curvedness, and (D) fragment
patches of isomaleimide 4.

FIGURE 6
Fingerprint plots with fragment patches of (a) C···H, (b) H···H, (c) O···H and (d) H···Br contacts in isomaleimide 4.
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Figure 6 shows the two-dimensional fingerprint of the

significant contacts contributing to the Hirshfeld surface of

isomaleimide 4 is showed in expanded mode. Interatomic

contact percentage contributions in isomaleimide 4 are

calculated using two-dimensional fingerprint plots. The C···H/

H···C contacts contribute the most (26.2%), corresponding to

C-H···N and C-H···Br interactions, as shown in the 2D

fingerprint plot by a pair of pointed spikes representative of

strong hydrogen-bonding interactions (Figure 6A).

The H···H contact appears in the middle of the scattered

points in the two-dimensional fingerprint plots (Figure 6B)

with a contribution to the overall Hirshfeld surface of 25.4%.

Because of the abundance of hydrogen on the molecular

surface, they are the second most common interactions

(55%). O···H/H···O contacts make up the third-largest

contribution to the Hirshfeld surface (Figure 6C),

accounting for 13%. This contact indicates the presence of

intermolecular C-H···O hydrogen bonds. The Br···H/H···Br
contacts (Figure 6D), which raise to N-H···Br interactions,

are the third most crucial interaction on the surface,

accounting for approximately 9.2% of the Hirshfeld

surfaces. The relative percentage contributions to the

overall Hirshfeld surface are shown in Figure 7. Finally, the

Hirshfeld surface analysis yields the same results as the X-ray

crystal structure analysis and provides a new visual

explanation for intermolecular interactions.

The intermolecular interaction energies are calculated

using the HF/3-21G energy model with scale factors to

determine Etot: kele = 1.019, kpol = 0.651, kdis = 0.901,

krep = 0.811, where a cluster of molecules is generated by

applying crystallographic symmetry operations with respect

to a chosen central molecule within a radius of 3.8 by default.

FIGURE 7
Different intermolecular contacts’ relative contributions to the Hirshfeld surface area in isomaleimide 4.

TABLE 4 Interaction energies (kJ mol−1) calculated for isomaleimide 4.

N Symop R Electron
density

E_elec E_pol E_dis E_rep E_tot

2 x, y, z 9.89 HF/3-21G 4.5 −1.6 −11.8 6.4 −1.9

2 x, y, z 10.18 HF/3-21G −3.1 −0.8 −2.6 0.1 −0.6

1 −x, −y, −z 8.85 HF/3-21G −0.4 −1.0 −17.3 7.6 −10.5

1 −x, −y, −z 12.43 HF/3-21G 27.9 −4.2 −60.9 0.0 −29.2

2 −x, −y, −z 15.71 HF/3-21G −18.1 −7.0 −20.1 0.0 −41.0

2 x, y, z 5.79 HF/3-21G −22.6 −4.5 −54.8 34.2 −47.6

1 −x, −y, −z 4.73 HF/3-21G −8.4 −3.4 −61.5 32.0 −40.2

1 −x, −y, −z 19.64 HF/3-21G −20.1 −5.8 −10.6 0.0 −33.8

1 −x, −y, −z 10.76 HF/3-21G −8.0 −1.2 −32.3 26.7 −16.4

1 −x, −y, −z 5.68 HF/3-21G −13.4 −4.3 −55.1 30.0 −41.8

E: interaction energies components, Symop: rotational symmetry operations with respect to the reference molecule, R: the centroid-to-centroid distance between the reference molecule N:

interacting molecules, and the number of pair(s) of interacting molecules with respect to the reference molecule (Sheldrick, 2015).
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The total interaction energies (Etot = −263 kJ/mol) can be

divided into total electrostatic (Eele = −54.7 kJ/mol), total

polarization (Epol = −33.6 kJ/mol), total dispersion

(Edis = −327 kJ/mol), and total repulsion (Erep = 137 kJ/

mol) (Table 4). Obviously, the interactions between

neighboring molecules contribute the most to the stability

of this structure, and in most cases, the dispersion energy

component dominates these interactions. Additionally, even

for the hydrogen-bonded molecule pairs, the dispersion

energy component is dominant or comparable to the

electrostatic components which due to the presence of π-π
and C-Br···π interactions (the highest importance of

electrostatic components is observed in a pair having

Eele = −22.6 kJ mol−1, Epol = −4.5 kJ mol−1 and

Edisp = −54.8 kJ mol−1). Figure 8 depicts the Coulomb

interaction energy (red), dispersion energy (green), and

total interaction energy (blue) between molecular pairs

along the a axis with respect to the selected molecule.

FIGURE 8
Energy-framework diagrams of isomaleimide 4 along the a axis: Electrostatic interaction energies (red); dispersion interaction energies (green);
total interaction energies (blue).

FIGURE 9
Optimized molecular structure of isomaleimide 4.
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3.6 Density functional theory calculations

3.6.1 Geometric structures
The optimized structural parameters of the isomaleimide 4

are depicted in Figure 9. In this theoretical study, the hybrid

functional B3LYP with the basis 6-311 ++ G(d,p) has been used

in all the calculations made by the Gaussian 09 program. The

optimization of the structure of the studied compound has been

carried out, starting from the geometry of X-rays. A comparison

of experimental results with theoretical ones (Table 5) reveals

that most of the calculated values of bond lengths and angles are

very close to those experimental data, which shows that the

choice of the base 6-311 ++ G(d,p) is suitable for this theoretical

study. However, the slight difference observed can be attributed

to the environment of the molecule studied, being isolated in

phase gaseous for the theoretical study and subjected to

interactions with solid-state intermolecular molecules in the

experimental study. Figure 10 depicts the visual HOMO and

LUMO of compound 4.

Furthermore, we believe it is worthwhile, to begin with the

results gained from the geometrical parameters of the

TABLE 5 Geometric parameters obtained using DFT/B3LYP//6-311
++ G(d,p).

Distance X-ray DFT Valence angles X-ray DFT

C1-Se 1.968 (2) 1.998 C4-C1-Se 108.13 (16) 109.10

C9-Br 1.903 (2) 1.916 C17-C19-N 114.6 (2) 115.19

C14-Se 1.913 (2) 1.923 C20-C19-N 126.6 (2) 126.71

C19-N 1.414 (3) 1.394 C7-C9- Br 119.07 (18) 119.46

C24-N 1.266 (3) 1.269 C10-C9-Br 119.52 (18) 119.47

C24-O32 1.389 (3) 1.398 C15-C14-Se 118.47 (16) 116.85

C29-O32 1.405 (3) 1.406 C22-C24-Se 122.20 (17) 124.16

C29-O31 1.195 (3) 1.194 N-C24-C25 125.9 (2) 125.36

C4-C5 1.391 (4) 1.399 N-C24-O32 126.1 (2) 126.84

C4-C12 1.391 (4) 1.399 O32-C24 C25 107.99 (19) 107.78

C15-C17 1.390 (3) 1.383 O32-C29-C27 107.4 (2) 106.87

C10-C12 1.386 (3) 1.392 O31-C29-C27 132.6 (2) 131.58

C5-C10 1.386 (3) 1.391 O31-C29-O32 120.0 (2) 121.54

C17-C19 1.401 (3) 1.408 C24-N-C19 126.4 (2) 127.72

C20-C22 1.387 (3) 1.390 C24-O32-C29 107.77 (18) 108.48

C24-C25 1.459 (3) 1.459 C14-Se-C1 98.29 (10) 101.25

FIGURE 10
Electronic distribution of LUMO and HOMO molecular orbitals of the isomaleimide 4.

TABLE 6 Global indices of the reactivity isomaleimide 4.

Electronic energy (eV) −158809.58

EHOMO (eV) −5.97

ELUMO (eV) −3.07

Gap, ΔE 2.90

Dipole moment, (Debye) 2.18

Chemical potential (eV) −4.52

Electronegativity 4.52

Hardness 1.45

Softness 0.73

Global softness 0.69

Electrophilicity index 7.04
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investigated molecules. In Table 4, the results of this calculation

are grouped by the following numbering scheme. Compare the

experimental results from a crystallographic investigation with

these theoretically computed geometric characteristics (Klocker

et al., 2003). The relation:

Δ �
∣∣∣∣Xtheo −Xexp

∣∣∣∣
X

× 100 (1)

Where, the theoretical value of the quantity X is Xtheo, while the

experimental value is Xexp. The average variance of the distances

and angles produced by the DFT approach is on the order of less

than 2%, indicating that the diverse theoretical conclusions

obtained are in excellent agreement with those found

experimentally by crystallographic analysis.

3.6.2 Study of overall global reactivities
The amount of energy required to remove an electron from a

molecule is known as ionization potential. Furthermore, high

ionization energy denotes great stability and thus chemical

inertness, whereas low ionization energy shows a molecule’s

reactivity. The energy generated when an electron is

introduced to a neutral molecule is characterized as electron

affinity isomaleimide 4. A significant value isomaleimide 4 shows

the molecule’s tendency to keep its electrons. A negative chemical

potential (μ) reflects the molecule’s molecular stability or

difficulty breaking it down into its constituent parts (Table 6).

The resistance of the cloud of molecular electrons to deformation

during tiny perturbations is measured in hardness (η). A big

HOMO-LUMO energy gap implies a complicated molecule with

low polarizability and chemical and biological activities but high

kinetic sensitivity (Table 6).

In contrast, a small HOMO-LUMO energy gap indicates a

soft molecule with high polarizability and activities but low

kinetic sensitivity. Chemical and biological sensitivities are

low, whereas kinetic sensitivity is heightened. The overall

electrophilicity index (ω) of a molecule measures its

stabilization energy or resistance to exchange electrons with

the system after the addition of an external electronic

charge (Parr et al., 1999).

The gap energy, which is the energy difference of the two

preceding molecular orbitals (Eg = E.L.U.M.O.–E.H.O.M.O.) is

2.90 eV. Chemical potential, electronegativity, hardness, softness,

Global Softness, and electrophilicity for the isomaleimide 4 were

determined as −4.52, 4.52, 1.45, 0.73, 0.69, and 7.04 eV,

respectively, using Eqs 2–7 (Rajan and Muraleedharan, 2017):

x � −1/2(ELUMO + EHOMO) (2)
μ � −x � 1/2(ELUMO + EHOMO) (3)

η � 1/2(ELUMO − EHOMO) (4)
S � 1/2η (5)
ω � μ2/2η (6)
σ � 1/η (7)

3.6.3 Surfaces with molecular electrostatic
potential

Isomaleimide 4’s M.E.P. was computed using the DFT-

B3LYP/6-31G ++ optimized geometry, and its surface map is

shown in Figure 11. This diagram uses a color scheme to indicate

the electrostatic potential values. The highest negative value is

represented by the red color, indicating the most likely areas for

electrophilic assault. The most positively charged areas appear in

dark blue color, indicating potential nucleophilic attack sites. The

determined limits are −4.64e-2 (deepest red) and +4.64e-2

(deepest blue), with the intermediate color scale flowing from

red through orange, yellow, green, and blue in that order, as

illustrated in Figure 11. The most substantial negative potential is

centered near the oxygen atoms, while positive potentials are

scattered throughout the TTF unit, particularly around the outer

H atoms. Finally, the M.E.P. primarily suggests an electrophilic

attack on oxygen atoms, with the possibility of a nitrogen atom

attack. On the other hand, a strong base may be able to destroy

one of the H atoms as a proton.

4 Conclusion

Isomaleimide 4 was accidentally obtained in 77% yield

instead of the maleimide 5 via dehydration and cyclization of

the respective N-maleanilic acid 3 upon heating with acetic

anhydride. The molecular structure of isomaleimide 4 was

confirmed by X-ray diffraction analysis. The cytotoxicity was

assessed against two oligodendrocytes and the antioxidant

properties were evaluated using H2-DCFDA assay. The

intermolecular interactions in the crystal packing are

quantified and visualized using Hirshfeld surfaces, 2D

fingerprint plots, and 3D energy frameworks. The two-

dimensional fingerprint revealed that the most significant

contributions to these surfaces come from C···H/H···C

FIGURE 11
Molecular electrostatic potential (M.E.P.) map of
isomaleimide 4 calculated at the 6-311++G(d,p) level.
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(26.2%), H···H (25.4%), O···H/H···O (13%) and Br···H/H···Br
(9.2%) interactions. The energy-framework analysis reveals

that the dispersive energies are the most important forces in

the crystal. In parallel with the experimental study, we carried out

a theoretical study detail using quantum chemical methods to

determine the properties structural of compound 4. We carried

out a comparison between the theoretical geometrical parameters

and those obtained by X-ray diffraction. It appears significantly

that the calculations obtained are in good agreement with the

experimental data.
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