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A B S T R A C T   

Coronavirus disease 2019 (COVID-19) has caused more than 3 million deaths and infected more than 170 million 
individuals all over the world. Rapid identification of patients with COVID-19 is the key to control transmission 
and prevent depletion of hospitals. Several networks have been proposed to assist radiologists in diagnosing 
COVID-19 based on CT scans. However, CTs used in these studies are unavailable for other researchers to do 
deeper extensions due to privacy concerns. Furthermore, these networks are too heavy-weighted to satisfy the 
general trend applying on a computationally limited platform. In this paper, we aim to solve these two problems. 
Firstly, we establish an available dataset COVID-CTx, which contains 828 CT scans positive for COVID-19 across 
324 patient cases from three open access data repositories. To our knowledge, it has the largest number of 
publicly available COVID-19 positive cases compared to other public datasets. Secondly, we propose a light- 
weighted hybrid neural network: Depthwise Separable Dense Convolutional Network with Convolution Block 
Attention Module (AM-SdenseNet). AM-SdenseNet synergistically integrates Convolutional Block Attention 
Module with depthwise separable convolutions to learn powerful feature representations while reducing the 
parameters to overcome the overfitting problem. Through experiments, we demonstrate the superior perfor-
mance of our proposed AM-SdenseNet compared with several state-of-the-art baselines. The excellent perfor-
mance of AM-SdenseNet can improve the speed and accuracy of COVID-19 diagnosis, which is extremely useful 
to control the spreading of infection.   

1. Introduction 

Coronavirus disease 2019 (COVID-19), named SARS-CoV-2 by the 
International Committee on Taxonomy of Viruses (ICTV), is a highly 
infectious respiratory disease. More than 170 million confirmed COVID- 
19 cases and 3 million deaths have been reported in roughly 200 
different countries and territories, as of June 7 in 2021. Rapid identifi-
cation of patients with COVID-19 has been recommended by World 
Health Organization (WHO) to control transmission and prevent 
depletion of hospitals. Reverse transcription-polymerase chain reaction 
(RT-PCR) serves as the gold standard for COVID-19 diagnosis. However, 
the total positive rate of RT-PCR for throat swab samples was reported to 
be approximately 30%–60% at the initial presentation [1]. Additionally, 
it takes 4–6 h to provide results, which is much slower than the speeding 
of the COVID-19. As a result, some infected patients cannot be identified 
early and continue to infect others unintentionally. 

To mitigate the inefficiency of RT-PCR, chest computed tomography 

(CT) has been used to supplement RT-PCR testing of patients with sus-
pected COVID-19 [2]. Several studies [3,4] have shown that CT scan 
manifests clear radiological findings of COVID-19 cases such as 
ground-glass opacities and consolidations. And CT scans are promised as 
a more efficient testing tool in serving for COVID-19 diagnosis with 
higher sensitivity [5]. However, chest CT contains hundreds of slices, 
which takes a long time for specialists to diagnose. Time pressure, heavy 
workload, and lack of experienced radiologists result in challenges in the 
imaging-based analysis of COVID-19 [6]. Fortunately, Artificial Intelli-
gence (AI) has been widely used in the field of medical images, such as 
lung nodule [7], tuberculosis [8], breast cancer [9], tumor [10], etc. 
Rapidly developed AI-based automated CT image analysis tools can 
achieve high accuracy in the detection of Coronavirus positive patients. 
To alleviate the burden of medical professionals, there have been 
increasing efforts on developing computer-aided detection (CAD) sys-
tems to assist radiologists in diagnosing COVID-19 based on CT scans 
[11–20]. 
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The CAD systems for the detection of COVID-19 are mainly divided 
into two modules: segmentation and classification. Segmentation aims 
to segment lung regions where lesions are located, then the segmented 
regions could be further fed to a classification module for COVID-19 
detection. Segmentation is an essential step in image processing and 
analysis for the assessment and quantification of COVID-19. It delineates 
the regions of interest (ROIs), e.g., lung and infected regions, in the CT 
images. To segment ROIs in CT, U-Net [21], U-Net++ [22], and V-Net 
[23] are widely used. In the classification module, there are several 
studies aiming to separate COVID-19 patients from Normal subjects. 
ResNet [24] is the most widely used network for diagnosing COVID-19 
from CT scans [14–18]. Besides being based on a ResNet, some net-
works further combine with the attention mechanism and feature pyr-
amid network (FPN) [25] to focus on important features [14,16]. Given 
the problem of limited datasets, studies adopt strategies such as weak 
label [11], transfer learning [19], human-in-the-loop [13], and data 
augmentation [20] to improve the evaluation indicators of the CAD 
systems. Although these studies have achieved good results, there are 
still two major hurdles: (1) CT scans used in these studies are unavailable 
for public access and use due to privacy concerns. Consequently, these 
works are difficult to copy and adapt, which greatly hinders the research 
and development of deep learning methods; (2) These networks are too 
heavy-weighted to satisfy the general trend applying on a computa-
tionally limited platform. 

To address the first problem, we establish a publicly available dataset 
COVID-CTx. It is composed and modified by three open access data re-
positories: COVID-SIRM [26], COVID-Seg [27], and COVID19-CT [19]. 
To the best of our knowledge, COVID-CTx has the largest number of 
publicly available COVID-19 positive cases compared to other public 
datasets. All CT scans on these three datasets are confirmed by senior 
radiologists. For the second, we propose a light-weighted hybrid neural 
network: Depthwise Separable Dense Convolutional Network with 
Convolutional Block Attention Module (AM-SdenseNet). AM-SdenseNet 
uses a Dense Convolutional Network (DenseNet) [28] as the basic 
network. Compared with ResNet, DenseNet can better satisfy the general 
trend of application on a limited platform. At the same time, 
AM-SdenseNet synergistically applies Convolutional Block Attention 
Module (CBAM) [29] on DenseNet in each block with residual learning. 
This operation can greatly focus on important features and suppress 
unnecessary ones. In addition, we replace some regular convolutions in 
DenseNet with depthwise separable convolutions [30] to reduce training 
parameters while keeping network performance. 

The paper is organized as follows. Section 2 introduces related works 
regarding existing accessible COVID-19 datasets, COVID-19 diagnosis 
systems, depthwise separable convolution, and attention module. Sec-
tion 3 presents the COVID-CTx dataset, data preprocessing, and AM- 
SdenseNet architecture. In Section 4, we compare the performance of 
AM-SdenseNet with six state-of-the-art networks: MobileNet [31], 
InceptionV3 [32], ResNet50, VGG16 [33], DenseNet169, and Dense-
Net121. Finally, Section 5 concludes the paper and discusses future 
directions. 

2. Related works 

2.1. Existing accessible COVID-19 datasets 

Due to privacy issues, few data sets with massive CT scans on COVID- 
19 are available for public access and use until now. Existing larger data 
sets on COVID-19 are COVID-SIRM, COVID-Seg, and COVID19-CT. The 
Italian Society of Medical Radiology (SIRM) has publicly provided 100 
CT scans across 68 patient cases [26]. Each case in the COVID-SIRM 
provides detailed information of the lesions in the CT images. In addi-
tion, some cases are followed up and treated at intervals of about 4 days. 
COVID-Seg [27] contains 40 labeled COVID-19 CT scans. Left lung, right 
lung, and infections are labeled by two radiologists and verified by an 
experienced radiologist. The University of California constructs a 

publicly available COVID19-CT data set [19], which contains 349 CT 
scans that are positive for COVID-19 from 216 COVID-19 cases. All CTs 
were collected from public websites such as medRxiv, bioRxiv, journals, 
or papers related to COVID-19. Other existing data sets on COVID-19 are 
mainly X-ray images. For example, COVID-19 Radiography Database, 
generated by Chowdhury et al. [20], is comprised of 1200 COVID-19 
positive images and 1341 normal images. It is worth noting that the 
current public data sets still have a very limited number of images for the 
training and testing of models, and the quality of data sets is insufficient. 

2.2. COVID-19 diagnosis systems 

During the outbreak of COVID-19, there have been increasing efforts 
on COVID diagnosis systems to perform screening COVID-19 based on 
CT scans. Segmentation is an essential step in COVID-19 diagnosis sys-
tems to assess and quantify COVID-19. The popular segmentation net-
works for CT scans in COVID-19 applications include U-Net, U-Net++, 
and V-Net. The U-Net, a U-shape network, is a popular technique for 
segmenting lung regions in medical images. For example, Zheng et al. 
[11] obtain all CT lung masks through a pre-trained U-Net in COVID-19 
applications. Various U-Net, meanwhile, has been developed, reaching 
better segmentation results in COVID-19 image segmentation. Jin et al. 
[18] propose a two-stage pipeline for diagnosing COVID-19 in CT im-
ages, in which the whole lung is first detected by an efficient network 
based on U-Net++. The U-Net++ can greatly improve the performance 
of segmentation, as the network inserts a nested convolutional structure 
between the encoding and decoding path based on U-Net. In addition, 
CT provides high-quality 3D images for detecting COVID-19. Signifi-
cantly, V-Net is a 3D image segmentation approach, where volumetric 
convolutions were applied instead of processing the input volumes 
slice-wise. To fully utilize the spatial information of CT, Shan et al. [13] 
propose a 3D segmentation system VB-Net, which combines V-Net with 
the bottle-neck structure [24]. Obviously, all of these networks can 
achieve better performance of segmentation. However, their training is 
difficult without adequate labeled data. In COVID-19 CT segmentation, 
sufficient labeled data for segmentation tasks is often unavailable since 
manual delineation for lung regions is labor-intensive and 
time-consuming. 

Segmentation could be used to preprocess the CTs, and classification 
takes advantage of those segmentation results in the diagnosis. There are 
many studies aiming to separate COVID-19 patients from non-COVID-19 
subjects. For example, Jin et al. [15] establish a deep learning system for 
COVID-19 detection, which outperforms five radiologists in more chal-
lenging tasks at a speed of two orders of magnitude above them. It fully 
proves that CAD systems can assist radiologists to accelerate the speed of 
diagnosing COVID-19. ResNet is the most widely used network in CAD 
systems. For example, Xu et al. [14] propose a diagnostic model, based 
on a ResNet18, to classify normal, viral, and COVID-19 from CT scans. 
Furthermore, they add a location-attention mechanism to improve the 
overall accuracy, which reaches 86.7%. Li et al. [34] preprocess the 2D 
slices to extract lung regions using U-Net, and a ResNet50 model com-
bined with max-pooling for diagnosis. The model achieves results with a 
specificity of 96%, a sensitivity of 90%, and an AUC of 0.96 in identi-
fying COVID-19. Similarly, Jin et al. [18] propose a U-Net++ based 
segmentation model for locating lesions and a ResNet50 based classifi-
cation model for diagnosis. The specificity and sensitivity using the 
proposed U-Net++ and ResNet50 combined model are 92.2% and 
97.4%. 

Given the problem of limited datasets, He et al. [19] propose a 
self-supervision transfer learning method (Self-Trans). The network in-
tegrates contrastive self-supervised learning with transfer learning to 
learn powerful and unbiased feature representations for reducing 
over-fitting. The testing dataset shows an AUC of 0.94, even though the 
number of training CT scans is just a few hundred. Zheng et al. [11] 
propose a weakly-supervised network: 3D deep CNN (DeCoVNet), which 
can accurately predict the COVID-19 infectious probability in chest CT 
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volumes without labeled lesions for training. DeepPneumonia, proposed 
by Song et al. [16], uses a ResNet50 backbone with the FPN and 
attention module as the feature-extracting part. The network can 
distinguish the COVID-19 patients from others with an excellent AUC of 
99% and sensitivity of 93%. Additionally, those researches [11,19,20] 
all apply data augmentation to overcome the overfitting problem. 

In summary, the above approaches have been proposed for CT-based 
COVID-19 diagnosis with generally promising results. But most of the 
mentioned COVID-19 classification techniques were training on large 
datasets. CT scans used in these studies are unavailable for public access 
and use, which greatly hinders the research and development of deep 
learning methods. In addition, these networks are too heavy-weighted to 
satisfy the general trend applying on a computationally limited 
platform. 

2.3. Depthwise separable convolution 

To achieve higher accuracy, the network has become much deeper 
and more complicated [33]. However, the general trend has been to 
achieve the recognition tasks in a timely fashion on a computationally 
limited platform [31]. Depthwise separable convolutions, firstly pro-
posed by Sifre et al. [30], aim to reduce training parameters. The 
operation is to split the corresponding area and channel of the processed 
image. Later, Inception V1 and Inception V2 use a depthwise separable 
convolution as the first layer to lighten the network [35,36]. Howard 
et al. [31] introduce MobileNets based on depthwise separable convo-
lutions. This network is mostly used in mobile and embedded vision 
applications, largely due to its lightness. Jin et al. [37] and Wang et al. 
[38] also do related work aiming at reducing the size and computational 
cost of convolutional neural networks. Chollet et al. [39] present a novel 
architecture based on depthwise separable convolutions, named Xcep-
tion. It shows large gains on the JFT dataset [40]. 

2.4. Attention module 

It’s well known that attention plays a crucial role in human 
perception [41]. Presently, there have been several studies about 
attention mechanisms to improve the performance of CNNs. Wang et al. 
[40] propose an encoder-decoder style attention module: Residual 
Attention Network. The network not only performs well but is also 
robust to noisy inputs. But directly computing the 3d attention, this 
network has more computational and parameter overhead. Hu et al. 
[42] propose a Squeeze-and-Excitation module to exploit the 
inter-channel relationship. Although using a global average-pooled to 
compute channel-wise attention, they miss spatial attention. Woo et al. 
[43] introduce CBAM, which learns channel attention and spatial 
attention separately. For the qualitative analysis, the authors prove that 
CBAM outperforms other attention modules, comparing the accuracy 
improvement from others. Notably, the attention mechanism is reported 
as an efficient localization method in screening, which can be adopted in 
COVID-19 applications [14,44]. 

3. Material and methods 

Dataset plays a critical and essential role in deep learning models. 
However, few datasets with massive CT scans for COVID-19 are avail-
able for public access and use until now. To address this problem, we 
establish a publicly available dataset COVID-CTx. Though the largest of 
its kind, COVID-CTx still can’t meet the training of large networks. For 
this problem, we propose a light-weighted hybrid neural network AM- 
SdenseNet for combating overfitting. In the next subsections, we will 
introduce the COVID-CTx, data preprocessing, and AM-SdenseNet ar-
chitecture in turn. 

3.1. COVID-CTx dataset 

COVID-CTx contains 828 CT scans that are positive for COVID-19 

Fig. 1. Example CT images from the COVID-CTx dataset, which comprises 828 images across 324 patient cases from three open access data repositories: a). COVID- 
SIRM, b). COVID-Seg, c). COVID19-CT. 
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across 324 patient cases. The CT scans from the same patient are visually 
similar. Hence, our dataset has the largest number of publicly available 
COVID-19 positive cases and richer features about COVID-19 compared 

to other public datasets. To build the COVID-CTx, we collected positive 
CTs for COVID-19 from three open access data repositories: COVID- 
SIRM, COVID-Seg, and COVID19-CT. Our dataset contains 828 CT 

Fig. 2. Results achieved by three lung segmentation methods. a). Original CT; b). Lung achieved by K-means; c). Lung achieved by U-Net; d). Lung achieved by 
U-Net++. 

Fig. 3. The process of lung segmentation. a). Original CT; b). Contrast-enhanced CT; c). CT after k-means segmentation; d). CT after closing operation; e). Lung mask; 
f). Lung region. 
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scans positive about COVID-19, of which 100 CTs are from COVID- 
SIRM, 379 CTs are from COVID-Seg, and 349 CTs are from COVID19- 
CT. In addition, COVID-CTx also contains 1000 negative CT scans 
negative for COVID-19. Those CT scans, obtained from LUNA16 [45], 
are normal or containing lung nodules. Fig. 1 shows example CT images 
from COVID-CTx, of which a) is from COVID-SIRM, b) is from 
COVID-Seg, and c) is from COVID19-CT. 

3.2. Data preprocessing 

3.2.1. Lung segmentation 
Lung segmentation is an essential step in COVID-19 diagnosis sys-

tems to assess and quantify COVID-19. But the training of segmentation 
networks for CT scans in COVID-19 applications is difficult. Sufficient 
labeled data for segmentation tasks is often unavailable since manual 
delineation for lung regions is labor-intensive and time-consuming. 
Here, U-Net and U-Net++ are first trained from scratch on the 
LUNA16 and fine-tuned on the COVID-CTx, of which the lung masks are 
produced by us. In addition, we chose K-means clustering [46] to obtain 
lung regions due to its simple principle and easy implementation [47, 
48]. Fig. 2 shows results achieved by the above three lung segmentation 
methods. Obviously, K-means reaches a better segmentation result on 
COVID-19 image segmentation. This demonstrates the effectiveness of 
K-means, which is more suitable for the segmentation task with insuf-
ficient labeled data. Consequently, we segment lung regions by K-means 
clustering in this study. 

The process of lung segmentation is shown in Fig. 3, and the specific 

method is as follows.  

(1) The original CT scan is preprocessed to enhance the contrast.  
(2) We separate the foreground (opaque tissue) and background 

(transparent tissue, the lungs) in the image based on the K-means. 
(3) We use the morphological closing operation to eliminate the re-

sidual trachea.  
(4) The hole filling operation algorithm is used to fill the maximum 

connectivity area in the reverse closing image. Subsequently, the 
filling image subtracts the reverse closing image to get the lung 
mask.  

(5) The lung region is extracted by its multiplication with the original 
CT scan. 

3.2.2. Data augmentation 
Though the largest of its kind, COVID-CTx may still have the over- 

fitting problem for data-hungry deep learning models. Therefore, two 
different image augmentation techniques (horizontal mirror and vertical 
mirror) are utilized to generate COVID-19 training images, as shown in 
Fig. 4. The. 

horizontal and vertical mirrors used for image augmentation are 
done by mirroring the training images in the horizontal and vertical 
directions, respectively. Table 1 summarizes the number of images per 
class used for training, validation, and testing for each fold. The number 
of training samples increases from 1098 to 4392. 

Fig. 4. The methods of augmentation. a). Original CT; b). CT after horizontal mirror; c). CT after vertical mirror; d). CT after horizontal and vertical mirrors.  

Table 1 
Number of CTs per class before and after data augmentation.  

Dataset Total number Training without augmentation Training with augmentation 

Train Validation Test Train Validation Test 

COVID-CTx 1828 1098 365 365 4392 365 365  
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3.3. AM-SdenseNet architecture 

As shown in Fig. 5, AM-SdenseNet is mainly composed of three AM- 
Sdense blocks, two transition layers, and one classifier. The AM-Sdense 
blocks use a DenseNet as the basic network structure to extract image 
features. Simultaneously, we replace some regular convolutions in the 
DenseNet with depthwise separable convolutions to reduce training 
parameters while keeping network performance. In addition, we also 
apply CBAM on the DenseNet in each AM-Sdense block with residual 
learning. This operation aims to improve the representation of objective 

lesion features and suppress the less relevant ones. The layers between 
two contiguous dense blocks are transition layers, which do convolution 
and pooling. It consists of batch normalization (BN) [36] layer and 1 × 1 
convolution layer followed by 2 × 2 average pooling layer. The output of 
the last block is fed to the classifier for the final prediction of lung 
segmentation. The classifier contains a global average pooling layer, a 
dropout layer with probability p = 0.5, and a dense layer with the sig-
moid activation function. We now detail the key components of 
AM-Sdense blocks. 

Fig. 5. AM-SdenseNet architecture.  

Fig. 6. A 6-layer dense block with a growth rate of k.  

Fig. 7. Depthwise separable convolution.  
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3.3.1. a.m.-sdense block 
In our network, the number of layers in the three AM-Sdense blocks 

are 6, 12, 24, respectively. Besides, the growth rate of our network is k =
24 and the compression of our network is θ = 1. A 6-layer dense block 
with a growth rate of k = 24 is shown in Fig. 6. Our proposed network 
takes all preceding feature-maps with direct connections as input. 
Consequently, the channel count used for the input of the following 
layer increases with the growth rate k. The Xth

i layer can be received in 
Equation (1). 

Xi = Hi(Cat[X0;X1;⋯ ;Xi− 1]) (1)  

Where (X0, X1, …, Xi− 1) are the feature-maps produced in layers (0, 1, 
…, i − 1). Cat(⋅) means to concatenate all input in the channel axis. Hi(⋅) 
means four consecutive operations: BN, rectified linear unit (ReLU) 
[49], convolution (Conv), and depthwise separable convolution (Sep-
Conv). The version of Hi is BN-ReLU-Conv(1 × 1)-BN-ReLU-SepConv(3 
× 3). 

3.3.2. Depthwise separable convolution 
Many networks show large gains by using depthwise separable 

convolutions [35,36,39]. Therefore, we replace some regular convolu-
tions in DenseNet with depthwise separable convolutions to reduce the 
complexity of the model as much as possible. A depthwise separable 
convolution consists of two parts: a depthwise convolution and a 
pointwise convolution. The depth-wise convolution is a spatial convo-
lution performed independently over every channel of input. And the 
pointwise convolution is a regular convolution with 1 × 1 windows. It 
projects the channels computed by the depthwise convolution into a new 
channel space. Fig. 7 shows the schematic diagram. 

The specific calculation formulas of the two convolutions are as 
follows. 

Conv(W, y)(i,j) =
∑K,L,M

k,l,m
W(k, l,m)⋅y(i+ k, j+ l,m) (2)  

SepConv
(
Wp,Wd, y

)

(i,j) = PConv(i, j)(i,j)
(
Wp,DConv(i,j)(Wd, y)

)

=
∑M

m
Wp⋅

(
∑K,L

k,l
Wd(k, l)⋅y(i + k, j + l)

)

(3)  

Where y is an image, and (i, j) represents pixels. The W(k, l, m) is the 
kernel with size (K, L, M). Wp and Wd are the parameters of each sepa-
rable convolution. 

The parameters of a regular convolution and a depthwise separable 
convolution are shown in Table 2. As can be seen above, the numbers of 
parameters for a regular convolution and a depthwise separable 
convolution are M × K × L and M + K × L, respectively. When M is much 
bigger than 1(as is usually the case), the parameters of separable 
convolution are much smaller than those of a regular convolution. In this 
paper, we replace some regular convolutions in DenseNet with depth-
wise separable convolutions. This operation reduces network parame-
ters by 17.9%. 

3.3.3. CBAM 
Considering the limited data and computationally limited platform, 

we apply the CBAM on DenseNet to focus on important features and 
suppress the less relevant ones. The overview of CBAM is shown in 
Fig. 8. The channel attention module exploits the inter-channel rela-
tionship of features. And the spatial attention module subsequently 
generates a spatial attention map by utilizing the inter-spatial relation-
ship of features. Given the input feature map F ∈ RH×W×C, the channel 
attention module uses a global average pooling and a global max pooling 
to extract the average-pooled features FC

Avg and the max-pooled 
featuresFC

Max respectively. Both features are passed through a multi- 
layer perceptron (MLP), and then summed element-by-element to get 
a channel attention map Mc(F) ∈ 1 × 1 × C. The channel attention map 
Mc(F) and input feature map F are multiplied element-wise to exploits 
the inter-channel relationship of the features map F. So that the channel 
feature map FC ∈ RH×W×C is being generated as Equation (4). 

FC = MC(F) ⊗ F
= σ(M(FC

Max) + M(FC
Avg)) ⊗ F

(4)  

Where σ(⋅) denotes a sigmoid function and ⊗ denotes element-wise 
multiplication. 

In the spatial attention module, the average pooling and max pooling 
along the channel axis are used to extract two feature maps FS

Avg and 
FS

Max. Subsequently, two feature maps concatenated in the channel axis 
are forward to a convolution layer to produce a spatial attention map 
Ms(F) ∈ H × W × 1. The channel attention map Ms(F) and input feature 
map FC are multiplied element-wise to exploits the inter-spatial rela-
tionship of the features map FC. Finally, the refined feature map FCS ∈ H 
× W × C is computed as Equation (5). 

FCS = MS(FC) ⊗ FC

= σ(Conv(Cat
[
FS

Max;F
S
Avg)) ⊗ FC

(5) 

Table 2 
Parameter count comparison across convolution types.  

Convolution type Parameters 

Regular M × K × L 
Depthwise Separable M + K × L  

Fig. 8. The overview of CBAM.  
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Where Conv(⋅) represents a convolution operation with a filter size of 7 
× 7. 

In our research, we apply CBAM on DenseNet with residual learning, 
as shown in Equation (6). 

H(x) = (1+FCS(x)) ⊗ D(x) (6)  

Where H(x) is the output of the AM-Sdense block, x is the input of CBAM 
and dense block. FCS(x) is the output of CBAM. And D(x) is the output of 
the dense block. 

It is worth noting that residual learning can greatly avoid the prob-
lem of interference by the attention mechanism. Even when the CBAM 
output FCS(x) is 0, H(x) still retains main features in D(x). As clearly seen 
from Fig. 9, CBAM can greatly focus on lesion features in FCS(x). 

Subsequently, lesions in H(x) perform more prominent than those in D 
(x). 

3.3.4. The details of AM-SdenseNet architecture 
When dataset is limited, conventional shallow CNN models produce 

better results as compared to deeper models [50]. Therefore, 
AM-SdenseNet only has three dense blocks. The number of layers in the 
three AM-Sdense blocks are 6, 12, 24, respectively. In addition, the 
growth rate for our networks is k = 24 and the compression for our 
network is θ = 1. AM-SdenseNet takes the lung regions as the input 
images with size 512 × 512 × 3. Before the data enters the first 
AM-Sdense block, a convolution layer and a max pooling layer with 48 
output channels are performed on the input images. In addition, we use 
1 × 1 convolution followed by 2 × 2 average pooling between two 
contiguous dense blocks to change feature-map sizes. At the end of the 
thirdly dense block, a global average pooling is performed and then a 
dropout layer with probability p = 0.5 is attached. Finally, a dense layer 
with the sigmoid activation function directly outputs the probabilities of 
being COVID-positive and COVID-negative. Table 3 shows the details of 
AM-SdenseNet architecture, where each “conv” layer corresponds to the 
sequence BN-ReLU-Conv and “sconv” corresponds to the sequence 
BN-ReLU-SepConv. 

4. Experiments and discussions 

We empirically demonstrate the effectiveness of AM-SdenseNet on 
the COVID-19 detection and compare it with state-of-the-art architec-
tures, such as DenseNet and its variants. In the following subsections, we 
will introduce experimental settings, the influence of CBAM and 
depthwise separable convolution on the AM-SdenseNet, and compari-
sons between our approach with several state-of-the-art baselines on the 
COVID-19 classification task. 

4.1. Experimental settings 

Our COVID-CTx is used in all approaches. Besides COVID-CTx, we 
also evaluate seven networks trained on COVID-19 Radiology Database. 
All images are resized to 512 × 512 × 3. The radio of training set, 
validation set, and test set is 0.6 : 0.2: 0.2. It is worth noting that each 
patient belongs to a single set. BN is used through all models, and binary 
cross-entropy serves as the loss function. The optimizer is Adam [51] 
with an initial learning rate of 5e − 5 and a weight decay of 1e − 7. The 
models are implemented in Keras and trained with Tesla V100. All 

Fig. 9. The diagram of residual learning method.  

Table 3 
The parameters of AM-SdenseNet architecture.  

layers Output 
size 

AM-SdenseNet 

Convolution 256 × 256 7 × 7 conv, s = 2 
Pooling 128 × 128 3 × 3 maxpool, s = 2 
AM-Sdense Block 

1 
128 × 128 

[
1 × 1⋅conv
3 × 3⋅sconv

]

× 6  

Transition 1 128 × 128 1 × 1 conv  
64 × 64 2 × 2 avgpool, s = 2 

AM-Sdense Block 
2 

64 × 64 
[

1 × 1⋅conv
3 × 3⋅sconv

]

× 12  

Transition 2 64 × 64 1 × 1 conv  
32 × 32 2 × 2 avgpool, s = 2 

AM-Sdense Block 
3 

32 × 32 
[

1 × 1⋅conv
3 × 3⋅sconv

]

× 24  

Classification 1 × 1 global average pool dropout, p = 0.5 Dense, 
sigmoid  

Table 4 
Evaluation metrics used in COVID-19 detection.  

Metrics Equations Notes 

Accuracy ACC = (TP + TN)/(TP + TN + FP 
+ FN)  

Precision PPV = TP/(TP + FP) Positive Predicted Value (PPV) 
Recall SE = TP/(TP + FN) True Positive Rate (TPR) or 

Sensitivity 
F1-score F1 = 2TP/(2 TP + FP + FN) Harmonic mean of Precision and 

Recall  
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Table 5 
Metrics for three networks with and without augmentation.  

Schemes Models Accuracy (%) Precision (%) Recall (%) F1 (%) Parameters(M) 

Without augmentation denseNet 96.71 97.40 95.89 96.52 3.44 
AM-denseNet 97.53 97.73 97.15 97.42 4.12 
AM-SdenseNet 98.36 98.19 98.40 98.29 3.38 

With augmentation denseNet 97.21 97.60 97.24 97.41 3.44 
AM-denseNet 97.55 97.29 97.60 97.44 4.12 
AM-SdenseNet 99.18 99.32 98.97 99.14 3.38  

Fig. 10. Comparison of the ROC curve for COVID-19 classification using CNN based models without a) and with b) image augmentation.  

Fig. 11. Confusion matrices for three models with and without data augmentation.  
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models are trained with 40 epochs and a mini-batch size of 16. We 
evaluate different networks using four metrics: accuracy, precision, 
recall, and F1-score, which are shown in Table 4. Where TP and TN 
mean true positive and negative parameters, respectively. FP and FN are 
false positive and false negative values respectively. 3-Folds 
cross-validation is applied by all approaches. 

4.2. Evaluation of two modules 

To demonstrate the efficacy of AM-SdenseNet and investigate the 
effects of CBAM and depthwise separable convolution, we first experi-
ment on the denseNet (initial network), AM-denseNet (combined with 
CBAM), and AM-SdenseNet. The comparative performance for three 
CNNs for COVID-19 classification problem with and without augmen-
tation is shown in Table 5 and comparative AUC curves are shown in 
Fig. 10. Additionally, we also built the confusion matrices for three 
models, as shown in Fig. 11. 

As shown in Table 5, three models with augmentation all show some 
increase in four performance metrics. It proves that the benefits of 
augmentation are highly significant when the data set is limited. 
Comparing denseNet with AM-denseNet, we can see that the network 
combined with CBAM yields higher classification performance. 
Comparing AM-denseNet with AM-SdenseNet, depthwise separable 
convolution reduces network parameters by 17.9% and improves pre-
cision by 2.03% at the same time. We empirically demonstrate depth-
wise separable convolution can reduce training parameters while 
keeping network performance. In summary, the performance of AM- 
SdenseNet benefits a lot from CBAM and depthwise separable convo-
lution. Trained with augmented images, AM-SdenseNet produces the 
highest accuracy of 99.18%, precision of 99.32%, recall of 98.97%, and 
F1 score of 99.14% with the least parameters 3.38 M. Fig. 10 shows AM- 
SdenseNet achieves the best curve through data augmentation. 

According to the confusion matrices presented in Fig. 11, AM-SdenseNet 
can classify the Normal class with 0 misclassifications and classify the 
COVID-19 class with 3 misclassifications. 

4.3. Comparison of seven models 

Few data sets with massive CT scans on COVID-19 are available for 
public access and use until now due to privacy concerns. Hence, to 
illustrate the effectiveness of AM-SdenseNet in COVID-19 diagnosis, we 
separately investigate the performance of networks trained on COVID- 
CTx and COVID-19 Radiography Database with different backbones, 
including MobileNet, InceptionV3, ResNet50, VGG16, DenseNet169, 
DenseNet121, and AM-SdenseNet. 

Table 6 shows the metrics for seven networks trained on COVID-CTx 
and COVID-19 Radiography Database. Trained on COVID-CTx, Dense-
Net169 and VGG16 present a better performance than InceptionV3 and 
ResNet50 with fewer parameters. What’s more, DenseNet121 out-
performs DenseNet169 on the COVID-19 classification task, achieving 
higher accuracy and precision. This significantly proves that conven-
tional shallow CNN models produce better results as compared to deeper 
models when the data set is limited. But the network is too simple to 
extract features well. For instance, MobileNet lacks stronger feature 
representation learning capabilities, so as to produce low classification 
performance. Compared with MobileNet, DenseNet can strengthen 
feature propagation and substantially reduce the number of parameters. 
The performance benefits a lot from dense connections. For example, 
DenseNet121 and DenseNet169 achieve good performance on the 
COVID-19 classification. AM-SdenseNet, however, has a much smaller 
number of parameters but the performance is better than deeper net-
works such as DenseNet121 and DenseNet169. The reason is that large- 
sized networks are more prone to over-fitting, especially considering 
that our data set is fairly small. Under such circumstances, CBAM and 

Table 6 
Metrics for seven networks trained on COVID-CTx and COVID-19 Radiography Database.  

Data sets Models Accuracy (%) Precision (%) Recall (%) F1 (%) Parameters(M) 

COVID-CTx MobileNet 92.05 93.19 90.53 91.49 3.23 
InceptionV3 94.79 95.80 93.61 94.46 21.80 
ResNet50 95.07 95.19 94.52 94.83 24.97 
VGG16 97.26 97.66 96.69 97.12 14.72 
DenseNet169 97.53 97.38 97.49 97.43 12.64 
DenseNet121 98.08 97.85 98.17 98.00 7.04 
AM-SdenseNet 99.18 99.32 98.97 99.14 3.38 

COVID-19 Radiography Database MobileNet 94.09 93.35 92.26 92.86 3.23 
InceptionV3 97.24 95.25 96.86 96.23 21.80 
ResNet50 96.44 95.06 94.85 95.25 24.97 
VGG16 97.05 97.35 96.35 96.92 14.72 
DenseNet169 98.03 98.45 97.59 98.03 12.64 
DenseNet121 97.62 97.32 96.01 96.84 7.04 
AM-SdenseNet 98.62 98.66 97.56 98.33 3.38  

Fig. 12. Comparisons of the ROC curve for COVID-19 classification on seven different CNNs.  
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depthwise separable convolution have a better chance to play their 
value. According to the confusion matrices presented in Figs. 11 and 13, 
AM-SdenseNet presents the highest radio of classifying the COVID-19 
class and the Normal class. Other models have achieved good perfor-
mance in the classification of the Normal class, but their performance in 
the classification of COVID-19 is not good enough. 

Compared with CT, X-ray is more easily accessible around the world. 
However, due to the ribs projected onto soft tissues in 2D and thus 
confounding image contrast, the classification of X-ray images is even 
more challenging. Trained on the COVID-19 Radiography Database, 
AM-SdenseNet reaches the best results with an accuracy of 98.62%. It is 
confirmed that AM-SdenseNet is universal in COVID-19 diagnosis. In 

Fig. 12, AM-SdenseNet also achieves the best curve on the COVID-19 
classification task. Through the above experiments, AM-SdenseNet 
achieves the best performance on the COVID-19 classification task 
compared to other models. Such experimental results not only illustrate 
the effectiveness of COVID-CTx, but also provide concrete evidence that 
AM-SdenseNet has stronger capabilities to improve the speed and ac-
curacy of COVID-19 diagnosis. 

4.4. Comparison with the latest methods 

The comparison of AM-SdenseNet with the latest approaches for 
COVID-19 classification is presented in this section. Table 7 shows that 
only limited COVID-19 images are used in most of these approaches. 
Given the problem of insufficient samples, studies adopt models such as 
DenseNet, ResNet, and ensemble networks to combat over-fitting. While 
considering the performance metrics in Table 7, our approach out-
performs the considered state-of-the-art approaches, achieving the best 
classification performance from CT scan and chest X-ray images, 
respectively. It is further confirmed that AM-SdenseNet is superior to 
other algorithms in COVID-19 diagnosis and useful to control the 
spreading of infection. 

5. Conclusions and future works 

In our research, we aim to develop a sample and efficient CAD system 
to diagnose COVID-19 from CT scans. To accelerate the open study in 
this area, we establish a publicly available data set COVID-CTx. To our 
knowledge, it has the richest features about COVID-19 compared to 
other public data sets to date. Although the largest informative, it still 
has a risk of overfitting for data-hungry deep learning models. For this 

Fig. 13. Confusion matrices for six models.  

Table 7 
Related studies with medical images for COVID-19 diagnosis.  

Model Modality COVID- 
19 

Open- 
source 

Parameters 
(M) 

Accuracy 
(%) 

DeCoVNet [11] CT 313 
cases 

No – 90.01 

DSAE [52] CT 317 
cases 

No – 97.14 

AM-SdenseNet CT 324 
cases 

Yes 3.38 99.18 

MobileNetV2 +
InceptionV3 
[50] 

X-ray 1000 
images 

Yes 28.50 98.45 

Covid-ResNet 
[53] 

X-ray 1200 
images 

Yes 25.60 96.23 

AM-SdenseNet X-ray 1200 
images 

Yes 3.38 98.62  
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problem, we propose a light-weighted hybrid neural network: AM- 
SdenseNet. The network synergistically applies CBAM on DenseNet in 
each block with residual learning, which can greatly improve the rep-
resentation of objective lesion features and suppress the less relevant 
ones. In addition, we replace some regular convolutions in DenseNet 
with depthwise separable convolutions to reduce training parameters 
while keeping network performance. Through experiments, it has been 
proved that AM-SdenseNet can greatly improve the speed and accuracy 
of COVID-19 diagnosis, which is extremely useful to control the 
spreading of infection. 

Though the largest of its kind, COVID-CTx still can’t meet the 
training of large networks, which need a larger dataset. However, deep 
learning with small samples is still an important research direction in the 
future. Unsupervised learning methods such as stack auto-encoder [54] 
and restricted boltzmann machine [55] can be used for reference. 
Considering the actual clinical need, the CAD system can be combined 
with the hospital’s imaging system and electronic medical records to 
achieve the follow-up treatment of patients in the future. 
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