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How chromosome gene organization and gene content evolve among
distantly related and structurally malleable genomes remains unresolved.
This is particularly the case when considering different insect orders. We
have compared the highly contiguous genome assemblies of the lepidop-
teran Danaus plexippus and the dipteran Drosophila melanogaster, which
shared a common ancestor around 290 Ma. The gene content of 23 out of
30 D. plexippus chromosomes was significantly associated with one or two
of the six chromosomal elements of the Drosophila genome, denoting
common ancestry. Despite the phylogenetic distance, 9.6% of the 1-to-1
orthologues still reside within the same ancestral genome neighbourhood.
Furthermore, the comparison D. plexippus–Bombyx mori indicated that the
rates of chromosome repatterning are lower in Lepidoptera than in Diptera,
although still within the same order of magnitude. Concordantly, 14 devel-
opmental gene clusters showed a higher tendency to retain full or partial
clustering in D. plexippus, further supporting that the physical association
between the SuperHox and NK clusters existed in the ancestral bilaterian.
Our results illuminate the scope and limits of the evolution of the gene
organization and content of the ancestral chromosomes to the Lepidoptera
and Diptera while helping reconstruct portions of the genome in their
most recent common ancestor.
1. Introduction
With the exception of neighbouring genes featuring coordinated gene
expression through shared or long-range enhancers [1–3], gene order organiz-
ation among distantly related metazoans is thought to be quasi-random as a
result of chromosome structural mutations [4]. Some insect orders are particu-
larly well suited to test for the limits to this quasi-randomization as they possess
some of the most structurally dynamic genomes among eukaryotes [5–7]. How-
ever, how chromosome gene organization and content have evolved among
these fast-evolving insect orders remains unresolved primarily because of the
lack of high-contiguity genome assemblies [8], the absence or incompleteness
of species gene sets [9], the difficulty to establish reliable orthologues relation-
ships in the absence of phylogenetic gene trees [10], or any combination of these
factors. Consequently, studies on the evolution of their chromosome gene
organization and content have been primarily restricted to a few reference
species and their closest relatives within the same genus or order [5,6,11]. The
employment of long-sequencing read technologies coupled with advanced
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assembly scaffolding tools [12–14], improved ab initio predic-
tion tools along with the implementation of RNA-seq for
enhanced gene annotation [15] and the development of
methods for phylogenetic orthology inference [10] allow us
to examine this question. Thus, we now are well poised to
revisit, or address for the first time, crucial aspects of the evol-
ution of the gene organization at the chromosomal level
between insect orders.

Lepidoptera and Diptera are two of the four most species-
rich orders within the insects [16], with their most recent
common ancestor dating back approximately 290 Ma [17].
Crucially, both Lepidoptera and Diptera chromosomes are
characterized by high levels of co-localization of genes
within equivalent chromosomes between species (i.e. macro-
synteny) but low levels of conservation of gene organization
at a fine scale (i.e. microsynteny), and with chromosomal
fissions/fusions and paracentric inversions reshaping the
karyotype and chromosome architecture within these species
orders [5,6,18–20]. Isolated efforts have attempted to clarify
the origin of the gene content of the Lepidoptera and Diptera
heterochromosomes Z and X, respectively [21], and to exam-
ine the dynamics of change in gene configuration of a limited
number of genomic regions, including the clusters of devel-
opmental genes Hox and Wnt [5,22–24], the Osiris
multigene family [25], and 15 random regions representing
approximately 2% of the genome of two noctuid moths
[18]. Therefore, no effort has been performed so far to
(i) comprehensively investigate the relationship between the
chromosomes between the Lepidoptera and the Diptera,
(ii) determine the extent to which gene order randomization
has taken place between the species orders, and (iii) recon-
struct, even partially, the chromosome gene organization in
their ancestor. To fill these gaps in knowledge, we used a
recently generated high contiguity assembly and gene anno-
tation for D. plexippus, as a representative of the Lepidoptera,
as well as the inferred orthologous relationships between
this species and D. melanogaster [26]. In addition, we also
gauged the scope of gene reshuffling within the Lepidoptera
by comparing the gene organization between D. plexippus
and B. mori, a representative of the moths, thus obtaining
a reliable estimate of breakpoint occurrence that can be
fairly compared to those obtained in the genus Drosophila.
Our results demonstrate the potential of high-quality geno-
mic resources in uncovering signatures of macro- and
microsynteny, helping ultimately to reconstruct the genome
in the ancestor of structurally dynamic genomes of distantly
related species.
2. Methods
(a) Orthologous gene sets
1-to-1 orthologues between D. plexippus and B. mori, and between
the former and D. melanogaster, were previously delineated using
OrthoFinder v. 2.2.6 [27] under the settings –S diamond –M msa,
using protein models retrieved from either NCBI or lepBase [26],
and ultimately linking the orthologues to their corresponding
genomic coordinates in each species. Ninety-five orthologues
potentially involved in interchromosomal gene transpositions
between D. plexippus and B. mori [26] were not considered in
downstream analyses as they are not part of large-scale chromo-
somal rearrangements. Chromosomal locations of 1-to-1
orthologues were recorded and tabulated for both comparisons.
(b) Test to the bias in shared chromosomal gene
content at the interspecific level

To determine whether the contemporary chromosomal distri-
bution of 1-to-1 orthologues between D. plexippus and
D. melanogaster reflects to some degree that in their common
ancestor, we performed 10 000 permutations of the chromoso-
mal location of such orthologues. The observed chromosomal
distribution was compared against the 10 000 generated distri-
butions. The number of orthologues landmarks located in
particular D. plexippus and D. melanogaster chromosomes was
recorded. The p-values obtained represent the fraction of the simu-
lated distributions in which the number of 1-to-1 orthologues
being located in particular D. plexippus and D. melanogaster
chromosomes was equal or higher than that observed. The
breadth of gene content association of a given D. plexippus
chromosome relative to the D. melanogaster chromosomes was
calculated using the τ index [28], which takes values from 0 to 1,
and it is defined as

t ¼
Pn

i¼1ð1� xiÞ
N � 1

,

where N is the number of chromosomal elements in D. melanoga-
ster (X, 2L, 2R, 3L, 3R and 4) and xi is the number of 1-to-1
orthologues located in each D. melanogaster chromosome normal-
ized by the maximum number. In this case, τmeasures the degree
of location specificity of 1-to-1 orthologues between the chromo-
somes of the two species. The higher the value, the larger the
fraction of the orthologues harboured by a given chromosome
of D. plexippus that reside in a particular Drosophila chromosomal
element. To avoid any distorting effect associated with the
comparably limited number of orthologues located on the dot-
like chromosome 4 of D. melanogaster in relation to the rest, we
repeated the analysis excluding this chromosome.
(c) Fine-scale conservation of gene organization
Global patterns of microsynteny conservation were evaluated
using positional information of 1-to-1 orthologues between
D. plexippus and B. mori, and between the former and
D. melanogaster. Between D. plexippus and B. mori, we demarcated
microsynteny blocks based on conservation of adjacency, not
orientation, of at least two 1-to-1 orthologues. In addition to
being adjacent in both species, the distance between any two
given orthologues was restricted to no more than 0.1% of the
assembly size in both species (i.e. 250 kb in D. plexippus and
460 kb in B. mori). In the case of microsynteny blocks harbouring
three 1-to-1 orthologues, the precise gene order did not need to
be identical. Presence of 1-to-1 orthologues associated with
either inter- and intra-chromosomal gene transpositions, which
are known to be very infrequent [5,26], was not considered to
disrupt microsynteny. Likewise, putative alterations of local
gene order due to differential gene configurations between the
species (e.g. one of the genes being nested into another in one
species but overlapping with an adjacent gene in the other)
were not considered to disrupt microsynteny as they could be
annotation errors. Two estimates of gene order disruption were
obtained. The first, a minimum estimate, corresponds to the
number of microsynteny blocks minus the number of chromoso-
mes as for each chromosome the number of breakpoints equals
the number of microsynteny blocks minus one. The second esti-
mate was obtained with the GRIMM-Synteny program v. 2.01
[29], using the order and orientation of the demarcated microsyn-
teny blocks as input. This program assumes maximum
parsimony while accounting for the phenomenon of breakpoint
reuse [6]. The number of breakpoints estimated in these two
ways, divided by two, corresponds to the inferred number of
inversions fixed during the evolution of the lineages that lead
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to D. plexippus and B. mori. Furthermore, in the case of the com-
parison between D. plexippus and D. melanogaster, we applied the
same rationale including the criterion of 0.1% maximum distance
between 1-to-1 orthologues in order to consider them part of the
same microsynteny block. Nevertheless, in this interspecific
analysis, as it is known that most genes in D. melanogaster
reside in the euchromatin, we required that the distance be
proportional to the size of the euchromatin (i.e. 120 kb).

For the comparative analysis of the gene organization of
clusters of developmental genes, we used positional information
from 1-to-1 orthologues in D. plexippus as well as TBLASTN reci-
procal best hit searches between D. melanogaster and D. plexippus
[30]. Homology searches were done by running in-home
shell scripts in the UCI High Performance Computer cluster
against the recently generated genome assembly DpMex_v1
(scaffold N50 = 8.16 Mb; complete BUSCOs = 98% [26]) of
D. plexippus, and by using the assemblies, gene annotations
and BLAST tools available in Ensembl (http://ensemblgen
omes.org/) for B. mori (ASM15162v1) and D. melanogaster
(BDGP6.28). In this analysis, microsynteny conservation was
considered to be also distance-dependent (0.1% criterion, i.e.
≤250 kb in D. plexippus and ≤120 kb in D. melanogaster) between
adjacent relevant landmarks, and preserved even in the presence
of intervening genes. Clustal Omega was used to visually inspect
protein sequence alignments and resolve cases of potential
gene model fragmentation [31]. When confirming local gene
duplications and deletions were necessary, we extracted
genome sequences from genome assemblies and performed
local alignments using PipMaker [32].

(d) Statistical analysis
Statistical analyses including data permutations were performed
using built-in functions in R [33]. Individual parameters and
statistically significant results are indicated in the text.
3. Results
(a) Uncovering chromosome ancestry between

D. plexippus and D. melanogaster
We investigated the degree of chromosome-level synteny
between D. plexippus (chromosome number = 30) and
D. melanogaster (chromosome number = 4) using positional
information from 5108 1-to-1 orthologues [26]. Lepidoptera
possess holocentric chromosomes and their ancestral chromo-
some number is thought to be 31 [34]. This number is reduced
to 30 inD. plexippus as a result of a fusion between the ancestral
heterochromosome Z and an autosome, pre-dating the radi-
ation of the genus Danaus [35,36]. In the Diptera, the
ancestral karyotype is thought to be n = 6 [11,37], with the
different ancestral chromosomal elements also participating
in different fusion events [7,38]. TheD. melanogaster karyotype
includes four chromosomes that correspond to the six com-
monly referred to as Muller’s chromosomal elements [39]:
the telocentric chromosome X, which corresponds to Muller’s
element A; the metacentric chromosome 2, which resulted
from the fusion between Muller’s elements B and C; the
metacentric chromosome 3, which is also a by-product of a
fusion between Muller’s elements D and E; and the small telo-
centric dot-like chromosome 4,which corresponds to Muller’s
element F. As the karyotypes of the outgroup insect orders [17]
Coleoptera and Hymenoptera are intermediate between
those of Lepidoptera and Diptera (electronic supplementary
material, table S1), it seems plausible that a differential set
of fusions (prevailing in the Diptera lineage) and fissions (pre-
vailing in the Lepidoptera lineage) had involved the
chromosomes ancestral to Lepidoptera and Diptera, resulting
in the karyotype disparity betweenD. plexippus andD. melano-
gaster. Assuming a limited exchange of gene content among
ancestral chromosomal elementsmainly via non-Robertsonian
translocations and pericentric inversions, which, with a few
exceptions, are thought to be uncommon based on the species
compared within both orders [5,6,18,19,40,41], a full ran-
domization of such gene content during the evolution of the
Lepidoptera and Diptera lineages should not be expected.
Nevertheless, a precise description and quantification of the
levels of the retained common ancestry at the chromosomal
level is still lacking.

We sought patterns of common ancestry at the chromoso-
mal level using positional information from 1-to-1 orthologues
betweenD. plexippus andD. melanogaster. Themedian number
of 1-to-1 orthologues per D. plexippus chromosome was
169 (mean ± s.d., 158.5 ± 78.0; CV = 49.2%). All but chromo-
some 29 harbour at least one landmark, with chromosome
26 and chromosome 3 featuring the second lowest (60) and
maximum (309) number of orthologues landmarks, res-
pectively (electronic supplementary material, table S2). We
tested for preferential association of the gene content
between particular D. plexippus chromosomes and those of
D. melanogaster (Methods), which denote fractions of the con-
temporary chromosomes in the two species that derive from
the same portion of the chromosomes in the ancestor to the
two species orders [21]. We found clearly recognizable
patterns of shared common ancestry between the chromo-
somes of D. plexippus and D. melanogaster (figure 1a), helping
establish unambiguous relationships at the chromosomal
level between both species. Specifically, for 23 of the 29
(30 as the anc-Z and neo-Zwere considered separately) asses-
sable chromosomes of D. plexippus, we found that their gene
content was preferentially associated with one or two of the
D. melanogaster chromosomal elements (at p < 2.8 × 10−4;
Monte Carlo simulations).

To further quantify the specificity of association between
the gene contents of given chromosomes of D. plexippus and
D. melanogaster, we repurposed the tau index (τ), a measure of
expression specificity [28]. D. plexippus chromosomes 5, 18
and 22 showed highly specific associations (i.e. τ greater than
0.85) with Muller’s element E, while chromosome 27 did so
with Muller’s element C (figure 1b). Interestingly, chromo-
somes 5, 22 and 27 harbour most of constituent genes
reported to be part of developmental gene classes Hox, NK,
and SuperHox, respectively (see below). Furthermore, we
also uncovered the tight relationship between the D. plexippus
autosome 23 and the dot-likeMuller’s element FofD.melanoga-
ster,which in brachyceran dipterans and the outgroup order of
the Blattodea corresponds to the X chromosome [43,44].

Our results also exposed the independent origin of
the heterochromosome (Z/X ) between D. plexippus and
D. melanogaster, as well as the differential chromosomal sub-
strate of the two arms of the Z chromosome, extending
previous inferences based on a similar approach between
D. melanogaster and B. mori that used approximately 70%
fewer 1-to-1 orthologues [21]. Specifically, while the anc-Z of
D. plexippus—chromosome 1 of B. mori—, along with auto-
somes 11, 12 and 20, are enriched for orthologues located on
Muller’s element D (3L), the neo-Z (chromosome 16 of B. mori
[26]), along with autosomes 3, 7, 9, 15 and 19, show a tight
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Figure 1. Synteny relationships between the chromosomes of D. plexippus and D. melanogaster. (a) Heatmap showing the differential percentage of 4913 1-to-1
orthologues from each chromosome of D. plexippus that resides across the ancestral chromosomal elements in the genus Drosophila (top). These elements are
referred to as A–F [39]. Blue, high percentages; red, low percentages. When the percentage observed is equal or higher than expected by chance alone at
p < 0.00028 based on Monte Carlo simulations is indicated in magenta. Twenty-three of the 29 assessable chromosomes (chromosome 29 harbours no detectable
1-to-1 orthologue under the parameters used) showed a significant association in gene content with particular chromosomal elements of Drosophila. Essentially, the
same conclusions are reached based on the analysis of the Pearson’s standardized residuals [42] (not shown). For 14 of those chromosomes, the significant associ-
ation results into more than twofold difference between the largest contribution and the second largest contribution to a different Drosophila chromosomal element.
(b) Chart ranking the chromosomes of D. plexippus from lower to higher tau (τ) index [28]. The higher the value (0, min; 1, max), the tighter is the association
between the gene content of a particular D. plexippus chromosome and a given Drosophila chromosomal element (i.e. the larger the fraction of the orthologues
harboured by a given chromosome of D. plexippus that reside in the same Drosophila chromosomal element). Given the much smaller size of Muller’s element F
relative to the remainder of the Muller’s elements, the tau index was calculated including and omitting such chromosomal element. (Online version in colour.)
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association with Muller’s element A (X ) of D. melanogaster
(electronic supplementary material, figure S1).

(b) Incomplete full gene order randomization between
Lepidoptera and Diptera

Given the presumed exceptional properties that the Lepidop-
tera and the Diptera offer (i.e. high rates of structural
rearrangement [5,6] coupled with large phylogenetic distance
between these species orders), microsynteny conservation is
more likely to reflect functional constraints associated with
complex regulation of gene expression than mere phylo-
genetic inertia [1–3,45,46] (i.e. conservation due to the
serendipitous non-occurrence of breakpoints of structural
rearrangements). Using positional information from 1-to-1
orthologues previously delineated [26], we sought evidence
of microsynteny conservation based on physical distance
among neighbouring orthologues (≤0.1% of the total assem-
bly size in both species) at two phylogenetic scales: within the
Lepidoptera, as previous analyses in this order used early
genome assemblies more affected by fragmentation [5] or
focused on small genomic fractions [18]; and between the
Lepidoptera and the Diptera, as previous analyses relied on
lower numbers of orthologues [21].

First, we compared the patterns of gene order contiguity
between D. plexippus and B. mori, a moth species whose most
recent common ancestor with the butterflies dates back to
approximately 100 Ma [47], using information from 7145 1-
to-1 orthologues [26], which results in one orthologues land-
mark per 33–64 kb of the genome of the species, respectively.
The genome of D. plexippus and B. mori can be envisioned as
a collection of 647 microsynteny blocks containing at least
two 1-to-1 orthologues, including in total 7007 (98.1%) of all
1-to-1 orthologues considered, with approximately 52% of
these blocks harbouring ≤5 1-to-1 orthologues (mean ± s.d.,
10.84 ± 13.99; CV = 129%). These microsynteny blocks would
have been reshuffled within the contemporary versions of
ancestral chromosomes by 308–337 inversions (electronic
supplementary material, note S1), disrupting the overall colli-
nearity along the chromosomes of these species to different
extents, although in no case involving large-scale exchanges
of gene content between different chromosomes, including
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Figure 2. Chromosome remodelling between D. plexippus and B. mori. The dot plots are based on positional information from 1-to-1 orthologues between the two
species. While some ancestral chromosomes have barely accommodated major large-scale structural changes, therefore preserving general gene order collinearity as
denoted by a well-defined diagonal (a), others have undergone a much more profound reorganization, as denoted by a severely disrupted diagonal with multiple
microsynteny blocks in different orientation and location along orthologues chromosomes (b). Thus, chromosome 9 in D. plexippus (10 in B. mori) exhibits one of the
lowest breakpoint densities per Mb. By contrast, both chromosomal components of heterochromosome Z in D. plexippus exhibit some of the highest breakpoint
densities per Mb (electronic supplementary material, table S3). (Online version in colour.)
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those that are composites of two ancestral chromosomes due to
fusion events (figure 2). Rates of gene order repatterning across
chromosomes varied substantially (electronic supplementary
material, table S3), being overall 3.21–6.69 lower than those
reported in the genus Drosophila, but still within the same
order of magnitude, thus confirming that both species orders
are characterized by high rates of remodelling of gene organiz-
ation (electronic supplementary material, note S2; table S4).

Subsequently, we performed the same analysis betweenD.
plexippus and D. melanogaster. Despite the approximately 580
my of total divergence time between the two species, and the
assumed improbability of microsynteny conservation [21],
we found 218 cases of microsynteny conservation involving
489 (9.6%) 1-to-1 orthologues. Although the relative presence
of these microsynteny blocks was positively correlated with
chromosome length in D. plexippus (r2 = 0.34, p = 8.0 × 10−4),
their presence was not uniform (electronic supplementary
material, note S3). Instances involving two 1-to-1 orthologues
represented the most common size among microsynteny
blocks (185, or 84.9% of the total; electronic supplementary
material, table S5). The case involving more 1-to-1 orthologues
corresponds to the Osiris gene family, relevant for immunity
anddevelopment [48], in good agreementwith previous obser-
vations in B. mori and other insect lineages [25]. In fact,
the Gene Ontology term Development was overrepresented
through several significantly enriched terms in this subset of
orthologues (electronic supplementary material, table S6).
Notably, we identified the presence of 16 conserved ancient
physical associations corresponding to gene pairs known
to be highly refractory to separation across metazoans [3]
(electronic supplementary material, table S5).

(c) Variable dismantling of the ancestral clustering
of developmental genes

Clusters of developmental genes often feature unusually high
levels of conservation compared to non-development related
genes [3,49–51]. This clustering primarily results from
tandem gene duplications [52] subsequently maintained to
some degree by regulatory-based constraints. We examined
the gene organization of 9 homeobox (Hox, NK, SuperHox,
Irx, PRD-LIM and its subcomponent HRO, SINE/Six, and
the Vsx and Uncx families) and 5 non-homeobox clusters
(Wnt, Fox, Inexin, Runt, E(spl)/Brd) in D. plexippus (figure 3),
and when necessary in the silkmoth B. mori to inform on their
differential dynamics of change. All these developmental-
related clusters, with the exception of Pharyngeal, Innexin,
Runt and E(spl)/Brd, were present in the last common ances-
tor of deuterostomes and protostomes, while these latter
formed more recently [46,50,53,54].

Using 1-to-1 orthologues and TBLASTN sequence
similarity searches, we corroborate previous observations rela-
tive to clustering patterns for the Hox and Wnt genes in
D. plexippus, while providing novel information for the rest
(electronic supplementary material, note S4). For example,
the nine genes forming part of the core of the NK cluster in
the bilaterian ancestor (NK5, NK1, Msx, NK4, NK3, Lbx, Tlx,
NK7 and Nk6) showmany commonalities in their partial clus-
tering in D. plexippus and D. melanogaster. The orthologues to
the D. melanogaster genes HGTX (NK6) and NK7.1 (NK7) are
approximately 59 kb apart on chromosome 20 of D. plexippus
whereas those of genes Dr, tin, bap and lbl/lbe (Msx, NK4,
NK3, Lbx) are found within an approximately 206 kb long
interval on chromosome 22. These two subclusters are also in
different chromosomal elements in D. melanogaster; the D (3L)
and E (3R), respectively [55]. As in Apis mellifera and Tribolium
castaneum [56], there is one single representative of Lbx in
D. plexippus. Unexpectedly, lbe (Lbx) and C15 (Tlx), which are
contiguous in multiple deuterostomes and protostomes [55],
are not in D. plexippus, mimicking the conspicuous situation
in the distantly related phyla of the tardigrades [57]. This pat-
tern of relative localization among NK genes is also found in
B. mori. Furthermore, the gene Dr is locally duplicated as in
T. castaneum [58], the two copies being in inverted orientation.
Remarkably, in D. plexippus, the orthologue to NK7.1 resides
approximately 21 kb away from that to HHEX, a member of
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Figure 3. Variable dismantling of 12 ancestral developmental gene clusters in the D. plexipus. (a) Homeobox- and (b) non-homeobox-related gene clusters. Gene
names as in D. melanogaster. In D. plexippus, clustering is considered to exist if the distance between relevant genes is lower than 250 kb (i.e. less than 0.1% of the
size of the genome assembly; [26]) and regardless of the presence of functionally unrelated genes. The identifier of relevant scaffolds appears abbreviated; for a full
identifier see electronic supplementary material, table S7. The only gene not strictly related phylogenetically to the classes of developmental genes considered is
sowah. It is included here due to its remarkable pattern of conservation in its physical localization relative to other Irx genes across Bilateria. The gene classes
Pharyngeal, SINE/Six and PRD_LIM do not show evidence of conserved clustering and therefore are not included. *Denotes the orthologue to the Brd-derived
gene present in the putative ancestral cluster [53]. (Online version in colour.)

Table 1. Overall degree of conservation in gene organization for 14 developmental clusters in D. plexippus and D. melanogaster. LCA, last common ancestor.

gene type cluster LCA clustering evidence

degree of conservationa

D. plexippus D. melanogaster

homeobox related Hox deuterostomes–protostomes partial (7–8/9)b partial (8/9)

SuperHox deuterostomes–protostomes partial (3/6) absent (0/6)

NK deuterostomes–protostomes partial (5/9) partial (5/9)

Irx deuterostomes–protostomes full (2/2) full (3/3)

Pharyngeal deuterostomes–protostomesc absent (0/1) absent (0/1)

SINE deuterostomes–protostomes absent (0/2) absent (0/2)

PRD LIM + subcomponent HRO deuterostomes–protostomes absent (0/2) + full (2/2) absent (0/2) + full (2/2)

Visual system deuterostomes–protostomes full (1/1) full (1/1)

Odysseus deuterostomes–protostomes full (1/1) full (1/1)

non-homeobox related Wnt deuterostomes–protostomes full (3/3) full (3/3)

Fox deuterostomes–protostomes partial (2/3) absent (0/3)

Innexin invertebrates partial (3/4) partial (1/4)

Runt insect full (3/3) partial (2/3)

E(spl)/Brd crustacean–insect full (3/3) partial (13/15)
aIn parenthesis, the number of conserved contiguities among genes of the same cluster in relation to the total number of contiguities based on the number of
genes part of such cluster. See electronic supplementary material, table S7 for more details.
bVariable number of conserved contiguities depending on the information considered. In the assembly DpMex_v1 [26], the genes Antp and Ubx are at the end
of the scaffolds Sc000036 and Sc000005, respectively, which precludes to confirm whether or not they are contiguous. A previous analysis in D. plexippus
indicated that Antp was contiguous to Ubx [5].
cThe pharyngeal gene cluster has been reported in a variety of deuterostomes while only a few of its constituent genes were found to cluster in one non-
deuterostome examined [46]. Although one of the genes of this cluster, Pax1/9, currently encodes a peptide that lacks a homeobox domain, its ancestral
version is thought to have included this type of domain [49].
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the SuperHox ancestral cluster, without evidence of any inter-
vening gene (figure 3). Positional information of the orthologue
to HHEX relative to that of NK genes in the deuterostomes
Branchioma floridae, Saccoglossus kowalevskii and Ptychodera
flava led to propose an ancient association of the SuperHox
and NK clusters in the ancestor to the Bilateria [46,49]. Our
results unambiguously support this hypothesis by confirming
the linkage between these two subclasses of homeobox gene
families in a protostome.

Overall, only four (the smallest, with two genes, and there-
fore more unlikely to be disrupted) out of 14 ancient clusters
(Irx, Visual system, Odysseus, and Wnt) appear undisrupted
by large-scale structural rearrangements in D. plexippus and
D. melanogaster (table 1; electronic supplementary material,
table S7; figure 3). The 10 remaining clusters present some
level of decay either in one or both lineages, which can be
accounted for by several non-mutually exclusive factors. The
first is the absence of global functional constraints operating
on cluster architecture (i.e. microsynteny conservation would
be just reflecting phylogenetic inertia). The second factor is
that regulatory-based constraints, if they ever existed, could
have been lifted in concertwith the evolution of lineage-specific
developmental properties [1]. The third factor is the limited fit-
ness cost that structural remodelling might have in some insect
lineages, which agrees well with the high malleability of their
genomes. These limited detrimental effects could stem from
an achiasmatic meiosis in the heterogametic sex in bothD. plex-
ippus and D. melanogaster, the presence of holocentric
chromosomes in D. plexippus, and compensatory mechanisms
during D. melanogastermeiosis [18,35,59].

4. Discussion
Chromosomal rearrangements can play pivotal roles in
environmental adaptation, phenotypic diversification and
reproductive isolation [60,61]. Nevertheless, the extent to
which the chromosomal gene content and organization has
been remodelled during species divergence, particularly
among distantly related and structurally dynamic genomes,
remains elusive due to limited contiguity of genome assem-
blies, suboptimal or entirely absent gene annotations, as well
as non-reliable orthologues relationships. By examining two
species from the Lepidoptera and Diptera with reference-qual-
ity genome assemblies, enhanced gene sets and reliable
orthologues relationships [26,62],we found evidence that a pre-
sumed quasi-randomization of the gene organization [4,21] at a
fine scale between the species compared is far from complete.
Additionally, at the level of whole-chromosome organization,
we have extended and refined previous inferences based on a
more limited number of orthologues landmarks [21], showing
the marked signatures of macrosynteny conservation between
the chromosomes ofD. plexippus andD.melanogaster. These sig-
natures strongly support a virtual absence of large-scale
exchanges of gene content between ancestral chromosomes
during and after the formation of the protokaryotypes of both
Lepidoptera and Diptera.

Collectively, our results provide a glimpse of how some
portions of that ancestral genome to the Lepidoptera and
Diptera were organized. As a result, attempts to reconstruct
ancestral states have the potential to help uncover the chro-
mosomal gene organization and content not only in
the ancestor to the Insecta but also in that of the Bilateria as
has been the case here for the SuperHox and NK gene clus-
ters. The forthcoming availability of quality-reference
genome assemblies, enhanced gene sets and reliable ortho-
logues relationships in other insect orders, as well as in
additional protostomes and deuterostomes, will facilitate
this task while providing further insights into how and to
what extent chromosome gene organization and content
have changed at different phylogenetic distances.

Rates of gene order evolution in the Lepidoptera and
Diptera orders have been occasionally compared, inferring
that the rates in the former are comparable or even higher
than those in the Drosophila genus, arguably because of the
holocentric nature of the Lepidoptera chromosomes
[5,18,63]. By using genome assemblies with relatively low
fragmentation, we find that, if anything, the remodelling
rates of gene organization are in fact lower in Lepidoptera
than in the Drosophila genus. In good agreement, our sys-
tematic analysis of clusters of developmental genes allowed
us to test this trend at a finer scale, particularly as these clus-
ters are more likely under functional constraints due
to complex gene regulation. Based on the 10 clusters that
showed some degree of decay, inter-lineage differences are
evident for five of them (SuperHox, Fox, Innexin, Runt and
E(spl)/Brd), with D. plexippus systematically showing an
overall increased level of clustering conservation relative to
D. melanogaster. This observation could be explained not
only by a slightly higher rate of chromosome repatterning
in the Diptera but also by an increased local refractoriness
to the occurrence of breakpoints in genomic regions of
D. plexippus that are likely to be exposed to different regulat-
ory inputs. This increased refractoriness would result in a less
uniform distribution of breakpoints of structural rearrange-
ments along the Lepidoptera chromosomes. Future guided
genome remodelling in insect species beyond D. melanogaster
[64] will be instrumental to disentangle the relative
contribution of these alternative explanations.
Data accessibility. Lists of 1-to-1 orthologues, including their molecular
coordinates and chromosomal locations, were retrieved from the
Dryad Digital Repository: https://doi.org/10.7280/D1WM43 [65].

The data are provided in electronic supplementary material [66].
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