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Eucommia ulmoides Oliver is a woody perennial dioecious species native to China and has great economic value.
However, little is known about flower bud development in this species. In this study, the transcriptomes of fe-
male and male flower buds were sequenced using the Illumina platform, a next-generation sequencing technol-
ogy that provides cost-effective, highly efficient transcriptomeprofiling. In total, 11,558,188,080 clean readswere
assembled into 75,065 unigenes with an average length of 1011 bp by de novo assembly using Trinity software.
Through similarity comparisons with known protein databases, 47,071 unigenes were annotated, 146 of which
were putatively related to the floral development of E. ulmoides. Fifteen of the 146 unigenes had significantly dif-
ferent expression levels between the two samples. Additionally, 24,346 simple sequence repeats were identified
in 18,565 unigenes with 12,793 sequences suitable for the designed primers. In total, 67,447 and 58,236 single
nucleotide polymorphisms were identified inmale and female buds, respectively. This study provides a valuable
resource for further conservation genetics and functional genomics research on E. ulmoides.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Eucommia ulmoides Oliver, belonging to the monotypic family
Eucommiaceae, is a woody perennial dioecious species that is native
to China and is widely distributed across the temperate zone in central
and eastern areas, such as Shanxi, Henan, Anhui, Zhejiang, Guangxi,
Hunan, Guizhou, Sichuan, and Hubei provinces. E. ulmoides inhabits
mixed mesophytic forest habitats of valleys, hills, and low mountains
[1–4]. The fossil record of Eucommia indicates that several species are
included in this genus and that Eucommia specieswerewidely distribut-
ed in North America during the Cenozoic period [5]. A previous study
also reported that E. ulmoides may now be extinct in the wild [6], and
E. ulmoides was included in the Red List of Endangered Plant Species
in China [7].

Practically, the bark of E. ulmoides has been used in Chinese medici-
nal preparations for at least 2000 years and is generally prepared as a
general tonic to alleviate hypertension, strengthen muscles and bones,
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enhance liver and kidney function, and stimulate fetal movement [6,8,
9]. E. ulmoides is also called a “hard rubber tree” because of the abundant
quantities of trans-polyisoprene rubber in their leaves, bark, and seed
coats. In addition to its application as a Chinese herbal medicine and
commercial rubber production, the plant is also used for ornamental
purposes (as timber), nutrient tea (specifically the male flowers), and
a source of chlorogenic acid (from leaves).

Owing to these important economic applications of E. ulmoides, re-
searchers have become increasingly interested in this plant. Zhang
et al. [10] recently investigated the genetic diversity of E. ulmoides
using eight microsatellite markers. Additionally, with the increased
popularity of expressed sequence tags (ESTs) in gene discovery in re-
cent decades, Suzuki et al. [11] constructed and analyzed the EST librar-
ies of E. ulmoides from inner and outer stem tissues. However, this
approach is relatively low throughput, high cost, and lacks the capacity
for gene quantification [12].

With the rapid development of next-generation DNA sequencing
technologies, sequencing costs have decreased dramatically, and se-
quencing accuracy has improved significantly. Transcriptome sequenc-
ing (RNA-Seq) is based on next-generation sequencing technology,
having the advantages of cost-effective and highly efficient tran-
scriptome profiling [12]. Together with the development of improved
software programs, RNA-Seq has become a popular and power tool for
large scale sequencing in non-model plants without the requirement
for a reference genome [13].
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In this study, we applied the Illumina sequencing technology to
study the flower buds transcriptome of E. ulmoides and to develop a
set of simple sequence repeat (SSR)markers. The transcriptome data re-
ported here will provide valuable resources for the development of mo-
lecular markers and the flower-related gene discovery in E. ulmoides.

2. Materials and methods

2.1. Plant material and RNA extraction

The flower buds from two individuals, “SNJ” (male) and “BJC” (fe-
male), were collected from a field nursery in Yuanyang County, China
in September 2014. The samples were deposited in liquid nitrogen be-
fore use. Total RNA from these two samples was extracted using TRIzol
(Invitrogen, USA) following the manufacturer's instructions and then
treated with RNase-free Dnase I.

2.2. cDNA library construction and Illumina sequencing

Library construction was performed according to the Illumina sam-
ple preparation for RNA-seq protocol (Illumina Inc., San Diego, USA;
cat. no. RS-100-0801). After the total RNA extraction and DNase I treat-
ment, mRNAwas isolated usingmagnetic beads with Oligo (dT). mRNA
was fragmented by mixing with fragmentation buffer, and cDNA was
then synthesized using the mRNA fragments as templates. Short frag-
ments were purified and resolved with ethidium bromide (EB) buffer
for end reparation and single nucleotide A (adenine) addition. The
short fragmentswere then connectedwith adapters. Suitable fragments
were selected for PCR amplification as templates. During the quality
control (QC) steps, an Agilent 2000 Bioanalyzer (G2939AA; Agilent)
andReal-Time PCRSystem (StepOnePlus; ABI)were used for quantifica-
tion and qualification of the sample library. Finally, the library was se-
quenced using HiSeq system (HiSeq 2000; Illumina). The sequencing
data were deposited in the National Center for Biotechnology Informa-
tion (NCBI, accession no.: SRA290287).

2.3. De novo assembly and annotation

Image data outputs from sequencingwere transformed by base call-
ing into rawdata. The raw readswere then filtered to obtain clean reads
by removing reads with adaptors, having unknown nucleotides ac-
counting for N5%, and of low quality (N20% reads for which the quality
value was ≤10). Short clean reads were finally assembled into unigenes
using Trinity software [14]. The reads from two samples were assem-
bled separately and then clustered together to acquire non-redundant
unigenes that were as long as possible. The unigenes could then be di-
vided into classes by gene family clustering. In this study, we divided
the genes into clusters, in which several unigenes had high similarity
(N70%), and singletons.

All the unigenes were first aligned to databases, such as NR, Swiss-
Prot, KEGG, and COG (e-value b 0.00001) using BLASTx [15] and nucle-
otide database NT (e-value b 0.00001) using BLASTn [16]. The sequence
direction and amino sequences of the unigenes were determined ac-
cording to the best alignment results. Unigenes that could not be
aligned to any database were scanned by ESTScan [17], producing nu-
cleotide sequence direction and amino sequence data for the predicted
coding regions. With NR annotations, we used the Blast2GO program
[18] to obtain gene ontology (GO) annotations of unigenes, followed
by WEGO software [19] to determine GO functional classifications for
all unigenes and to elucidate the distribution of gene functions in spe-
cies at the macro level.

2.4. SSR detection and primer design

SSRs were detected using MicroSAtellite (MISA) software [20] with
all unigenes as references. We used sequences with SSRs for which the
lengths of both ends on the unigene were N150 bp to design primers
and then filtered the primers as follows. First, we ensured that there
were no SSRs in the primer. Next, we aligned the primers to unigene se-
quenceswith threemismatches allowed in the 5′ site and onemismatch
allowed in the 3′ site. Finally, we removed the primers that aligned to
more than one unigene.

2.5. Detection of single nucleotide polymorphisms (SNPs)

The consensus sequence for each sample was assembled separately
based on the alignment of the raw sequences on the unigenes. Then
the SNPs were identified on the consensus sequence through the com-
parison with the unigenes.

2.6. EST data

The assembled EST data of E. ulmoides used in this study were
downloaded from GenBank (accession no.: FY896671-FY925126).

3. Results and discussion

3.1. Sequencing and de novo assembly

We sequenced the genomes for the flower buds using the Illumina
2000 platform. In total, 11,558,188,080 clean reads were obtained
with a mean length of 100 bp. The percentages of Q20, ‘N’, and GC
were 97.84%, 0.01%, and 46.73%, respectively. The clean reads were as-
sembled into 75,065 unigenes using Trinity, with a total length of
75,898,028 bp, a mean length of 1011 bp, and an N50 of 1653 bp.
Most (48,129) of the unigenes ranged from 201 to 1000 bp, accounting
for 64% of the total unigenes. Twenty-three percent (16,984) of the
unigenes ranged from 1001 to 2000 bp. Nine percent (6445) of the
unigenes ranged from 2001 to 3000 bp, and 3507 (5%) of the unigenes
were longer than 3000 bp (Fig. 1).

Previous EST libraries constructed from the outer and inner stem tis-
sues of E. ulmoides represented 10,520 unigenes, with an average length
of 559 bp and an N50 of 634 bp [11]. Compared with EST libraries, our
transcriptome sequenced using the Illumina platform indicated a better
assembly result with more unigenes and a longer average length and
N50, thereby offering a reliable data resource for further analyses. The
average length (1011 bp) of the unigenes was longer than that reported
for the Jasminum sambac (846 bp) transcriptome, using the Illumina se-
quencing system, and the Chinese jujube (473 bp), using the 454GS FLX
Titanium genomic sequencer platform [21,22]. The N50 length
(1653 bp) was also longer than that reported for the Chinese jujube
[22].

3.2. Sequence annotation and classification

After aligning the unigene sequences to protein databases, nearly
47,071 of the unigenes were annotated, leaving 27,994 unigenes that
were not aligned to any database. The numbers and percentage of
unigenes annotated within the Non Redundant (NR), Nucleotide (NT),
Swiss-Prot, Kyoto Encyclopedia of Genes andGenomes (KEGG), Clusters
of Orthologous Group of proteins (COG), and gene ontology (GO) data-
bases were 44,205 (59%), 37,061 (49%), 28,419 (38%), 26,312 (35%),
17,441 (23%), and 32,228 (43%), respectively (Table 1). A total of
74.8% of the unigenes in previous EST libraries of E. ulmoideswere anno-
tated within the NR database [11], which is higher than that of our an-
notation. This result may be explained by the shorter unigenes
assembled using ESTs; shorter assembled unigenes were easier to
match with items in the database.

In the unigenes annotated in the NR database, the majority (39.4%)
matched proteins from Vitis vinifera, followed by those from
Lycopersicon esculentum (15.9%), Amygdalus persica (8.5%), Ricinus
communis (6.7%), Populus balsamifera subsp. Trichocarpa (6.0%), Fragaria



Fig. 1. Length distributions of all the assembled unigenes. X-axis: length distribution of all assembled unigenes, e.g., 300 indicates the length range ≥ 200 bp and b300 bp. Y-axis: numbers
of all unigenes in different length ranges.
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vesca subsp. vesca (3.2%), Glycinemax (2.7%), and other species (17.7%),
as shown in Fig. 2.

With annotations in the NR database, 32,228 unigenes were
assigned to GO categories with 5316 unique functional terms (Fig. 3).
From this analysis, 24,744, 25,402, and 24,231 unique unigenes were
assigned to the GO categories of biological processes, cellular compo-
nents, and molecular functions, respectively. Of all the unigenes
assigned GO categories, 16,830 unigenes were shared by the three cate-
gories, whereas 1236, 3490, and 2183 unigenes were uniquely assigned
to the GO categories of biological processes, cellular components, and
molecular functions, respectively. In the biological processes category,
the categories of cellular processes (20,098) and metabolic processes
(19,393) were the largest groups. The numbers of genes related to re-
production, reproductive processes, rhythmic processes, and signaling
were 3862, 3485, 229, and 2720, respectively. In the cellular component
category, most of the unigenes were related to the category of cells and
cell parts. In the molecular functions category, more unigenes were
assigned to the binding and catalytic activity category than to any
other category. In total, 54 unigenes were annotated with GO terms re-
lated to carpel development (GO:0048440), identity (GO:0010094),
and morphogenesis (GO:0048445); 146 unigenes were annotated
with GO terms related to stamen development (GO: 0048443), filament
development (GO: 0080086), and morphogenesis (GO: 0048448); and
891 unigenes were annotated with GO terms related to flower develop-
ment, morphogenesis, regulation, and flowering photoperiodism
(G-
O:0009909,00048439,0048573,0009910,0009911,00048578,0004857-
4,00048586, and 0009908).

COG is a database that classifies orthologous gene products. We
mapped all the unigenes to the COG database to predict the possible
functions and statistics and to elucidate gene function distribution char-
acteristics of species at the macro level. In total, 17,441 unigenes were
assigned to the COG database and classified into 25 COG categories
(Fig. 4). Of the 25 categories, six categories, i.e., general function
Table 1
The number of unigenes annotated to different databases.

NR NT Swiss-Prot KEGG COG GO All

44,205 37,061 28,419 26,312 17,441 32,228 47,071
prediction only (5551, 31.8%); transcription (2977, 17.1%); replication,
recombination and repair (2974, 17.1%); posttranslationalmodification,
protein turnover, chaperones (2263, 13.0%); signal transduction mech-
anisms (2239, 12.8%); and translation, ribosomal structure, and biogen-
esis (2130, 12.2%), contained N2000 unigenes each. Moreover, a total of
1929 unigenes were mapped to the carbohydrate transport andmetab-
olism category, of which 21, 20, and 35 unigeneswere annotated as gly-
cogen synthases (COG0297), 6-phosphofructokinases (COG0205), and
glyceraldehyde-3-phosphate dehydrogenases/erythrose-4-phosphate
dehydrogenases (COG0057), respectively. Of the 1072 unigenes
assigned to the energy production and conversion category, only two
unigenes (Unigene21954 and Unigene45295) were annotated as fuma-
rases (COG0114), whereas seven and 11 unigenes were annotated as
glycerol-3-phosphate dehydrogenases (COG0240) and phosphoenol-
pyruvate carboxykinases (ATP) (COG1866), respectively. The proteins
encoded by these genes are involved in basal metabolism.

KEGG is a database that is able to analyze gene products duringmet-
abolic processes and related gene functions in cellular processes. Using
the KEGG database, we studied the complex biological behaviors of
genes in more detail and obtained pathway annotations for unigenes.
In total, 26,312 unigenes were annotated in the KEGG database and
were assigned to 128 pathways. The top five pathways were metabolic
pathways (ko01100), biosynthesis of secondarymetabolites (ko01110),
plant-pathogen interaction (ko04626), plant hormone signal transduc-
tion (ko04075), and RNA transport (ko03013), consisting of 6114
(23.24%), 3073 (11.68%), 1677 (6.37%), 1187 (4.51%), and 975 (3.66%)
unigenes, respectively. Unigenes mapped to the plant hormone signal
transduction pathwaywere involved in the biosynthesis of auxins, cyto-
kinins, gibberellins, abscisic acid, ethylene, brassinosteroid, jasmonic
Fig. 2. Percent distribution of unigenes assigned to different species in the NR database.
39.4% indicates that 39.4% of the unigenes matched the proteins from Vistis vinifera.

Image of Fig. 1
Image of Fig. 2


Fig. 3. Percent and number distributions of unigenes assigned to the GO database. X-axis: GO categories. Y-axis: percentage (left) and number (right) of unigenes assigned to different GO
categories.
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acid, and salicylic acid, which are related to cell enlargement and plant
growth, cell division and shoot initiation, stem growth and induced ger-
mination, stomatal closure and seed dormancy, fruit ripening and se-
nescence, cell elongation and cell division, senescence and stress
response, and disease resistance, respectively. Sixty-one unigenes
were involved in the brassinosteroid biosynthesis pathway (ko00905).
These unigenes may be involved in the process of flowering.

3.3. Genes putatively related to flower development

All E. ulmoides individuals are dioecious. Male flowers are fascicled
without perianth and degenerated pistils, whereas female flowers are
solitary. We identified several unigenes that may be involved in floral
development (Table S1), including seven PHYA genes encoding phyto-
chrome A, 13 PHYB genes encoding phytochrome B, one CRY1 gene
encoding cryptochrome 1, two CRY2 genes encoding cryptochrome 2,
one FKF1 gene encoding flavin-binding kelch repeat F-box protein 1,
Fig. 4.Number distribution of unigenes assigned to theCOGdatabase. X-axis: COG functional cla
one ZTL2 gene encoding ZEITLUPE 2, two SPA genes encoding suppres-
sor of PHYA-105, six TOC1 genes encoding timing of cab expression 1/
pseudo-response regulator 1, three ELF3 genes encoding earlyflowering
3, five ELF4 genes encoding early flowering 4, 14 LHY genes encoding
late elongated hypocotyl, two GI genes encoding GIGANTEA, two CO
genes encoding CONSTANS, two FT genes encoding flowering locus T,
21 FLC genes encoding flowering locus C, six VIN3 genes encoding ver-
nalization insensitive 3, 15 FCA genes encoding flowering time control,
four LFY genes encoding leafy, 10 FRI genes encoding FRIGIDA, one
HOS1 gene encoding high expression of osmotically responsive protein
1, eight LUG genes encoding LEUNIG, and 20 SOC1 genes encoding sup-
pressor of overexpression of constans 1.

By comparing the unigenes that first assembled separately in male
and female flower buds, we found that only 15 of all the above-
mentioned unigenes, i.e., CL745.Contig1, 745.Contig2, and unigene9068
(PHYB); unigene11188 (ELF4); unigene4137 (FT); CL2716.Contig3
(VIN3); CL1895.Contig1 (FCA); unigene10446 (LFY); CL7732.Contig1
ssification. Y-axis: numbers of unigenes assigned to different COG functional classifications.

Image of Fig. 3
Image of Fig. 4
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and CL7732.Contig3 (FRI); unigene32289 (LUG); and CL5214.Contig1,
CL5214.Contig2, CL5214.Contig3, and CL8558.Contig3 (SOC1), had sig-
nificantly different expression levels in the two samples. PHYB acts in
a partially redundant manner with PHYD and PHYE, mediating the inhi-
bition of flowering by R light [23–25]. A previous study reported that
ELF4 from Arabidopsis thaliana is involved in photoperiod perception
and circadian regulation, promotes clock accuracy, and is required for
sustained rhythms in the absence of daily light/dark cycles [26]. FT pro-
motes the transition to reproductive development and flowering [27,
28]. Proteins encoded by VIN3 genes in A. thaliana function to collective-
ly repress differentmembers of the FLC gene family during the course of
vernalization [29]. The autonomous pathway component FCA is the
founding member of the thermosensory pathway [30]. Multiple alleles
of FCA exhibit insensitive flowering phenotypes to different ambient
temperatures in an FT-dependent manner [31]. LFY encodes a plant-
specific transcription factor that plays dual roles in determining floral
meristem identity and floral organ patterning via AP1 and other floral
homeotic genes [32]. In Arabidopsis, dominant alleles of FRI confer the
late flowering phenotype, which is reversed to the early flowering phe-
notype by vernalization [33]. LUG is a putative transcriptional corepres-
sor that regulates AGAMOUS expression during flower development
[34]. SOC1 is a flowering integrator that acts partially downstream of
FT [35].

3.4. SSR identification

SSR detection was carried out using MIcroSAtellite (MISA) software
with unigenes as the reference. In total, 24,346 SSRs were identified in
18,565 unigenes with 12,793 sequences suited for primer design and
4349 sequences containing more than one SSR. Only 1629 SSRs were
present in compound formation. The number of repeats ranged from
four to 23, and the number of different repeat unit sizes were 7432 for
mono-, 12,390 for di-, 3677 for tri, 162 for tetra-, 262 for penta-, and
423 for hexanucleotide repeats (Fig. 5). Di- and trinucleotide repeats
were the most types among all the repeats, consistent with results in
other angiosperms [36–38]. Most of the mononucleotide repeats had
12 or 13 repeats, whereas the majority of nucleotide repeats had six
Fig. 5. SSRs identified in the transcriptome of E. ulmoides. X-axis: motif types. Y-axis:
numbers of SSRs matched to different motif types.
repeats, most of the tri- and tetranucleotide repeats had five repeats,
the pentanucleotide repeats had four or five repeats, and the
hexanucleotide repeats only had four repeats. Most of themononucleo-
tide repeats were A/Tmotifs. The AG/CTmotifs included 74.6% of the di-
nucleotide repeats. The most frequent motifs of trinucleotide repeats
were AAG/CTT (31.5%).

Compared with the flower bud transcriptomes of E. ulmoides, only
8794 SSRs were identified in 7859 unigenes in the EST libraries of
E. ulmoides [11], indicating that the transcriptome sequenced by the
Hiseq system may contain more information than EST libraries.

3.5. SNP analysis

We also found the SNPs for each sample using all unigenes as refer-
ences. In total, 67,447 and 58,236 SNPs were identified in “SNJ” and
“BJC,” respectively. In “SNJ,” 44,466 SNPs were transitions, and 22,981
SNPs were transversions. In “BJC,” the numbers of transition and
transversion SNPs were 38,472 and 19,784, respectively. In both of
these samples, the majority of transition SNPs were A to G transitions,
andmost of the transversion SNPswere A to C transversions. Comparing
“SNJ”with “BJC,”we found that 17,171 SNPs were the same (with con-
sistent loci and SNP types), whereas 11,554 SNPs had only consistent
loci.

4. Conclusion

In summary, we analyzed the transcriptome of E. ulmoides using
Illumina sequencing-by-synthesis technology. After de novo assembly
and sequence annotation, we obtained 75,065 unigenes and identified
146 unigenes putatively related to the floral development of
E. ulmoides. In addition, we also identified 24,346 SSRs and detected
67,447 and 58,236 SNPs in “SNJ” and “BJC,” respectively. Notably, we
only sequenced one period of floral development; more samples from
different periods of development are needed to analyze the expression
profiles of genes related to floral development in order to identify key
genes and sex-related genes. Further analysis of these SSRs and SNPs
will provide useful resources for conservation genetics and functional
genomics research on E. ulmoides in the future.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.gdata.2016.07.001.
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