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We present a differential equations model in which contagious disease
transmission is affected by contagious fear of the disease and contagious
fear of the control, in this case vaccine. The three contagions are coupled.
The two fears evolve and interact in ways that shape distancing behaviour,
vaccine uptake, and their relaxation. These behavioural dynamics in turn
can amplify or suppress disease transmission, which feeds back to affect
behaviour. The model reveals several coupled contagion mechanisms for
multiple epidemic waves. Methodologically, the paper advances infectious
disease modelling by including human behavioural adaptation, drawing
on the neuroscience of fear learning, extinction and transmission.
1. Introduction
In classical mathematical epidemiology—the venerable tradition of the 1927
Kermack–McKendrick model—individuals do not adapt their contact behav-
iour during epidemics [1,2]. Specifically, they do not endogenously engage in
social distancing based on fear. Yet, such behaviour is well-documented in
true epidemics. In 2008, Epstein et al. published ‘Coupled contagion dynamics
of fear and disease’ [3], a model that introduced the idea of two interacting
contagions: one physical (the disease proper) and one cognitive (fear of the
disease). Centrally, fear of disease can propagate independent of disease
prevalence. The model’s core narrative is that epidemic growth induces fear.
Contagious fear among healthy susceptible people, in turn, induces self-
isolation. By depriving the epidemic of fuel, in the form of susceptibles, this
self-isolation suppresses the disease. When disease prevalence becomes low,
however, so does the fear. Thus, susceptible people (no longer fearful) come
out of hiding. But, because there are still infectious individuals in circulation,
this pours gasoline (susceptible individuals) on the remaining embers (the
infectives), igniting a second wave. This occurred historically, in the 1918
influenza pandemic (see [4]), and history repeated itself in the multi-wave
COVID-19 pandemic [5]. Recent work on the neuroscience of fear lends scien-
tific support to the postulate of fear contagion, and a recent agent-based
model explicitly includes fear modules grounded in that neuroscience; see [6,7].

In the present work, we modify and extend the original coupled contagion
model [3] in light of recent advances, subsuming it in a more general frame-
work that—while including contagious fear of disease—adds contagious fear
of vaccine. The World Health Organization recently included vaccine refusal
in the top ten threats to global health [8]. It is responsible for the resurgence
of several deadly vaccine-preventable diseases, including measles and pertussis
in the USA and even polio in several countries [9,10]. During the swine flu
pandemic of 2009, roughly 40 per cent of Americans refused the vaccine [11].
And, writing as COVID-19 vaccination is underway, there is concern that
refusal will undermine the attainment and maintenance of herd immunity to
the SARS-CoV-2 virus and its variants.
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1.1. The core idea
In our model, as discussed in [12], ‘Everything turns on the
relationship between the two fears, one of disease, the other
of vaccine.’ If fear of the disease exceeds fear of the vaccine
in the population, the rate of vaccine acceptance rises, and
the disease may be suppressed. However, if the prevalence
of the disease is suppressed enough, fear of the disease
may fall below fear of the vaccine (as might happen when
a disease recedes from our collective memory). Now the vac-
cine is scarier than the disease, people eschew the vaccine,
and a new disease cycle can explode.

This narrative also rings true historically. Smallpox, one
of the great scourges of human history, kills roughly 30 per
cent of those infected [13]. Yet, even when inoculation (with
cowpox) was discovered, cycles of vigilance and compla-
cency kept smallpox alive. In her social history of smallpox,
The Speckled Monster, Jennifer Lee Carrell [14] recounts, ‘In
London, inoculation’s popularity waxed and waned through
the 1730s, with the force of the disease: in bad years, people
flocked to be inoculated; in lighter years, the practice shrank.
Inoculation was a security—the only security—to cling to
within the terror of an epidemic; in times of good health,
however, it looked like a foolish flirtation with danger.’ Our
two-fear model generates such cycles and related dynamics.
1.2. Irrational epidemics: background on behavioural
adaptation

The modelling literature on behavioural adaptation in epi-
demics has grown in several important directions; see
[15–18]. Primarily, it posits that agents receive information
on disease prevalence and adapt their behaviour in response
[19,20]. They respond to information, not to the fears of
others, as they do in our model. In the archetypal ‘rational
epidemics’ tradition, agents maximize an explicit utility
function, as in microeconomics and game theory, conditional
on the disease’s prevalence [21–25]. While mathematically
elegant, and illuminating in several important settings,
prevalence-elastic optimal adaptation in the rational choice
tradition is not well suited to capture prevalence independent
fear contagions—‘irrational epidemics’, as it were. These
come in several varieties. An extreme form is exemplified
by Morgellon’s disease, an internet-disseminated delusional
parasitosis [26]. For a compendious review of mass socio-
genic illnesses from the middle ages to the present, see [27].
More directly relevant examples of prevalence independent
fear contagion would include mass panics, such as occurred
in Surat, India in 1994 [28–30], or during Ebola [31], or in
recent episodes of vaccine refusal [32]. Indeed, cognitive
neuroscience demonstrates that the human fear response,
and fear learning generally, is not fundamentally choice-like
(much less rational), or even necessarily conscious, none of
which means it cannot be modelled, or estimated empirically,
or counteracted [6,7,33–37]. Finally, it is also worth dis-
tinguishing our fear contagion model from those that (a)
posit the conscious imitation of observable protective actions
(e.g. over networks) as the behaviour transmission mechan-
ism, or (b) that study the effect of behaviour change (often
instituted as top-down policy), but not its emergence,
through cognitive-emotional drivers like fear. See [4,38–42].
On the non-conscious acquisition and transmission of fear,
see the discussion below and [6,7,33].
1.3. Organization
Regarding organization, we first present the full model (§2).
Then we study a progression of four base scenarios, discuss-
ing their dynamics (§3). Analytical results and extensive
sensitivity analyses are provided and discussed in §4.

We begin with the pure compartmental susceptible–
infected–recovered (SIR) version of a contagious disease
alone. Every subsequent scenario subsumes the preceding
one, as follows:

Scenario 1: contagious disease
Scenario 2: contagious disease + fear of the disease
Scenario 3: contagious disease + fear of the disease +

vaccination
Scenario 4: contagious disease + fear of the disease +

vaccinations + fear of the vaccinations

These four scenarios are of central concern to public health.
All numerical assumptions (parameter settings and initial
conditions) are given in appendix A, ensuring replicability.
Several mathematical conditions for growth are derived
there as well. Appendix A also includes a pure fear ‘Salem
Witches’ scenario, where fear propagates in the absence of
any disease, further distinguishing the approach from preva-
lence elastic rational adaptation. On emotional contagion
and its mechanisms, see [6,43].
2. The model
We first define all state variables and parameters of the model
in tables 1 and 2, respectively. We use an average infectious
period of 7 days (1/γ = 7) and a basic reproduction number
(R0) of two (β/γ = 2) for the scenarios discussed.

The mathematical model relating these variables and
parameters consists of the eight coupled nonlinear ordinary
differential equations shown below. For expository efficiency,
we use awell-mixedmodel. Natural extensions would include
social networks [44–47] and agent-based formulations [48].

dS
dt

¼ �bIS� bfd(Sfd þ I)S� bfv(Sfv þ A)S

þ gf (Sfd þ Sfv)þ a f (RnatSfd þ RvacSfv), (2:1)

dSfd
dt

¼ �pbISfd � gf Sfd � a fRnatSfd þ bfd(Sfd þ I)S

� vSfd, (2:2)

dSfv
dt

¼ �bISfv � gf Sfv � a fRvacSfv þ bfv(Sfv þ A)S, (2:3)

dI
dt

¼ bISþ pbISfd þ bISfv � gI, (2:4)

dRnat

dt
¼ gI, (2:5)

dRvac

dt
¼ (1� s)vSfd þ gfA, (2:6)

dA
dt

¼ svSfd � gfA, (2:7)

and
dv
dt

¼ h(Sfd � Sfv)ðe� vÞv: (2:8)

Capital letters indicate infection states, while subscripts
indicate fear states. For example, the Sfd compartment is the
fraction of the population that is susceptible to the disease
and fears the disease (subscript fd). The Sfv compartment is
the fraction of the population that is susceptible to the disease



Table 1. State variable definitions.

variable description

S(t) the proportion of susceptible individuals with no fear

Sfd(t) the proportion of susceptible individuals who fear the

disease

Sfv(t) the proportion of susceptible individuals who fear the

vaccine

I(t) the proportion of (pathogen) infectious individuals

Rnat(t) the proportion of recovered individuals (persons who

had the disease and gained immunity)

Rvac(t) the proportion vaccinated individuals

A(t) the proportion of recently vaccinated individuals who

fear the vaccine because of an adverse reaction

v(t) the rate of vaccination (1/days)

Table 2. Parameter identifications.

parameter description

β the effective contact rate for the pathogen (1/days)

βfd the effective contact rate of fear of the disease

(1/days)

βfv the effective contact rate of vaccine fear (1/days)

αf the effective contact rate of fear loss (1/days)

γ the rate of disease recovery (1/days)

γf the rate of spontaneous loss of fear (1/days)

p the relative risk of acquiring the disease for

disease-fearful individuals

η the fear difference scaling factor

σ the fraction of the rate of vaccinated that

experience adverse effects

ϵ the maximum rate of vaccination (1/days)
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Figure 1. Flow diagram of equations (2.1)–(2.8).
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and fears the vaccine (subscript fv). While this dynamical
system is rich, as discussed below, equations (2.1), (2.4) and
(2.5) reduce to the familiar SIR model when there are no
fears and the terms subscripted by fd or fv are set to zero.
Moreover, each of the fear contagions also propagates in
classical fashion, as can be seen in equations (2.2) and (2.3).
A flow diagram of the model is shown in figure 1.
2.1. Transmission of disease and fear
The equations include six population compartments, each
representing the proportion of individuals in the given state
at any time. The sum of these six compartments is always
1. A susceptible individual may acquire the disease by
being exposed to an infectious person. The effective contact
parameter represents the rate of transmission. When effective
contact occurs, a susceptible person becomes infectious for an
average period of 1/γ days. Once the infectious period ends,
the individual recovers and gains permanent immunity to the
pathogen (compartment Rnat). We simplified the model by
not including a pre-infectious (latent) period, although this
is an obvious extension.

We consider three types of susceptible individuals:
persons without fear (S), persons who fear the disease (Sfd),
and persons who fear the vaccine (Sfv). A susceptible person
can retain only one fear at a given time, and all fearful persons,
regardless of fear intensity, are classified identically. A non-
fearful (susceptible) individual may acquire fear of the disease
by interactingwith infectious or disease-fearful persons. These
processes represent scenarios in which a susceptible person
observes or communicates with an infectious (sick) individual
orwith a disease-fearful person. Unlike the transmission of the
pathogen, such interactions could occur at a distance (as on
social media) and thus require a dedicated effective contact
rate parameter (βfd). Note that an infectious individual can
infect a susceptible person with either the pathogen or fear
of the disease, but again, not both.
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2.2. Fear of the disease
Fear of the disease affects the behaviour of susceptible indi-
viduals. These persons may take protective actions, such as
self-isolation, mask-wearing, social distancing, avoidance of
travel and mass gatherings, and improved personal hygiene.
In the interest of simplicity, such actions are modelled using
the relative risk parameter p, which is used to scale down
β. This is a fundamentally different representation than in
[3], where distanced individuals were a separate compart-
ment. Here, they are not. In the present model, a value of
p = 0.25 represents a 75% decrease in the likelihood of a dis-
ease-fearful individual becoming infected with the disease
compared to a susceptible individual with no fear. Disease-
fearful individuals may also choose to gain permanent
immunity through vaccination. Only individuals in this
class take the vaccine, since in our model, the only motivation
to get vaccinated is some level of disease fear. We assume
that a small proportion (σ) of vaccinated individuals experi-
ence adverse effects or associate an unrelated discomfort
with the vaccine. These individuals (A) acquire a (transmissi-
ble) fear of the vaccine while gaining full immunity. The rest
of the vaccinated individuals, a proportion of 1− σ, gain
immunity without acquiring the fear (Rnat).

2.3. Fear of the vaccine
Susceptible individuals acquire fear of the vaccine by inter-
acting with vaccinated persons who had an adverse
experience (A) or with vaccine-fearful susceptible persons
(Sfv). The effective contact rate of such interactions is βfv.

2.4. Fear conditioning and extinction
We know from neuroscience that, post-traumatic stress not-
withstanding, fear is not permanent but decays in the
absence of an aversive stimulus. In this model, susceptible
people may naturally overcome both fears (of disease and vac-
cine) and join the compartment of non-fearful susceptible
individuals (S). Our model contains two paths for such fear
decay, or ‘extinction’ as it is called in behavioural neuroscience
[49]. Specifically, we think of exposures (direct or indirect) to
disease-infected people as classical associative fear-condition-
ing trials. A classic example of a fear conditioning trial is as
follows. If a person is simply shown a benign blue light, no
manifestations of fear (e.g. freezing, pupil dilation, adrenaline
spikes, increased heart rate, electrodermal activity) or neural
correlates of fear, such as activation of (e.g. oxygenation and
recruitment of blood to) the amygdala, as seen in fMRI [50]
are observed. By contrast, if the subject is unexpectedly
given an aversive electric shock, the amygdala is immediately
stimulated, triggering a suite of fear responses. Importantly, if
the two stimuli are repeatedly paired—blue light followed
shortly by shock—the subject will come to associate (not
necessarily consciously) the light with the shock, to the point
where the blue light alone elicits the same amygdala response
as the shock. By a process of associative learning, the subject
has been ‘conditioned’ to fear the blue light. If these light–
shock pairings are discontinued, the fear of the blue light
will decay. Both the fear acquisition phase and fear extinction
phases can be modelled mathematically [51].

Consider a person whose fear of the disease has prompted
self-isolation. This person’s fear may decay in two ways. The
first is by eliminating direct (aversive) exposures to disease-
infected individuals; conditioning trials are thereby sus-
pended, and ‘fear extinction’ commences. In the model, this
natural decay is exponential, consistent with the simple semi-
nal Rescorla–Wagner model [52]. We assume that, in the
absence of a fear stimulus, a person will retain fear for an aver-
age duration of 1/γf days. On the widespread use of the
Rescorla–Wagner model, see [53]. For other learning models,
see for example [54,55].

The second path to overcoming fear is social and distinct
from extinction through stimulus deprivation. Individuals may
lose fear by communicating with persons who have recovered
from the fearful event. These reassuring exposures (think of
repeated blue light and candy pairings) can damp the con-
ditioned fear. This would be called counter-conditioning, over-
writing a negative response with a positive one. On the relative
effectiveness of extinctionandcounter-conditioning indiminish-
ing fear in children, see [56]. By interacting with a recovered
person (Rnat), a disease-fearful person (Sfd) may lose their fear.
Similarly, a vaccine-fearful person (Sfv) may lose their fear by
interacting with a protected vaccinated person (Rvac).

In our model, vaccinated persons who had gained fear
due to a negative vaccine experience (A) abandon the fear
only via the first path: natural exponential decay. We
assume that their first-hand experience with the vaccine
makes them resistant to social influence. Analogous to
disease fear, they retain their fear of vaccine for an average
duration of 1/γf days and then join the compartment of
vaccinated individuals (Rvac).

Widespread distancing and vaccination also cut the dis-
ease’s growth rate and can even make it negative—the herd
immunity condition—which amplifies their suppressive effects.
2.5. Vaccine uptake
The daily rate at which fearful disease-susceptible persons
vaccinate, v(t), may change over time due to a mechanism
of social influence; see equation (2.8). Specifically, we
assume that the growth rate of v(t) increases (dv/dt > 0)
when the population prevalence of disease fear exceeds that
of vaccine fear. It decreases (dv/dt < 0) when the reverse
obtains—when vaccine fear is more prevalent than disease
fear. We represent this effect using the difference between
the two fear prevalences (Sfd− Sfv):

dv
dt

¼ h(Sfd � Sfv)ðe� vÞv:

Clearly, Sfd− Sfv = 0 is a tipping point of the dynamics.
Several mechanisms can affect the fear ordering. If the
model begins with disease fear exceeding vaccine fear
(Sfd− Sfv > 0), vaccination expands. However, this itself can
endogenously suppress the disease to the point where fear
of disease falls below fear of vaccine. At this point, the fear
ordering switches, reversing the sign of dv/dt, opening the
door for disease resurgence through vaccine refusal. Of
course, two other mechanisms can drive fear of vaccine to
exceed fear of disease. One is an accumulation of adverse
vaccine events represented by the A compartment. Another
mechanism (not included here) would be exogenous suppres-
sion of disease fear (Sfd) through statements by officials
underestimating the threat.

We turn now to the core scenarios of the model. Again,
all numerical assumptions are provided in the text or
appendix A.
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3. Results
3.1. Base scenarios
3.1.1. Scenario 1: contagious disease only
Here, we ‘dock’ the model to the classic case, an SIR epidemic
with no fears, with a disease transmission rate β, and a single
recovery (and subsequently immune) rate, γ. In this case,
equations (2.1), (2.4) and (2.5) reduce to the Kermack–McKen-
drick model. A reference plot of the main dynamics is given
in figure 2, which illustrates our graphical strategy. To reduce
clutter, it will prove useful to have four plots focused on
different aspects of the coupled contagions: susceptibles,
vaccine uptake, infection and removals, as shown in figure 2.

With all fears and all vaccinations clamped at zero
(figure 2a,b), we see the classical blue single peaked curve
of infectives in figure 2c, the falling susceptible curve in
figure 2a, and the rising recovered curve in figure 2d.

3.1.2. Scenario 2: contagious disease + fear of disease
Nowwe add contagious fear of the pathogen, so there are two
contagions, as depicted in figure 3. The core narrative here is
that the initial spike of infections (the blue curve) stimulates
a fear spike (the purple curve). People reduce their contacts
out of fear (this is modelled through p), which suppresses dis-
ease spread. As the diseasewanes, however, so does the fear of
it. Now, susceptibles go back into circulation, which pours fuel
on the infective embers, and a secondwave ensues. The second
wave is larger than the first. Why? Because in our model, there
are two mechanisms of fear decay, and they amplify one
another. One mechanism is the ‘natural decay’ governed by
the parameter γf. The second is the ‘contagious’, fear-reversal
mechanism. People who have recovered from the disease are
in contact with those who are still fearful. The recovereds’
low fear is also transmitted, emboldening the fearful people
in hiding to come ‘out of the basement’ when it is still
unsafe. This ‘complacency contagion’, if you will, amplifies
the natural fear decay rate to produce a very sharp fear
reduction. This pours a larger number of susceptibles onto
the circulating infectives than would either fear decay mech-
anism alone. The result is that the second wave of the
disease can be larger than the first, as occurred in 1918 [57].
We illustrate in figure 3 that two peaks of infection may
appear in this scenario. Its robustness is explored in §4.

As the data science of social media shows [58], fear can
spread much faster and much farther than the disease itself (a
good thingwhen it inducespreventivemeasures). For the earlier
2008 model, an analytic expression for the R0 of fear, and con-
ditions for fear of disease to spread faster than the disease
itself, are given in [3]. The mathematics are different here and
several analytical growth conditions for the present model are
given in appendix A. An obvious reason for fear to outpace dis-
ease is that disease transmission requires direct physical contact
while fear transmissiondoes not. Indeed, there are two channels
to acquire disease fear in our model—through contact with an
infectious person (in the I compartment) or contact with a frigh-
tened susceptible person, in the Sfd compartment. Scared
individuals—whether sickor not—remove themselves fromcir-
culation, social distancingwith an effectiveness governed by the
parameter p. This endogenously affects the contact dynamic,
and thus the disease epidemic itself. Sometimes, the self-iso-
lation is sufficient to produce herd immunity and epidemic
fade-out (see §4). In other cases, because disease prevalence is
low, individuals recover from fear at a rate αf despite the pres-
ence of disease. This releases fresh susceptibles onto the still-
circulating infectives, generating a second wave, as shown in
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figure 3.We now extend the model further, adding vaccination,
but not yet the fear of it.
3.1.3. Scenario 3: contagious disease + fear of disease +
vaccinations

Vaccination canmitigate the secondwave generated in Scenario
2, a beneficial result fromapublic health perspective. In this and
the next scenario, we assume that at time zero, no one is
vaccinated, but that the vaccine is fully available throughout.

In figure 4a, fear of disease (purple) exceeds fear of
vaccine (green), which is clamped at zero. Vaccine uptake
thus increases, as shown in figure 4b. Now we see both ‘natu-
ral’ and vaccine-induced removals (figure 4d ). The combined
effect is to suppress the second wave, as evident from the
lower-left infection curve.
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Note that, while the second wave of figure 4 is clearly
suppressed, there is still a small second wave. The mechan-
ism for the two peaks here lies in the assumed effectiveness
of social distancing. We have assumed that the relative risk
reduction p of contracting the disease while fearful is low.
If we increase p, the peaks get closer together until (in the
limit) they converge to a single peak again. The sensitivity
of the phenomenon to variations in p is given in §4 below.

3.1.4. Scenario 4: contagious disease + fear of disease +
vaccinations + fear of vaccinations

In Scenario 4, the fear of vaccination ‘wins’, and the outbreak is
again unmitigated. People do vaccinate at the beginning of the
outbreak but stop too soon because the fear ordering reverses.

In figure 5a, we see that the fear ordering changes at
roughly 100 days, at which point fear of vaccine (green) rises
above the fear of disease (purple). This reverses the sign of
the rate of change of v(t) (equation (2.8)), and a second wave
of infections ensues.

The base scenarios exhibit several mechanisms for the
emergence, timing, size and decay of multiple waves. We
now explore their sensitivity to various parameters.
4. Sensitivity analysis
4.1. One fear (Scenario 2)
4.1.1. Sensitivity to p, the relative risk reduction due to

protective behaviours
To begin, we return to the case of the disease and fear of the
disease only (Scenario 2, §3.1.2) and study the effect of chan-
ging the relative risk p of acquiring the disease for disease-
fearful individuals. Figure 6 shows that if p is decreased to
0, meaning that those who are fearful of the disease go into
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hiding and have a 0% chance of contracting the disease,
the epidemic will be prevented (we see that only about 10%
of the population gets the disease). By contrast, as p increases,
fearful individuals become more risk-neutral (increasing their
likelihood of contracting the pathogen), and the epidemic
worsens; at its worst, with the fearful individuals not altering
their behaviour at all (p = 1), we see that about 80% of the
population becomes infected.

We see also that there are single-wave and two-wave
regimes, depending on p. If p is small (less than about 0.4)
but positive, we see a second wave emerge as fearful individ-
uals hide away and then return to circulation. If p is larger
than about 0.4, then the fearful individuals do not lower
their risk enough to preserve a susceptible population
sufficient to produce a second wave.

We note that there is a sharp bifurcation in the total
fraction of the population infected for a value of p near 0.1
(figure 6b). This bifurcation corresponds to a change from
one peak to two peaks, and is discussed in more depth in
appendix A.
4.1.2. Sensitivity to αf, the effective contact rate of fear loss
As noted earlier, an important extension (among several) of
the original coupled contagion model [3] is our inclusion of
a second mechanism of fear loss. In addition to spontaneous
loss of fear, disease-fearful persons (Sfd) may lose their fear
by interacting with recovered persons (Rnat). The effective con-
tact rate for this interaction is αf. We can see that the infectives
curves of different αf values overlap until the first peak is
reached; see figure 7a. The curves do not differ because the
number of recovered in the beginning is too low to reduce
fear significantly. The differences become apparent once the
infectives curve drops. Higher values of αf cause people to
lose their fear and abandon their protective measures. This
process increases the number of persons that are infected
and in turn, the number of recovered. The larger number of
recovered causes a larger fraction of persons to lose their fear
of the disease and so on. The result is a second wave when
the contact rate is sufficiently high. As αf increases, the
second peak is higher and occurs sooner. This process
increases the fraction of infected persons; see figure 7b.
4.2. Two fears (Scenario 4)
4.2.1. Sensitivity to βfd and βfv, the fear contact rates
We now focus on the two-fears scenario (Scenario 4) and
explore how the contact rates for disease fear (βfd) and vaccine
fear (βfv) influence the model’s behaviour. The two effective
contact rates determine how fast the fears are transmitted in
the population. The fraction of vaccinated and infected per-
sons as a function of (βfd, βfv) is shown in figure 8. When
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fear of the vaccine is transmitted sufficiently faster than the
fear of the disease (black region in figure 8a), the population
eschews vaccine, and a large portion of the population
becomes infected with the disease (over 75%, as shown in
bright orange region of figure 8b). When fear of the disease
is transmitted fast with a sufficiently low transmission rate
of vaccine fear, a small proportion of the population is infected
(the black region in 8b).

We now explore how the fears’ contact rates (βfd, βfv)
affect the number of peaks that occur in the infectives curve
(I). We define a peak as a local maximum with a proportion
of infectives above 0.01. Figure 9a shows that the model pro-
duces zero, one or two peaks. Point A is located in a region of
fast transmission of the vaccine fear, which leads to few vac-
cinated individuals. Only one peak is generated (figure 9b)
because the disease’s level of fear is too low to temporarily
decrease the disease spread, and a majority of the population
is infected.

Two peaks are generated in the yellow/light area of
figure 9a. The two peaks region in (βfd, βfv) space can be
well represented by the equation βfv = 4.6(βfd− 0.45) + 1.3
(see black arrow). Note that this area includes the interface
between the orange and black regions of figure 8 which indi-
cate the transition between the high and low fractions of
vaccinated and infected persons. As we move along this
arrow towards larger values of βfd and βfv, we see that the
second peak in the infection increases while the first peak
decreases (figure 9d ). As more fear enters the population,
we see individuals fearful of the disease hiding out (decreas-
ing the first peak of infection), driving the vaccination rate up,
and then a disproportionate fear of the vaccine (increasing the
second peak). Along this arrow, the total fraction of the popu-
lation that becomes infected remains relatively constant
(figure 9e) as the arrow is parallel to the interface of the
two regions.

If βfd is high enough (above approx. 0.45 per day), there
will be no epidemic unless βfv is sufficiently high. Even
then, there will be only one peak because there are too few
susceptibles to cause an initial peak high enough to reverse
the order of fears (that is, too many are fearful of the disease,
reducing their transmission rate); see figure 9c. The model
does not produce more than two peaks because of the
depleted susceptible pool.
4.2.2. Sensitivity to σ, the fraction of adverse reactions
A proportion σ of individuals experience adverse reactions to
the vaccine and develop a temporary fear of the vaccine,
which may be transmitted to susceptible individuals. As
more people have such reactions, the easier it is for the vac-
cine fear to spread. When we increase the proportion of
adverse reactions, the second peak in the proportion of infec-
tives rises while the first peak remains unaffected (figure 10a).
The first peak remains the same because too few persons fear



0.04

0.03

0.02

0.01

0 100 200
time (days)

infectives proportion

s = 0
s = 0.02
s = 0.04
s = 0.06
s = 0.08
s = 0.10

300

0.04

0.03

0.02

0.01

0 100 200
time (days)

vaccination rate, v

s = 0
s = 0.02
s = 0.04
s = 0.06
s = 0.08
s = 0.10

300

0.3

0.2

0.1

0 100 200
time (days)

fear of vaccine, Sfv

s = 0
s = 0.02
s = 0.04
s = 0.06
s = 0.08
s = 0.10

300

(b)(a) (c)

Figure 10. The effect of changing the fraction of adverse effects from vaccinations (σ) on (a) the proportion of infectives, (b) the vaccination rate and (c) the
proportion of susceptibles that fear the vaccine.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

18:20210186

10
the vaccine (figure 10b), and they have a negligible effect on
the vaccination rate (figure 10c). After the first peak, the fear
of the vaccine spreads, the vaccination rate drops, and more
people become infected, leading to the second peak.

Further sensitivity analyses can, of course, be conducted.
But these demonstrate how the scenario dynamics respond to
variations in several key parameters. Appendix A gives par-
ameter values and initial conditions for the scenarios and
derives analytical expressions for the growth (the Rn values)
of the disease and fear epidemics. The last of these specialize
to give the condition for a fear epidemic in the absence of
disease, which is also shown.
5. Discussion and conclusion
We have extended earlier work on coupled contagion
dynamics of fear and disease [3]. In addition to a contagious
disease and contagious fear of it, we have added a second con-
tagion: fear of the control, in this case, vaccine. In addition,
unlike [3], we include both the classical extinction of fear
and its contagious evaporation. The interaction of these
entangled contagions—of physical disease and emotion—
reveals several novel behavioural mechanisms for multiple
waves of infection and for their timing, size and form. Notably,
these waves are generated by endogenous contagious cogni-
tive dynamics, not by top-down policies, or by conscious
maximization of utility functions, or by the imitation of
observable behaviour.

Nonetheless, the triple contagion model has several limit-
ations. As noted above, these include the assumption of
perfect mixing; spatial and network variations would doubt-
less be illuminating. It is a compartmental model lacking
diversity within the susceptible and other pools. An agent-
based version could add several realistic heterogeneities. The
present model is deterministic, when true epidemics are sto-
chastic. In addition, there are certainly scenarios beyond our
four that could be explored. One is the case of contagious dis-
ease and contagious anti-vaccine sentiment only. Using a
different related approach, this case is studied in [59]. Finally,
we do not calibrate the model to data, which will be an
important empirical step.

Our broadest methodological point is that infectious
disease modelling must begin to incorporate behavioural
neuroscience. Human behaviour is complex and involves
interacting affective, deliberative and social components. To
be sure, some health decisions qualify as canonically rational.
But often, as Hume noted, ‘Reason is… the slave of the
passions’, the more so in settings of extreme stress like pan-
demics. Simple models grounded in the neuroscience of
fear and its transmission can deepen epidemic modelling.
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Appendix A. Supplementary information

A.1. Parameters and initial conditions
The parameters employed in each scenario are shown in
table 3, illustrating again the cumulative nature of the exer-
cise. Initial conditions are given in table 4.

A.2. Growth conditions: Rn values

A.2.1. Conditions for a second peak in infections
Here, we calculate the condition for continued growth of an
epidemic:

dI
dt

. 0

bISþ pbISfd þ bISfv � gI . 0

b
Sþ pSfd þ Sfv

g

� �
. 1:

9>>>>>>=
>>>>>>;

(A 1)

We can use this condition to understand when there may
be a second peak, i.e. when Rn may become greater than 1 at
a time point later than t = 0. As referenced in §4.1.1 and
shown in figure 6b, there is a bifurcation in the proportion
of infectives for low values of the relative risk parameter, p.
If we plot the fraction of infectives for a smaller range of p,
we see that there appears to be a bifurcation near p = 0.11;
see figure 11

To understand this bifurcation, we look at plots of the
reproduction number, Rn, for two different values of p: p =
0.11 and p = 0.12; see figure 12. We note that both simulations
begin with R0 = 2, and all populations, including the infec-
tives, experience very similar trajectories. Then, after the
first infection peak, we see that the fearful susceptibles, Sfd,
and the non-fearful susceptibles, S, approach similar values
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Table 4. Initial values used in the scenarios in §3.1.

variable

Scenario 1: Scenario 2: Scenario 3: Scenario 4:

no fear one fear one fear + vaccine two fears + vaccine

S(0) 0.998 0.998 0.998 0.998

Sfd(0) 0 0 0 0

Sfv(0) 0 0 0 0

I(0) 0.002 0.002 0.002 0.002

Rnat(0) 0 0 0 0

Rvac(0) 0 0 0 0

A(0) 0 0 0 0

v(0) 0 0 0.0001 0.0001

Table 3. Parameter values used in the scenarios in §3.1.

parameter

Scenario 1: Scenario 2: Scenario 3: Scenario 4:

no fear one fear one fear + vaccine two fears + vaccine

β 2/7 2/7 2/7 2/7

γ β/2 β/2 β/2 β/2

βfd 0 1.1β 1.1β 1.1β

αf 0 2.2β 2.2β 2.2β

γf 0 0.05 0.05 0.05

p 0 0.25 0.25 0.25

η 0 0 0.8 0.8

σ 0 0 0.02 0.02

ϵ 0 0 0.2 0.2

βfv 0 0 0 1.6β
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of about 0.45. For there to be another peak in infection, it
must be the case that the reproduction number crosses 1
again. Mathematically, we require that (β/γ)(S + pSfd) > 1 or
S + pSfd > γ/β. For this simulation (Scenario 2), we have that
g
b ¼ 1=2 and we are not considering a vaccine-fearful
population in this simulation (Sfv = 0). At about t = 200
days, right before the second peak, we estimate Sfd = Sfv =
0.45. Plugging all of this in, we have

0:45pþ 0:45 . 0:5,
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yielding p . 0:11 �11. This means that for values of
p . 0:11 �11, such as p = 0.12, the conditions of an epidemic
are met again after the first peak and there will be an
additional peak. If p , 0:11 �11, such as at p = 0.11, the
condition is violated, precluding another peak. We note
that once the second peak is over, the proportion
of fearful susceptibles gets very close to 0, blocking a third
peak.

Intuitively, the larger p-value above corresponds to
fearful individuals taking more risks and increasing their
likelihood of catching the disease. Interestingly, this model
exhibits a very sharp change in disease prevalence for a
small change in behaviour.
A.2.2. Model reduction to classic SIR
As shown in the text, in the absence of fear, our model
reduces to the classical SIR model. The resulting Rn

values are no exception. If we consider the case of no fear
by setting Sfd = Sfv = 0 in equation (A 1), we arrive at the typi-
cal growth condition: Rn = βS/γ > 1. If we plot this value for
the simulation shown in §3.1.1, figure 2, we see that when
the Rn value is above 1, the disease is increasing; see figure 13.

A.2.3. Growth conditions for a fear epidemic
In a similar way, we can calculate an Rn value for the spread
of the fear of the disease by finding a condition on which the
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derivative of Sfd is positive, as follows:

dSfd
dt

. 0,

� pbISfd � gf Sfd � afRnatSfd þ bfdSfdSþ bfdIS� vSfd . 0,

bfdSfdSþ bfdIS . Sfd(pbI þ gf þ afRnat þ v),

bfd

Sþ IS
Sfd

pbI þ gf þ afRnat þ v

0
BB@

1
CCA . 1,

yielding a relatively complicated condition for a fear epi-
demic to spread. Finally, the extreme case is fear contagion
in the absence of actual disease. Baseless fear contagions
are common outside public health. The Salem witch trials
of 1692 come immediately to mind. But in public health
there are purely psychogenic contagions like Morgellon’s
disease, noted earlier. If we assume that there is no disease
(I = 0), the growth condition above simplifies to

bfdS
vþ gf þ afRnat

. 1,

illustrating that even if there is no infection in the population,
a fear epidemic can occur. As shown in figure 14, if we begin
with one baselessly fearful individual and values of disease-
free Rn greater than 1, we see an epidemic of fear without
disease, and people rushing to be vaccinated nonetheless.
References
1. Kermack WO, McKendrick A. 1927 A contribution
to the mathematical theory of epidemics.
Proc. R. Soc. Lond. A 115, 700–721. (doi:10.1098/
rspa.1927.0118)

2. Brauer F. 2005 The Kermack–Mckendrick epidemic
model revisited. Math. Biosci. 198, 119–131.
(doi:10.1016/j.mbs.2005.07.006)

3. Epstein JM, Parker J, Cummings D, Hammond R.
2008 Coupled contagion dynamics of fear and
disease: mathematical and computational
explorations. PLoS ONE 3, e3955. (doi:10.1371/
journal.pone.0003955)

4. Bootsma MCJ, Ferguson NM. 2007 The effect of
public health measures on the 1918 influenza
pandemic in U.S. cities. Proc. Natl Acad. Sci. USA
104, 7588–7593. (doi:10.1073/pnas.0611071104)

5. Centers for Disease Control and Prevention, CDC
covid data tracker. Trends in number of Covid-19
cases and deaths in the US reported to CDC, by
state/territory. January 2021.

6. Epstein JM. 2013 Agent_Zero: toward neurocognitive
foundations for generative social science, vol. 25.
Princeton, NJ: Princeton University Press.
7. Epstein JM, Chelen J. 2016 Advancing agent_zero.
In Complexity and evolution: toward a new synthesis
for economics, New York, NY: MIT Press.

8. NEJM Journal Watch. 2019 WHO releases list of 10
threats to global health.

9. Patel M, Lee A, Redd S. 2019 Increase in measles
cases—United States, January 1–April 26, 2019.
MMWR Morb. Mortal Wkly Rep. 68, 402–404.
(doi:10.15585/mmwr.mm6817e1)

10. Dubé E, Vivion M, MacDonald NE. 2015 Vaccine
hesitancy, vaccine refusal and the anti-vaccine
movement: influence, impact and implications.
Expert Rev. Vaccines 14, 99–117. (doi:10.1586/
14760584.2015.964212)

11. Blasi F, Aliberti S, Mantero M, Centanni S. 2012
Compliance with anti-H1N1 vaccine among
healthcare workers and general population. Clin.
Microbiol. Infect. 18, 37–41. (doi:10.1111/j.1469-
0691.2012.03941.x)

12. Epstein JM. 2020 Are we already missing the next
epidemic? Politico.

13. Fenner F. 1988 Smallpox and its eradication. Geneva,
Switzerland: World Health Organization.
14. Carrell JL. 2003 The speckled monster: a historical
tale of battling the smallpox epidemic. New York,
NY: Penguin.

15. Fenichel EP et al. 2011 Adaptive human behavior in
epidemiological models. Proc. Natl Acad. Sci. USA
12, 6306–6311. (doi:10.1073/pnas.1011250108)

16. Funk S, Salathé M, Jansen V. 2010 Modelling the
influence of human behaviour on the spread of
infectious diseases: a review. J. R. Soc. Interface 7,
1247–1256. (doi:10.1098/rsif.2010.0142)

17. Perra N, Balcan D, Gonçalves B, Vespignani A. 2011
Towards a characterization of behavior-disease
models. PLoS ONE 6, e23084. (doi:10.1371/journal.
pone.0023084)

18. Weston D, Hauck K, Amlôt R. 2018 Infection
prevention behaviour and infectious disease
modelling: a review of the literature and
recommendations for the future. BMC Public Health
18, 336. (doi:10.1186/s12889-018-5223-1)

19. Del Valle S, Hethcote H, Hyman JM, Castillo-Chavez
C. 2005 Effects of behavioral changes in a smallpox
attack model. Math. Biosci. 195, 228–251. (doi:10.
1016/j.mbs.2005.03.006)

http://dx.doi.org/10.1098/rspa.1927.0118
http://dx.doi.org/10.1098/rspa.1927.0118
http://dx.doi.org/10.1016/j.mbs.2005.07.006
http://dx.doi.org/10.1371/journal.pone.0003955
http://dx.doi.org/10.1371/journal.pone.0003955
http://dx.doi.org/10.1073/pnas.0611071104
http://dx.doi.org/10.15585/mmwr.mm6817e1
http://dx.doi.org/10.1586/14760584.2015.964212
http://dx.doi.org/10.1586/14760584.2015.964212
http://dx.doi.org/10.1111/j.1469-0691.2012.03941.x
http://dx.doi.org/10.1111/j.1469-0691.2012.03941.x
http://dx.doi.org/10.1073/pnas.1011250108
http://dx.doi.org/10.1098/rsif.2010.0142
http://dx.doi.org/10.1371/journal.pone.0023084
http://dx.doi.org/10.1371/journal.pone.0023084
http://dx.doi.org/10.1186/s12889-018-5223-1
http://dx.doi.org/10.1016/j.mbs.2005.03.006
http://dx.doi.org/10.1016/j.mbs.2005.03.006


royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

18:20210186

14
20. Funk S, Gilad E, Watkins C, Jansen VAA. 2009 The
spread of awareness and its impact on epidemic
outbreaks. Proc. Natl Acad. Sci. USA 106,
6872–6877. (doi:10.1073/pnas.0810762106)

21. Geoffard P-Y, Philipson T. 1996 Rational epidemics
and their public control. Int. Econ. Rev. 37,
603–624. (doi:10.2307/2527443)

22. Kremer M. 1996 Integrating behavioral choice into
epidemiological models of aids. Q. J. Econ. 111,
549–573. (doi:10.2307/2946687)

23. Arthur RF, Jones JH, Bonds MH, Ram Y, Feldman
MW. 2021 Adaptive social contact rates induce
complex dynamics during epidemics. PLoS Comput.
Biol. 17, e1008639. (doi:10.1371/journal.pcbi.
1008639)

24. Fenichel EP et al. 2011 Adaptive human behavior in
epidemiological models. Proc. Natl Acad. Sci. USA
108, 6306–6311. (doi:10.1073/pnas.1011250108)

25. Bhattacharyya S, Vutha A, Bauch CT. 2019 The
impact of rare but severe vaccine adverse events on
behaviour-disease dynamics: a network model. Sci.
Rep. 9, 7164. (doi:10.1038/s41598-019-43596-7)

26. Vila-Rodriguez F, Macewan B. 2008 Delusional
parasitosis facilitated by web-based dissemination.
Am. J. Psychiatry 165, 1612–1612. (doi:10.1176/
appi.ajp.2008.08081283)

27. Bartholomew RE, Wessely S. 2002 Protean nature of
mass sociogenic illness: from possessed nuns to
chemical and biological terrorism fears.
Br. J. Psychiatry 180, 300–306. (doi:10.1192/bjp.
180.4.300)

28. Ramalingaswami V. 2001 Psychosocial effects of the
1994 plague outbreak in Surat, India. Mil. Med.
166(12 Suppl), 29–30. (doi:10.1093/milmed/166.
suppl_2.29)

29. Pallipparambil GR. The Surat plague and its
aftermath. Essays on Yersinia pestis. See https://
www.montana.edu/historybug/yersiniaessays/
godshen.html.

30. Insects, Disease, and History. Montana State
University. Bozeman, Montana. See https://www.
montana.edu/historybug.

31. Towers S et al. 2015 Mass media and the contagion
of fear: the case of Ebola in America. PLoS ONE 10,
e0129179. (doi:10.1371/journal.pone.0129179)

32. Broniatowski DA, Jamison AM, Qi S, AlKulaib L,
Chen T, Benton A, Quinn S, Dredze M. 2018
Weaponized health communication: Twitter bots
and Russian trolls amplify the vaccine debate.
Am. J. Public Health 108, 1378–1384. (doi:10.2105/
AJPH.2018.304567)
33. LeDoux J. 2000 Emotion circuits in the brain. Annu.
Rev. Neurosci. 23, 155–184. (doi:10.1146/annurev.
neuro.23.1.155)

34. LeDoux J. 2003 The emotional brain, fear, and the
amygdala. Cell. Mol. Neurobiol. 23, 727–738.
(doi:10.1023/A:1025048802629)

35. LeDoux J. 2003 Synaptic self: how our brains become
who we are. New York, NY: Penguin.

36. LeDoux J. 2009 Emotion circuits in the brain. Focus
7, 274–274. (doi:10.1176/foc.7.2.foc274)

37. LeDoux J. 2012 Rethinking the emotional brain.
Neuron 73, 653–676. (doi:10.1016/j.neuron.2012.
02.004)

38. Fu F, Christakis N, Fowler J. 2017 Dueling biological
and social contagions. Sci. Rep. 7, 43634. (doi:10.
1038/srep43634)

39. Campbell E, Salathé M. 2013 Complex social contagion
makes networks more vulnerable to disease outbreaks.
Sci. Rep. 3, 1905. (doi:10.1038/srep01905)

40. Hébert-Dufresne L, Mistry D, Althouse BM. 2020
Spread of infectious disease and social awareness as
parasitic contagions on clustered networks. Phys.
Rev. Res. 2, 033306. (doi:10.1103/PhysRevResearch.
2.033306)

41. Acuña-Zegarra MA, Santana-Cibrian M, Velasco-
Hernandez JX. 2020 Modeling behavioral change
and COVID-19 containment in Mexico: a trade-off
between lockdown and compliance. Math. Biosci.
325, 108370. (doi:10.1016/j.mbs.2020.108370)

42. Abouk R, Heydari B. 2021 The immediate
effect of COVID-19 policies on social-distancing
behavior in the United States. Public Health
Rep. 136, 245–252. (doi:10.1177/00333
54920976575)

43. Hatfield E, Cacioppo J, Rapson R. 1993 Emotional
contagion. Curr. Direc. Psychol. Sci. 2, 96–100.
(doi:10.1111/1467-8721.ep10770953)

44. Wang Z, Andrews M, Wu Z, Wang L, Bauch C. 2015
Coupled disease–behavior dynamics on complex
networks: a review. Phys. Life Rev. 15, 1–29.
(doi:10.1016/j.plrev.2015.07.006)

45. Newman M. 2010 Epidemics on networks. In
Networks. Oxford, UK: Oxford University Press.

46. Eubank S, Guclu H, Kumar V, Marathe M,
Srinivasan A, Toroczkai Z, Wang N. 2004
Modelling disease outbreaks in realistic urban social
networks. Nature 429, 180–184. (doi:10.1038/
nature02541)

47. Kiss I, Miller J, Simon P. 2017 Mathematics of
epidemics on networks. Cham, Switzerland:
Springer.
48. Parker J, Epstein JM. 2011 A distributed platform for
global-scale agent-based models of disease
transmission. ACM Trans. Model. Comput. Simul.
(TOMACS) 22, 1–25. (doi:10.1145/2043635.
2043637)

49. Norrholm S, Vervliet B, Jovanovic T, Boshoven W,
Myers K, Davis M, Rothbaum B, Duncan E. 2008
Timing of extinction relative to acquisition: a
parametric analysis of fear extinction in humans.
Behav. Neurosci. 122, 1016. (doi:10.1037/a0012604)

50. Fullana M, Harrison B, Soriano-Mas C, Vervliet B,
Cardoner N, Àvila-Parcet A, Radua J. 2016 Neural
signatures of human fear conditioning: an updated
and extended meta-analysis of FMRI studies. Mol.
Psychiatry 21, 500–508. (doi:10.1038/mp.2015.88)

51. Gershman S, Blei D, Niv Y. 2010 Context, learning,
and extinction. Psychol. Rev. 117, 197. (doi:10.
1037/a0017808)

52. Rescorla R, Wagner A. 1972 A theory of Pavlovian
conditioning: variations in the effectiveness of
reinforcement and nonreinforcement. In Classical
conditioning II: current research and theory (eds EB
AH, P WF), pp. 64–99. New York, NY: Appleton
Century Crofts.

53. Siegel S, Allan L. 1996 The widespread influence of
the Rescorla-Wagner model. Psychon. Bull. Rev. 3,
314–321. (doi:10.3758/BF03210755)

54. Pearce J, Hall G. 1980 A model for Pavlovian
learning: variations in the effectiveness of
conditioned but not of unconditioned stimuli.
Psychol. Rev. 87, 532–552. (doi:10.1037/0033-295X.
87.6.532)

55. Sutton R, Barto A. 1998 Reinforcement learning.
Cambridge, MA: MIT Press.

56. Newall C, Watson T, Grant K, Richardson R. 2017
The relative effectiveness of extinction and counter-
conditioning in diminishing children’s fear. Behav.
Res. Ther. 95, 42–49. (doi:10.1016/j.brat.2017.05.
006)

57. He D, Dushoff J, Day T, Ma J, Earn D. 2011
Mechanistic modelling of the three waves of the
1918 influenza pandemic. Theor. Ecol. 4, 283–288.
(doi:10.1007/s12080-011-0123-3)

58. Depoux A, Martin S, Karafillakis E, Preet R, Wilder-
Smith A, Larson H. 2020 The pandemic of social
media panic travels faster than the COVID-19
outbreak. J. Travel Med. 27, taaa031. (doi:10.1093/
jtm/taaa031)

59. Mehta R, Rosenberg N. 2020 Modelling anti-vaccine
sentiment as a cultural pathogen. Evol. Hum. Sci. 2,
1–44. (doi:10.1017/ehs.2020.3)

http://dx.doi.org/10.1073/pnas.0810762106
http://dx.doi.org/10.2307/2527443
http://dx.doi.org/10.2307/2946687
http://dx.doi.org/10.1371/journal.pcbi.1008639
http://dx.doi.org/10.1371/journal.pcbi.1008639
http://dx.doi.org/10.1073/pnas.1011250108
http://dx.doi.org/10.1038/s41598-019-43596-7
http://dx.doi.org/10.1176/appi.ajp.2008.08081283
http://dx.doi.org/10.1176/appi.ajp.2008.08081283
http://dx.doi.org/10.1192/bjp.180.4.300
http://dx.doi.org/10.1192/bjp.180.4.300
http://dx.doi.org/10.1093/milmed/166.suppl_2.29
http://dx.doi.org/10.1093/milmed/166.suppl_2.29
https://www.montana.edu/historybug/yersiniaessays/godshen.html
https://www.montana.edu/historybug/yersiniaessays/godshen.html
https://www.montana.edu/historybug/yersiniaessays/godshen.html
https://www.montana.edu/historybug/yersiniaessays/godshen.html
https://www.montana.edu/historybug
https://www.montana.edu/historybug
https://www.montana.edu/historybug
http://dx.doi.org/10.1371/journal.pone.0129179
http://dx.doi.org/10.2105/AJPH.2018.304567
http://dx.doi.org/10.2105/AJPH.2018.304567
http://dx.doi.org/10.1146/annurev.neuro.23.1.155
http://dx.doi.org/10.1146/annurev.neuro.23.1.155
http://dx.doi.org/10.1023/A:1025048802629
http://dx.doi.org/10.1176/foc.7.2.foc274
http://dx.doi.org/10.1016/j.neuron.2012.02.004
http://dx.doi.org/10.1016/j.neuron.2012.02.004
http://dx.doi.org/10.1038/srep43634
http://dx.doi.org/10.1038/srep43634
http://dx.doi.org/10.1038/srep01905
http://dx.doi.org/10.1103/PhysRevResearch.2.033306
http://dx.doi.org/10.1103/PhysRevResearch.2.033306
http://dx.doi.org/10.1016/j.mbs.2020.108370
http://dx.doi.org/10.1177/0033354920976575
http://dx.doi.org/10.1177/0033354920976575
http://dx.doi.org/10.1111/1467-8721.ep10770953
http://dx.doi.org/10.1016/j.plrev.2015.07.006
http://dx.doi.org/10.1038/nature02541
http://dx.doi.org/10.1038/nature02541
http://dx.doi.org/10.1145/2043635.2043637
http://dx.doi.org/10.1145/2043635.2043637
http://dx.doi.org/10.1037/a0012604
http://dx.doi.org/10.1038/mp.2015.88
http://dx.doi.org/10.1037/a0017808
http://dx.doi.org/10.1037/a0017808
http://dx.doi.org/10.3758/BF03210755
http://dx.doi.org/10.1037/0033-295X.87.6.532
http://dx.doi.org/10.1037/0033-295X.87.6.532
http://dx.doi.org/10.1016/j.brat.2017.05.006
http://dx.doi.org/10.1016/j.brat.2017.05.006
http://dx.doi.org/10.1007/s12080-011-0123-3
http://dx.doi.org/10.1093/jtm/taaa031
http://dx.doi.org/10.1093/jtm/taaa031
http://dx.doi.org/10.1017/ehs.2020.3

	Triple contagion: a two-fears epidemic model
	Introduction
	The core idea
	Irrational epidemics: background on behavioural adaptation
	Organization

	The model
	Transmission of disease and fear
	Fear of the disease
	Fear of the vaccine
	Fear conditioning and extinction
	Vaccine uptake

	Results
	Base scenarios
	Scenario 1: contagious disease only
	Scenario 2: contagious disease + fear of disease
	Scenario 3: contagious disease + fear of disease + vaccinations
	Scenario 4: contagious disease + fear of disease + vaccinations + fear of vaccinations


	Sensitivity analysis
	One fear (Scenario 2)
	Sensitivity to p, the relative risk reduction due to protective behaviours
	Sensitivity to αf, the effective contact rate of fear loss

	Two fears (Scenario 4)
	Sensitivity to βfd and βfv, the fear contact rates
	Sensitivity to Σ, the fraction of adverse reactions


	Discussion and conclusion
	Data accessibility
	Authors' contributions
	Competing interests
	Funding
	Appendix A. Supplementary information
	Parameters and initial conditions
	Growth conditions: Rn values
	Conditions for a second peak in infections
	Model reduction to classic SIR
	Growth conditions for a fear epidemic
	References


