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Abstract The toxicity and low success of current treatments
for Leishmaniosis determines the search of new peptide drugs
and/or molecular targets in Leishmania pathogen species
(L. infantum and L. major). For example, Ribonucleases
(RNases) are enzymes relevant to several biologic processes;
then, theoretical and experimental study of the molecular
diversity of Peptide Mass Fingerprints (PMFs) of RNases is
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useful for drug design. This study introduces a methodology
that combines QSAR models, 2D-Electrophoresis (2D-E),
MALDI-TOF Mass Spectroscopy (MS), BLAST alignment,
and Molecular Dynamics (MD) to explore PMFs of RNases.
We illustrate this approach by investigating for the first time
the PMFs of a new protein of L. infantum. Here we report and
compare new versus old predictive models for RNases based
on Topological Indices (TIs) of Markov Pseudo-Folding Lat-
tices. These group of indices called Pseudo-folding Lattice
2D-TIs include: Spectral moments πk(x,y), Mean Electro-
static potentials ξk(x,y), and Entropy measures θk(x,y). The
accuracy of the models (training/cross-validation) was as fol-
lows: ξk(x,y)-model (96.0%/91.7%) > πk(x,y)-model (84.7/

83.3) > θk(x,y)-model (66.0/66.7). We also carried out a 2D-
E analysis of biological samples of L. infantum promastig-
otes focusing on a 2D-E gel spot of one unknown protein
with M < 20, 100 and pI < 7. MASCOT search identified 20
proteins with Mowse score >30, but not one >52 (thres-
hold value), the higher value of 42 was for a probable
DNA-directed RNA polymerase. However, we determined
experimentally the sequence of more than 140 peptides. We
used QSAR models to predict RNase scores for these pep-
tides and BLAST alignment to confirm some results. We
also calculated 3D-folding TIs based on MD experiments
and compared 2D versus 3D-TIs on molecular phylogenetic
analysis of the molecular diversity of these peptides. This
combined strategy may be of interest in drug development or
target identification.

Keywords QSAR · Topological indices · Markov models ·
Protein folding · HP Lattice model · Ribonucleases ·
Leishmania · MALDI-TOF Mass Spectroscopy ·
2D-Electrophoresis · Sequence alignment · Molecular
dynamics
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Abbreviations
HP Hydrophobicity and polarity
RNases Ribonucleases
QSAR Quantitative Structure-Activity Relationships
dsRNase Double-strand-specific Ribonuclease
snRNAs Small nucleolar RNA
LDA Linear Discriminant Analysis
ORF Open reading frame
MD Molecular Dynamics
MCM Markov Chain Model
2DE 2D Electrophoresis
MS Mass Spectroscopy

Introduction

Ribonucleases (RNases) are enzymes that usually make stag-
gered cuts in both strands of a double helical RNA, although
in some cases they cleave once in a single-stranded bulge in
the helix. This fact becomes the exploration of the molecular
diversity of RNases (or their peptide fragments that retain
RNase activity) as an interesting source to search drug or
drug-target candidates for drug development. For instance,
Kimberly and Rosenberg [1] have recently reviewed and
discussed the molecular diversity of the RNase A super-fam-
ily that includes an extensive network of distinct and diver-
gent gene lineages. Although all RNases of this super-family
share invariant structural and catalytic elements and some
degree of enzymatic activity, the primary sequences have
diverged significantly, ostensibly to promote novel functions.
The authors reviewed the literature on the evolution and biol-
ogy of the RNase A lineages that have been characterized,
specifically as involved in host defense including: (1) RNases
2 and RNases 3, also known as the eosinophil ribonucle-
ases, which are rapidly evolving cationic proteins released
from eosinophilic leukocytes, (2) RNase 7, an anti-pathogen
ribonuclease identified in human skin, and (3) RNase 5, also
known as angiogenin, another rapidly evolving RNase known
to promote blood vessel growth with recently discovered
antibacterial activity. Interestingly, some of the characterized
anti-pathogen activities do not depend on RNase activity per
se. The authors also discussed the ways in which the anti-
pathogen activities characterized in vitro might translate into
experimental confirmation in vivo. Then, they considered the
possibility that other RNases, such as the dimeric bovine sem-
inal RNase and the frog oocyte RNase, may have host defense
functions and therapeutic value that remain unexplored. This
therapeutic value was demonstrated by Onconase an RNase
derived from the frog (Rana pipiens). However, this is the
first and only RNase currently evaluated in clinical trials
[2].

Conjugation or fusion of RNases to tumor-specific anti-
bodies is a promising approach to further boost tumor cell
killing of these compounds. In addition, Dicer and Drosha are

type III RNases responsible for the generation of short inter-
fering RNAs (siRNAs) from long double-stranded RNAs
during RNA interference (RNAi). It involves both RNase pro-
teins in several important biological processes with high bio-
logical and molecular diversity. For instance, the function of
Dicer on the vascular system regulating the embryonic angio-
genesis probably by processing miRNAs, which regulates the
expression levels of some critical angiogenic regulators in the
cell [3]. The cellular processing of shRNAs shares common
features with the biogenesis of naturally occurring miRNA,
such as the cleavage by nuclear RNase Drosha, the translo-
cation from the nucleus, processing by a cytoplasmic RNase
Dicer, and the incorporation into the RNA-induced silencing
complex (RISC). Each step has a crucial influence on the effi-
ciency of RNAi and their consideration should be a part of a
standard experimental design. The possible use of RNAi in
the treatment of spinocerebellar ataxia or amyotrophic lateral
sclerosis, with its advantages and pitfalls and possible exten-
sions to other diseases has been discussed before [4]. More
recently, a new RNase with tobacco mosaic virus inhibition
was isolated and purified from Bacillus cereus ZH14. The
inhibitory activity of the RNase in the purification process
against tobacco mosaic virus was tested, and the percentage
inhibition of the purified RNase (48 U/mL) reached 90% [5].
All the aspects above-mentioned becomes the isolation and
prediction of new RNases (or peptides with RNase activity)
a goal of the major importance for drug development and/or
drug-target prediction.

One possibility to accomplish the study of molecular diver-
sity is the use of proteomics techniques. For instance, some
authors often use a combination of 2D-Electrophoresis
(2D-E) and Mass Spectroscopy (MS) to isolate and charac-
terize new sequences from biological samples [6]. Obtain-
ing the peptide mass fingerprint (PMF) of a protein is a
very useful procedure in this sense [7] and also for clini-
cal purposes [8,9]. In these cases, we employ informatics
tools, such as Sequest or MASCOT, to have the MS out-
comes for some of the more important peptides of the more
similar proteins [10,11]. It means that, for instance, MAS-
COT may provides a collection of MS signals and the corre-
sponding sequence of peptides presented in known proteins
matching with our MS input. In order to rank and select the
best protein/peptide candidates, MASCOT uses the Mowse
score [12]. If a template protein in the database has a high
Mowse score (>52), this protein has a PMF very similar to
the PMF of our query proteins, and we can detect a high
sequence homology and perform the function annotation.
However, there is still another situation that often appears
in proteome research and do not coincide exactly with the
two situations mentioned previously. We refer to this case,
when you identify a new protein, perform the MS analy-
sis of PMF, introduce it in MASCOT (or other MS and
sequence database), and the software identify some template
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candidates with an important Mowse score that is not suffi-
ciently high to accurately annotate the query protein (>40). A
previous study has reported an alternative to Mowse scoring
with MASCOT and discussed the limits of accurate scoring
[13]. Nevertheless, if this kind of situation persists you have
neither the sequence of the query protein nor the sequence
of a template protein with high homology but you have the
PMFs of both the query and the template. We call this situa-
tion here as: the query sequence missing and Low-Mowse
scoring case. Independently from the possibility of func-
tion annotation of Low-Mowse proteins this kind of PMFs
are, in our opinion, ideal sources to fish interesting pep-
tides with bioinformatics and/or data mining computational
methods.

Many studies have indicated that computational model-
ing and various automated prediction methods developed
recently [14], such as structural bioinformatics [15,16],
molecular docking [17–19], molecular packing [20,21], phar-
macophore modelling [22,23], Monte Carlo simulated
annealing approach [24], diffusion-controlled reaction sim-
ulation [25], identification of membrane proteins and their
types [26], identification of enzymes and their functional
classes [27], identification of GPCR and their types [28,29],
identification of proteases and their types [30,31], protein
cleavage site prediction [32–34], and signal peptide predic-
tion [35,36] can timely provide very useful information and
insights for both basic research and drug design.

In general, the bioinformatics approaches used to anno-
tate biological functions of nucleic acids and proteins, predict
protein secondary structure, and exploring molecular diver-
sity are based on sequence alignment procedures
[37–40]. However, it has been noted that such procedures
perform poorly in cases of low sequence homology between
the query and template sequences deposited in the data base.
Alignment techniques are also useless if there is a high query-
template homology where we do not know the function of the
template sequence deposited in the database [41]. One alter-
native is the application of alignment-free Machine Learn-
ing methods to predict protein functional class and explore
molecular diversity based on structural parameters indepen-
dently of sequence–sequence similarity [42–46]. For instance,
the so-called pseudo-amino acid (PseAA) composition or
PseAAC indices introduced by Chou to improve the pre-
diction quality for protein subcellular localization and mem-
brane protein type [47], as well as for enzyme functional class
irrespective of sequence similarity [48]. The PseAA compo-
sition can be used to represent a protein sequence with a
discrete model without completely losing its sequence-order
information. Ever since the concept of Chou’s PseAA com-
position was introduced, a variety of PseAAC approaches
have been stimulated for enhancing the prediction quality of
different protein features [30,49–57].

Using graphic approaches to study biological systems can
also provide useful insights, as indicated by many previous
studies on a series of important biological topics, such as
enzyme-catalyzed reactions [58–64], protein folding kinetics
[65], inhibition kinetics of processive nucleic acid polymer-
ases, and nucleases [66–68], analysis of codon usage [69,70],
and base frequencies in the anti-sense strands [71]. More-
over, graphical methods have been introduced for QSAR
study [72–74] as well as utilized to deal with complicated
network systems [75,76]. Recently, the “cellular automaton
image” [77,78] has also been applied to study hepatitis B viral
infections [79], HBV virus gene missense mutation [80], and
visual analysis of SARS-CoV [8,9], as well as representing
complicated biological sequences [81] and helping to iden-
tify protein attributes [29,82,83].

Authors such as Randic, Nandy, Liao, and others have
introduced 2D or higher dimension graph representations
of sequences prior to the calculation of numerical param-
eters, sometimes called Topological Indices (TIs). This con-
stitutes an important step in order to uncover useful higher-
order information not encoded by 1D sequence parameters
[84–97]. Finally, these TIs or other type of parameters may
be used as inputs to develop Quantitative Structure–Activ-
ity Relationship (QSAR) models in order to predict protein
function and explore protein molecular diversity [98–101].
The idea behind this type of QSAR-like approach to protein
molecular diversity is essentially the same reported by other
authors on low-weight molecules QSAR/QSPR study, e.g.,
the important works of Roy et al. [101–108]. In fact, QSAR
is one of the more important tools to explore molecular diver-
sity nowadays [109–119].

In particular, for the case of proteins, the idea of describ-
ing them as networks is very interesting and has important
advantages over computationally expensive methods (see,
for instance, the interesting studies of Krishnan, Zibilut, and
Giuliani et al. [120–125]). Specifically, different computa-
tional schemes have used charge and Hydrophobicity pat-
terning along sequence to predict folding and mechanism
and aggregation of proteins, Zibilut, and Giuliani et al. in
proteome research [126]. Recently, our group have intro-
duced Hydrophobicity–Polarity (HP) 2D Cartesian or lattice-
like network representations for proteins [127]. We can use
Markov Chains theory in order to calculate TIs of these lat-
tices, which allow us to numerically encode higher-order
sequence information. The method consists of the follow-
ing steps, which can be applied to many different problems
and have been revised in recent reviews [98,99,128]. First,
we derived the Lattice-like representations (also called maps
or graphs) for protein sequences. Next, we calculated the TIs
values to characterize the protein sequence. Finally, we use
these pseudo-folding TIs as inputs for QSAR or Clustering
algorithms [95].
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On the other hand, Molecular Dynamics (MD) of pep-
tides and proteins is central for drug and target discovery.
Since, the pioneering article entitled “The Biological Func-
tions of Low-Frequency Phonons” [129] was published in
1977, a series of investigations into biomacromolecules by
means of dynamic avenues have been stimulated. It has been
suggested through these studies that low-frequency (or tera-
hertz frequency) collective motions do exist in proteins and
DNA that hold a very high potential to reveal the profound
dynamic mechanisms of many marvelous biological func-
tions in biological systems (see, e.g., [130–143] and a com-
prehensive review [144]). Such inferences have been later
observed by NMR [145], and applied in medical treatments
[146,147]. In view of this, to really understand the action
mechanism of drugs with their receptors, we should con-
sider not only their static structures but also their dynamical
processes by simulating their interactions through a dynamic
process. Thus, MD has become the foremost computational
technique to investigate structure and function of peptides
[148–153]. Consequently, we can use the 3D folded struc-
tures of the peptides obtained by MD to calculate 3D-TIs
instead of pseudo-folding 2D-TIs.

The present study is aimed to develop a powerful com-
putational approach for studying Peptide Mass Fingerprints
of Ribonucleases by combining QSAR models, 2D-Elec-
trophoresis (2D-E), MALDI-TOF Mass Spectroscopy (MS),
BLAST alignment, and Molecular Dynamics (MD) in hopes
that it may become a useful tool for drug development. We
report two different experiments in order to introduce new
Sequence and MD pseudo-folding TIs for the study of molec-
ular diversity of PMFs. We also report new QSAR and Clus-
tering analysis models based on these indices. In the first
experiment (Experiment 1), we show the use in an experi-
mental example to use 2D-Lattice electrostatic parameters
to numerically characterize protein sequences and seek a
model to predict RNase III function without relying on align-
ment. Different classes of 2D graphs representations of DNA,
RNA, protein sequence, or proteomic maps have been used
by other researchers [87,91,92,154–164]. We subsequently
developed three different classifiers (one for each type of
TIs) to connect protein sequence information (represented
by TIs values) with the classification of sequences as RNase
III or not. In general, different kinds of classifiers have been
used to derive protein sequence QSAR models [165,166].
We selected a Linear Discriminant Analysis (LDA), which
is a simple but powerful technique [167]. In the other exper-
iment (Experiment 2), we compared phylogenetic analysis
of Peptides based on both folding 3D-TIs and pseudo-fold-
ing 2D-TIs. In both experiments, we illustrate the use of
the new models in a practical example based on the anal-
ysis of the PMF of a new protein. As a result of this work
we could characterize the PMF of the new protein and
introduced at the same time new QSAR and Phyloge-

netic algorithms of general use for other peptides or
proteins.

Materials and methods

2D-TIs of pseudo-folding lattices

The MARCH-INSIDE approach is used to calculate the
Pseudo-Folding TIs of sequences. First, each aminoacid in
the sequence is placed in a Cartesian 2D space r2 = (x,y)

starting with the first monomer at the (0, 0) coordinates. The
coordinates of the successive aminoacids are calculated as
follows: in a similar manner, then it can be used for a DNA
[127]:

(a) Increases in +1 the x axe; coordinate for an acid ami-
noacid (rightwards-step),

(b) Decreases in −1 the x axe; coordinate for a basic ami-
noacid (leftwards-step),

(c) Increases in +1 the y axe; coordinate for a polar ami-
noacid (upwards-step), and

(d) Decreases in −1 the y axe; coordinate for a non-polar
aminoacid (downwards-step).

Second, the method uses the Markov matrix 1�, which
is a squared matrix to characterize electrostatic interactions
between aminoacids in the folded protein. Note that the num-
ber of nodes (n) in the graph may be equal or even smaller than
the number of aminoacids. The matrix 1� contains the prob-
abilities 1pi j (r2) of direct electrostatic interaction between
two nodes placed at distance y k = 1 within the lattice in r2.
The formula for 1pi j (r2) values is the following:

pi j (r2) =
(

Q j
di j (r2)

)

n∑
m=l

αil ·
(

Ql
dil (r2)

) , (1)

where Q j is the charge of the node n j (coincide with the sum
of the charge for all aminoacids projected over the node),
di j is the Euclidean distance between the nodes i and j , and
αi j equals to 1, if the nodes ni and n j are adjacent in the
graph and equals to 0 otherwise. The charge of the node is
equals to the sum of the charges of all aminoacids placed
at this node. Afterward, we can calculate sequence pseudo-
folding TIs in the form of different invariants of this matrix.
In this study, we consider three different classes of pseudo-
folding Electrostatic TIs: spectral moments πk (x,y), entropy
values θk (x,y), and average electrostatic potentials ξk (x,y).
Using the Markov chain theory, we can calculate the values of
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Fig. 1 3D model, 2D
pseudo-folding lattice, and 3D
structure network, for protein
1CO4

these parameters for all nodes placed a topological distance
k > 1:

πk (r2) =
n∑

i= j

k pi j (r2) = T r

[(
1�

)k
]

(2)

θk (r2) = −k ·
n∑

j=1

(
k p j (r2)

)
· log

(
k p j (r2)

)
(3)

ξk (r2) =
n∑

j=1

k p j (r2) · Q j , (4)

where Tr is called the trace and points to the sum of all the
values in the main diagonal of the matrices k� = (1�)k, cal-
culated as natural powers of 1�. The present 2D-TIs encode
in a stochastic manner the interactions of charged nodes (one
or more amino acids) placed at different distances not in
the sequence (1D space), but in the 2D lattice embedded in
r2. Note that in Eqs. 3 and 4, we used absolute probabilities
kp j (r2) of interaction for a node with any other node placed at
distance k instead of using directly the interaction probabil-
ities kpi j (r2). In protein QSAR, this kind of pseudo-folding
lattices in r2 = (x, y) may become an alternative, in terms of
computational cost, to real folded structures in r3 = (x, y, z).
Figure 1 depicts both the pseudo-folding lattice network for
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a protein in r2 and the aminoacid–aminoacid contact map
network for the same protein in r3. The calculation of the
kp j (r2) values has already been explained in detail in the
literature, therefore, we do not cover this here [127,168].
This theoretical description contains the essential elements
to understand the work and the reader may also consult recent
reviews that explain in detail the theory and applications of
the MARCH-INSIDE approach [98,99,128].

Protein QSAR analysis

Linear Discriminant Analysis (LDA) was used to construct
the QSAR classifier. LDA forward stepwise analysis was car-
ried out for variable selection to build up the model [167].
All of the variables included in the model were standardized
in order to bring them onto the same scale. Subsequently, a
standardized linear discriminant equation that allows com-
parison of their coefficients was obtained [169]. The square
of Canonical regression coefficient (Rc) and Wilk’s statis-
tics (U) were examined in order to assess the discriminatory
power of the model (U = 0 perfect discrimination, being
0 < U < 1), and the separation of the two group of proteins
was statistically verified by the Fisher ratio (F) test with error
level p < 0.05.

MD study of PMFs of the new protein

The Molecular Dynamics Trajectories (MDTs) or energetic
profiles of all the starting structure of peptides were also

obtained by means of the Monte Carlo (MC) method, using
the HyperChem package [170,171]. In this sense, the
AMBER94 force field [172] was used with distant-dependent
dielectric constant (scale factor 1), electrostatic and Van der
Waals values by default and cutoffs shifted with outer radius
of 14 Å (see Fig. 2). All the components of the force field were
included and the atom type was recalculated keeping their
current charges. Previous to MC simulation, the geometry of
all the structures of peptides were optimized with this same
force field. Finally, the simulation was executed in vacuo at
300 K and 100 optimization steps obtaining MDTs with 100
potential energy dE j (j = 1, 2, 3, . . . , 100) values each one.
We obtained 22 MDTs for 19 peptides. In order to obtain real-
istic MDTs, there is an additional parameter that we monitor
in MD algorithms, which is known as the acceptance ratio
(ACCR). It appears as ACCR on the list of possible selections
in the MC Averages dialog box of HyperChem (see Fig. 2).
The ACCR is a running average of the ratio of the number
of accepted moves to attempted moves. Varying the step size
can produce a large effect on the ACCR value. The step size
(�r3) is the maximum allowed atomic displacement used in
the generation of trial configurations. The default value of r3

in HyperChem is 0.05 Å [170]. For most organic molecules,
this will result in ACCR of about 0.5 Å, which means that
about 50% of all moves are accepted. Increasing the size of
the trial displacements may lead to more complete search-
ing of configuration space, but the acceptance ratio will, in
general, decrease. Smaller displacements generally lead to
higher acceptance ratios but result in more limited sampling.

Fig. 2 Hyperchem interface
showing MD study of a peptide
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There has been little research to date on what the optimum
value of the acceptance ratio should be.

3D-TIs of structures folding determined with MD

The method may also use the Markov matrix 1�, which
is a squared matrix to characterize electrostatic interactions
between aminoacids in the folded 3D structure of the pep-
tide obtained by MD. The matrix 1� contains the probabili-
ties 1pi j of direct electrostatic interaction between two nodes
placed at distance lower than cut-off within the 3D space of
coordinates r3 = (x,y,z):

pi j (r3) =
(

Q j
di j (r3)

)

n∑
m=l

αil ·
(

Ql
dil (r3)

) , (5)

where Q j is the charge of the node n j (coincide with the sum
of the charge for all aminoacids projected over the node), di j

is the Euclidean distance between the nodes i and j , and αi j

equals to 1, if the nodes ni and n j are adjacent in the graph and
equals to 0 otherwise. Afterward, we can calculate sequence
pseudo-folding TIs in the form of different invariants of this
matrix. In this study, we consider three different classes of
real folding 3D-TIs: spectral moments πk(r3), entropy val-
ues θk(r3), and average electrostatic potentials ξk(r3). Using
the Markov chain theory, we can calculate the values of these
parameters for all nodes placed a topological distance k > 1:

πk (r3) =
n∑

i= j

k pi j (r3) = T r

[(
1�

)k
]

(6)

θk (r3) = −k ·
n∑

j=1

(
k p j (r3)

)
· log

(
k p j (r3)

)
(7)

ξk (r3) =
n∑

j=1

k p j (r3) · Q j (r3). (8)

2D versus 3D-TIS phylogenetic analysis of PMFs

In principle, we can use different distance functions, here,
we select only the Euclidean distance due to the Euclidean
nature of the Cartesian of both the space used to derive the
pseudo-folding lattices r2 and the real folding space r3. Using
the Tree Joining Cluster (TJC) analysis, algorithm imple-
mented on the software Statistica, we were able to construct,
visualize, and compare the phylogentic trees based on both
2D and 3D-TIs. The molecules used in this study were the
same 19 peptides found on the PMF of the new protein. In
general, in the phylogentic analysis, we can calculate here
(3 type of indices)× (2 type of graphs) = 6 different Euclid-
ean distances. In order to give a general notation for all these

equations, we use the symbol pTIk(rd), which take the val-
ues TI =θ , ξ , or π and the dimension of the space d = 2
for r2 = (x,y) or d = 3 for r3 = (x,y,z). The equation that
describes the formula may used to calculate the nine types
of Euclidean distances, mentioned above or alternatively, we
can group all the TIs of the same rd :

TI Dpq(rd) =
√√√√ 5∑

k=0

(pTIk(rd) − q TIk(rd))2. (9)

Experimental methods

Cell culture of parasites

Promastigotes of the Leishmania strain LEM75 were grown
in Schneider medium supplemented to a final concentration
of 0.4 g/L NaHCO3, 4 g/L HEPES, 100 mg/L penicillin and
streptomycin, and 10% fetal bovine serum (Gibco), pH 6.8
and 26 ◦C.

Sample preparation

Mid-log promastigotes were recovered on day 7 post-inoc-
ulum (p.i.) and the parasites were centrifuged at 3,000 rpm
for 10 min at 4 ◦C. The resulting pellet was washed five times
with Tris-HCl pH 7.8, and resuspended in 0.1 mL of this same
buffer. The sample was sonicated for 10 s with a virsonic 5
(virTis, NY, USA) set at 70% output power on ice bath. The
homogenate was extracted in 5 mM Tris-HCl buffer pH 7.8
containing 1 mM phenylmethylsulfonyl fluoride (PMSF) as
a protease inhibitor, at 4 ◦C overnight and, subsequently, cen-
trifuged at 10,000g for 1 h at 4 ◦C (Biofuge 17RS: Heraeus
Sepatech, Gmb, Osterode, Denmark). The supernatant was
dialyzed overnight at 4 ◦C in 0.5 mM Tris-HCl buffer. Pro-
teins were precipitated by 20% TCA (trichloroacetic acid) in
acetone with 20 mM DTT for 1 h at −20 ◦C, added 1:1 to the
homogenate. Then, the sample was centrifuged at 10,000 rpm
for 15 min and the pellet was washed with cold acetone con-
taining 20 mM DTT. Residual acetone was removed by air
drying. In order to achieve a well-focused first-dimension
separation, sample proteins must be completely disaggregat-
ed and fully solubilized, in a sample buffer containing 7 M
urea, 2 M thiourea, 4% CHAPS, DeStreak buffer (Amersham
Bioscience), 5 mM Co3K2, 2% IPG buffer (Amersham Bio-
science), and incubated at room temperature for 30 min. Fol-
lowing clarification by centrifugation at room temperature
(12,000 rpm, 10 min) the supernatant were stored frozen.
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2D-Electrophoresis (2D-E)

In total 340 µL of rehydration buffer were added to prom-
astigotes solubilized extracts (7 M urea, 2 M thiourea, 2%
CHAPS, 0,75% IPG buffer 4–7, and bromophenol blue) and
immediately were adsorbed onto 18 cm immobilized pH 4–7
gradient (IPG) strips (Amersham Biosciences) [173]. Opti-
mal IEF was carried out at 20 ◦C, with an active rehydration
step of 12 h (50 V), and then focused on an IPGphor IEF unit
(Amersham Biosciences) by using the following program:
150 V for 2 h, 500 V for 1 h, 1,000 V for 1 h, 1,000–2,000 V for
1 h, and 8,000 V for 6 h. After focusing, IPG strips were equil-
ibrated for 15 min in 10 mL of 50 mM Tris-HCl, pH 8.8, 6 M
urea, 30% v/v glycerol, 2% w/v SDS, traces of bromophenol
blue containing 100 mg of DTT, and further incubated for
25 min in the same buffer replacing DTT by 300 mg of iodo-
acetamide. After equilibration, the IPG strips were placed
onto 12.5% SDS-polyacrylamide gels and sealed with 0.5%
(w/v) agarose. SDS-PAGE was run at 15 mA/gel. The 2D gels
were stained with silver staining mass spectrometry compat-
ible. Briefly, the gels were fixed in 40% ethanol (v/v), 10%
(v/v) acetic acid overnight, then sensitized with sodium ace-
tate 0.68 % (w/v) and 0.05% sodium thiosulfate for 30 min,
and washed with desionizated water thrice for 5 min. The
gels were incubated in 0.25% (w/v) silver nitrate for 30 min.
After incubation, it was rinsed with desionizated water twice
for 50 s followed by adding the developing solution, which
contained 2.5 % (w/v) sodium carbonate with 0.04% (v/v)
formaldehyde until intensity desired. Development was ter-
minated by adding 1.5 % (w/v) EDTA.

MALDI-TOF Mass Spectrometry (MS)

Spots of interest were manually excised from silver-stained
2D-E gels after being distained as described by Gharahdaghi
et al. [174]. Then, gel pieces were incubated with 12.5 ng/µL
sequencing grade trypsin (Roche Molecular Biochemicals)
in 25 mM AMBIC overnight at 4 ◦C. After digestion, the
supernatants (crude extracts) were separated. Peptides were
extracted from the gel pieces first into 50% ACN, 1% tri-
fluoroacetic acid and then into 100% ACN. Then, 1µL of
each sample and 0.4 µL of 3 mg/mL α-cyano-4-hydroxycin-
namic acid matrix (Sigma) in 50% ACN, 0.01% trifluoroace-
tic acid were spotted onto a MALDI target. MALDI-TOF MS
analyzes were performed on a Voyager-DE STR mass spec-
trometer (PerSeptive Biosystems, Framingham, MA, USA).
The following parameters were used: cysteine as S-carb-
amidomethyl derivative and methionine in oxidized form.
Spectra were acquired over the m/z range of 700–4500 Da.
Tryptic, monoisotopic peptide mass lists were generated and
exploited for database searching. MS/MS sequencing analy-
sis were carried out using the MALDI-tandem time-of-flight
mass spectrometer 4700 Proteomics Analyzer (Applied Bio-

systems, Framingham, MA). The MS study was performed
at the University Complutense de Madrid Proteome Facility
platform.

MASCOT database search

The peptide mass fingerprinting data obtained from MALDI-
TOF analyses were used to search for protein candidates
using MASCOT software program [10]. The MASCOT
search parameters were adjusted according to the MS exper-
iment carried out and the above description as follows: Type
of search: Sequence Query, Enzyme: Trypsin, Fixed modifi-
cations: Carbamidomethyl (C), Variable modifications: Oxi-
dation (M), Mass values: MONOISOTOPIC, Protein Mass:
Unrestricted, Peptide Mass Tolerance: ±100 ppm, Fragment
Mass Tolerance: ±0.4 Da, Max Missed Cleavages: 1, and
Instrument type: MALDI-TOF-TOF. We introduced the MS
signals correspondent to one of the unidentified 2D-E spots
(protein) into the MASCOT analysis system. The sample was
recorded in this web page with the search title: Sample Set ID:
1122, Analysis ID: 1466, MALDI Well ID: 17500, Spectrum
ID: 7971, and Path = \040519\Leishmania\New Analysis
2. The database used was Leishmania 290703 (with 7,467
sequences and 4,469,604 residues).

BLAST search

The more relevant peptide fragments of the new protein were
submitted to BLASTP to show graphically the similarity of
the sequence compared to other RNases [175]. The BLAST
procedure was carried out using as query database the non-
redundant NCI database and allowing BLAST to search for
conserved domains through the CD-search tool [176].

Results and discussion

Experiment 1

Pseudo-folding 2D-TIs QSAR models for RNases

The search for tools to explore molecular diversity that com-
plement or improve classical alignment tools like BLAST
with information from gene ontology, RNA secondary struc-
ture prediction, partial ordering, or other sources constitutes
a goal of major importance [177–180]. In particular, dif-
ferent structural parameters have been used to mining the
molecular diversity of peptides. For instance, Jacchieri have
investigated structural propensities, co-localization of pep-
tide fragments in protein sequences, interactions between
peptide fragments in close structural proximity and the par-
ticipation of physical chemical profiles in the distribution
of structural motifs among peptide fragments in the Protein
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Data Bank (PDB) and the SwissProt databases [181]. In this
study, we calculated three families of TIs that can be used
as inputs for the QSAR study of the molecular diversity
of RNase proteins and peptides. We selected TIs instead of
other indices due to their fast calculation and high accuracy
demonstrated in QSAR studies of molecular diversity [116,
182–185]. This calculation was carried out for two groups
of protein sequences, one made up of RNase-like enzymes
and the other formed by heterogeneous proteins. A simple
LDA was developed to classify a novel sequence as RNase
or not using as inputs the above-mentioned parameters. The
best equation found was:

S (ξ) = 20.15 × ξ1 (r2) − 15.8 × ξ2 (r2) − 112.3 (10)

R = 0.87, U = 0.24, F = 231.9, p < 0.001.

The statistical parameters for the above equation were:
Canonical Regression Coefficient (R), Wilk’s statistic (U),
Fisher ratio (F), and error level (p-level), which have to be
<0.05 [186]. In this equation, as well as in the two other
QSAR (see below) the variable S(TI) = S(ξ ), S(π ), or S(θ )
are the outputs of the models. These are real valued scores
assigned by the model to the propensity with which a given
protein is predicted as RNase. This discriminant function pre-
sented excellent results both in training and external cross-
validation series carried out with an external set made up of
RNase proteins and diverse no-RNase proteins not used to
train the model (see Table 1). In statistical prediction, the
following three cross-validation methods are often used to
examine a predictor for its effectiveness in practical appli-
cation: independent dataset test, subsampling test, and jack-
knife test [187]. However, as elucidated by [188] and
demonstrated in [189], among the three cross-validation
methods, the jackknife test is deemed the most objective that
can always yield a unique result for a given benchmark data
set, and hence has been increasingly used by investigators
to examine the accuracy of various prediction models (see,
e.g., [30,49–52,190,191]). In the current study, for reduc-
ing computational time as done by many other investigators,
we used independent data set test for cross-validation. Its
results are remarkable in comparison to results obtained by
other researchers on using the LDA method in QSAR studies
[192].

In order to compare the previous model with other method-
ologies based on MM, we developed two additional MARCH-
INSIDE models. These models were based on spectral
moments and entropy invariants. The equations of these mod-
els and their more important statistic parameters are depicted
bellow:

S (π) = 0.59 × π0 (r2) − 1.99 × π2 (r2) − 21.58 (11)

R = 0.66, U = 0.56, F = 56.6, p < 0.001,

S (θ) = 8.29 × θ0 (r2) − 16.73 (12)

R = 0.26, U = 0.93, F = 10.5, p = 0.002.

Both equations perform a statistically significant separa-
tion of two groups of proteins (p < 0.05). The equation
based on πk is essentially the same model that was previ-
ously reported by our group but, we incorporate it here in
order to perform a comparative study [193]. However, the
accuracy of the models is notably lower than the accuracy
of model 1 (10). Note that the values of Canonical Regres-
sion coefficients are R model 1 > R model 2 (11) > R model 3
(12) and, correspondingly, the inverse tendency is observed
for the Wilk’s statistics of group separation (U model 1 < U
model 2 < U model 3). Detailed information on the classifi-
cation performance of these models was reported in Table 1.
From these results, we can expect that the models based on
different families of indices will present different accuracy
in predictions. In this case, we should select the ξ -model
represented by Eq. 10 as the better option with respect to the
π -model and the θ -model. These results are consistent with
those obtained in our previous reports, in which we used 2D
pseudo-folding electrostatic parameters as sequence descrip-
tors for function annotation of other classes of proteins [127].

2-DE isolation of a novel sequence

In this section, we present a comparative study of molecular
phylogenetic trees, useful for molecular diversity character-
ization, which are based on Pseudo-folding lattice 2D-TIs
versus other trees that use Folding 3D-TIs values. We illus-
trate the comparison with a practical case: comparison of
peptides found in the PMF of a new query protein reported
here. In Fig. 3, we illustrate an overall view of the 2D-E map
obtained from the L. infantum promastigote homogenate.
In this figure, we have done a zooming in the left-to-down
corner to highlight an area of high density of spots, which
apparently corresponds to protein fragments of low MW and
low pI. Our interest in this area derived from the fact that
these spots remained unchanged from gel to gel repetitions
and might correspond to relevant proteins of this parasite. In
order to start investigation on the nature of these proteins,
initially, we marked the spot with an arrow and encircled in
the zoom image for this area, see Fig. 3.

MS results for new query protein

The protein contained in each spot was submitted to in-gel
trypsin digestion and the mass of the resulting PMF, which is
expression of the molecular diversity of the parasite protein,
was obtained from MALDI-TOF MS analysis. We have stud-
ied before other proteins on the same region [194]. However,
we focus our attention in this study on the protein corre-
sponding to one spot not investigated before. Once we have
obtained the data from MALDI-TOF MS analysis for this
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Table 1 Classification results
for RNase QSAR models based
on πk (SL), ξk (SL), and θk (SL)

Parameter % Group No-RNases RNases

ξk (SL)-model train

Specificity 95.0 No-RNases 76 4

Sensitivity 97.1 RNases 2 68

Accuracy 96.0

ξk (SL)-model validation

Specificity 84.0 No-RNases 21 4

Sensitivity 100.0 RNases 0 23

Accuracy 91.7

πk (SL)-model train

Specificity 76.3 No-RNases 61 19

Sensitivity 94.3 RNases 4 66

Accuracy 84.7

πk (SL)-model validation

Specificity 72.0 No-RNases 18 7

Sensitivity 95.7 RNases 1 22

Accuracy 83.3

θk (SL)-model train

Specificity 58.8 No-RNases 47 33

Sensitivity 74.3 RNases 18 52

Accuracy 66.0

θk (SL)-model validation

Specificity 56.0 No-RNases 14 11

Sensitivity 78.3 RNases 5 18

Accuracy 66.7

spot, the more relevant MS signals were introduced into the
MASCOT search engine [195,196]. We selected in MAS-
COT the L. major database of annotated proteins with MS
recorded due to its similarity to L. Infantum [197]. The MAS-
COT search of MS signals does not match to any template
hit with Ms higher than 51 (p < 0.05) (see Table 2). How-
ever, we found a relatively high score of Ms = 42 for an
RNase I with MASCOT accession code CHR16-22_tmp.17
and molecular weight Mw = 108,096. The two following
match founds (Ms = 40 and Ms = 39) correspond to template
proteins CHR16-22_tmp.27 and L344.4 with Mw = 30,867
and 52,863, but unknown function.

In any case, almost all relative interesting matches found
have been also recorded for unknown function or hypotheti-
cal proteins. These aspects make difficult the assignation of
sequence and function for the new protein. But, at the same
time, increase our interest on the PMF of this new query pro-
tein that do not match to known templates. As we mentioned
in the introduction of this report the PMF of this type of
protein may be of high interest. In Table 3, we give detailed
information on the results of the MS analysis of the PMF of

the new protein using MALDI-TOF technique and MASCOT
search engine. Similar combination have been successfully
used in the past to study Trichinella antigens [173] and pos-
sible Leshmania dynein proteins [194]. In this table, we have
shown only the 22 more interesting peptides matching with
the MS of other proteins on the MASCOT search. We cal-
culated the three type of pseudo-folding lattice 2D-TIs for
these peptides.

In Table 4, we summarized the results obtained after the
QSAR-based exploration of the molecular diversity of the
PMF of the new protein. We depict in this table, the pseudo-
folding lattices for some peptides with higher Mw. We also
predicted the contribution to RNase activity (see in Table 4
score values) using the two best QSAR models reported on
this experiment (previous section). Both QSAR models coin-
cide very well on the prediction of RNase scores for the
new peptides. We found a regression coefficient of R = 0.88
between the RNase score of the QSAR based on ξk(r2) values
versus the model based on θk(r2) indices.

The QSAR study predicted the higher RNase scores for
peptides P07, P08, P09, and P14. The first three peptides
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Fig. 3 2-DE analysis of proteins from L. infantum

Table 2 First 20 proteins found with MASCOT with weak similarity
to the new L. infantum query

Protein Accession numbera Mwb Msc Annotationd

1 CHR16-22_tmp.17 108,096 42 RNase I

2 CHR16-22_tmp.27 30,867 40 –

3 L344.4 52,863 39 –

4 CHR7-11_tmp.271 16,228 38 Ubiquinone biosynthesis

5 CHR33_tmp.03c 88,054 36 –

6 CHR16-22_tmp.55 60,009 36 CG2839 protein

7 LmjF36.2130 63,492 36 Putative RNA helicase

8 L3856.03 60,300 35 Probable t-complex

9 LmjF36.0340 7,448 35 Nop10p

10 CHR7-11_tmp.74 62,638 34 Organizing protein

11 LM24.98 168,810 34 –

12 LmjF31.2850c 22,350 34 Ribosomal protein

13 LmjF25.1840c 72,441 32 Transcriptional regulator

14 P1408.05 25,483 32 –

15 CHR7-11_tmp.109 47,282 32 Flagellar protofilament

16 CHR16-22_tmp.74 92,715 31 Heat shock protein

17 CHR27_tmp.171 160,251 31 –

18 CHR28_tmp.22c 73,148 31 p450 reductase

19 CHR7-11_tmp.678 25,290 30 –

20 CHR7-11_tmp.616 25,290 30 –

a Refer to the accession number used by MASCOT
b Mw is the molecular weight
c Ms is the MASCOT score
d Function annotation predicted by MASCOT using alignment proce-
dures

match with template 1, a protein previously described as
RNase I. The last peptide P14 matches, however, with a tem-
plate protein of unknown function. Taking into consideration,
the possible interest of the peptides found on PMFs of the new

Table 3 Summary of MASCOT analysis of PMF for three best protein
candidates

Peptide Mw a
obs Mw b

expt Mw c
calc Mw d

dif sequence

Protein 1

P01 773.46 772.46 772.41 0.05 ngvlnek

P02 789.4 788.39 788.41 −0.02 reesir

P03 927.53 926.52 926.44 0.08 aheaaaamr

P04 999.58 998.57 998.6 −0.02 qvvtalrgr

P05 1537.93 1536.92 1536.77 0.15 vmpvimgmatslqk

P06 2163.06 2162.05 2162.03 0.02 kmnvntgvvtgeeaaeeaasr

P07 2223.01 2222 2222.07 −0.08 gsntnaiqmslglgqqlfdgr

P08 2238.97 2237.96 2238.12 −0.16 vmpvimgmatslqkefvpgr

Protein 2

P09 773.46 772.46 772.46 0 tdllrr

P10 813.37 812.36 812.43 −0.07 mhisglr

P11 817.42 816.41 816.35 0.06 tgaveedp

P12 2185.03 2184.02 2184.19 −0.17 altvagdtgllasvevntarar

P13 833.43 832.43 832.38 0.05 aveeeek

Protein 3

P14 779.46 778.45 778.4 0.05 slsgypr

P15 789.4 788.39 788.4 −0.01 dplttsr

P16 795.41 794.41 794.38 0.03 hangspgr

P17 877.47 876.46 876.44 0.02 rcllcr

P18 921.52 920.51 920.5 0.02 avaglesfk

P19 965.53 964.53 964.45 0.08 mgescllr

a Mwobs: Observed Molecular weight
b Mwexp: Experimental Molecular weight
c Mwcalc: Calculated Molecular weight
d Mwdif : Difference between Mwcalc and Mwexp

protein for the design of new RNases, we decided to confirm
the predicted scores with a BLAST alignment search. In
Table 5, we summarized the result of this search. The BLAST
score was adjusted considering that we use here short pep-
tides chains of <20 aa length and not full protein sequences.
We selected this approach, since BLAST-like method, such
as PSI-BLAST, and other methods have been used to con-
firm and/or complement predictive algorithms before [39].
In Table 5, we can note that in fact both QSAR and BLAST
predict a positive RNase score for these peptides. This may
be relevant, as we are using alternative methods that comple-
ment each other (QSAR is alignment-free whereas BLAST
rely upon alignment) [127,198–201].

Experiment 2

MD simulation for the PMF of the new protein

It can be noted in Table 4 that in this type of representation
some aminoacids (aa) overlap on the same nodes resulting
that the number of aa is higher than the number of nodes in
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the lattice (see Experiment 1). This aspect plus the pseudo-
folding procedure used to obtain lattices (not real folding)
have given rise to the question about the structural accuracy
versus computational cost, when we compare 2D-TIs to 3D-
TIs. The problem is relevant and not only restricted to lattices
2D-TIs but also any kind of 2D-TIs [202]. In this sense, we
decided to investigate in which extension the pseudo-folding
lattice 2D-TIs are able to capture information present on 3D
structure. For it, we first need the 3D structures of the pep-
tides in order to calculate the 3D folding versions of the same
type of pseudo-folding TIs. Then, we need to compare the
higher dimension πk(r3), θk(r3), and ξk(r3) values with the
lower dimension πk(r2), θk(r2), and ξkr2 indices. For this
study, we used the same 19 peptides found on the PMF of
the new protein. Unfortunately, we have only the sequences
of the peptides but not the 3D structures. Consequently, we
obtained first, the optimal 3D folded structures using a MD
search for the 19 peptides (see Fig. 2). In Table 6, we have
summarized the results of MD simulation of these peptides.
In this table, we reported the initial energy (E0) and energy
gradient (δ0) based on the starting structure constructed with
standard parameters for α-helixes (bond distances, angles,

and dihedral angles) set as default on the sequence editor of
Hyperchem [170,171]. We also reported the (E1) and energy
gradient (δ1) obtained after optimization of the structure with
AMBER force field obtained by MC method applied to MD
simulation. Finally, we report in Supplementary material file
sm3 the ACCR values for the MDT of the 19 peptides. In
the MD study, most researchers tend to try for an average
ACCR value around 0.5 and smaller values may be appro-
priate when longer runs are acceptable, and more extensive
sampling is necessary. In the present study, all the ACCR
values were lower than 5.0, in consequence, we can accept
the MD results as valid [170,171].

2D-TI versus 3D-TI phylogentic study of PMF
for new protein

Using information about the distribution of aminoacids in
the sequence of the protein has been the major tendency on
molecular phylogentic analysis [203]. In the introduction,
we discussed the importance of new molecular phylogenetic
approaches for protein based on other types of molecular
structure information. In materials and methods, we outlined

Table 4 Summary of QSAR
Data Mining exploration of 19
peptides found on the PMF of
query protein

a Information related to the input
lattice graphs and/or peptides
b aa is the number of aminoacids
c n is the number of nodes in the
lattice graph
d Scores predicted with the
QSAR models

Inputs a Score d Inputs a Score d

Peptide Sequence aab nc S(ξ) S(θ) Peptide Sequence aab nc S(ξ) S(θ)
P01 ngvlnek 7 4 6.6 0.8 P04 qvvtalrgr 9 7 32.7 4.6 
P02 reesir 6 4 2.9 0.8 P05 vmpvimgmatslqk 14 8 56.1 5.4 
P03 aheaaaamr 9 8 33.7 5.4 P9 tdllrr 6 6 14.3 3.7 
P06  22 13 101.6 8.0 P07  22 8 91.4 5.4 

kmnvntgvvtgeeaaeeaasr gsntnaiqmslglgqqlfdgr 
P08  21 10 89.2 6.6 P12  23 12 112.5 7.6 

vmpvimgmatslqkefvpgr altvagdtgllasvevntarar 
P10 mhisglr 7 5 12.1 2.5 P16 hangspgr 8 5 17.7 2.5 
P11 tgaveedp 8 7 23.8 4.6 P17 rcllcr 6 4 1.1 0.8 
P13 aveeeek 7 6 17.3 3.7 P18 avaglesfk 9 5 24.4 2.5 
P14 slsgypr 7 5 14.7 2.5 P19 mgescllr 8 5 18.1 2.5 
P15 dplttsr 7 5 14.9 2.5       

123



Mol Divers (2010) 14:349–369 361

Table 5 Summary of
MASCOT, QSAR, and BLAST
RNase scores of some relevant
peptides in PMF

MASCOT scores 
Template 1 Protein Template 2 

DNA-directed RNA polymerase I Function Hypothetical protein 
CHR16-22_tmp.17 ID CHR16-22_tmp.27 

108 096 Mass 30 867
42 Mowse  40

BLAST vs. QSAR Scoring for some peptides  
P06 P08 

kmnvntgvvtgeeaaeeaasr sequence vmpvimgmatslqkefvpgr 
36.7 BLAST  69.4 
101.6 QSAR  89.2 

P07 P12 
gsntnaiqmslglgqqlfdgr sequence altvagdtgllasvevntarar 

68.5 BLAST  33.3 
91.4 QSAR  112.5 

the possibility of construction of a phylogenetic tree for the
PMFs of the new protein using TIs based on folded r3 struc-
ture or pseudo-folded structures in r2. In the previous section,
we recalled that the first type of TIs gives a more realistic pic-
ture of the protein structure, but the second-one are easier to
calculate, which is important to scale the method up for large
databases [202]. In this sense, it is important to compare the
different TIs and the subsequent phylogenetic trees gener-
ated. For it, we have calculated first, the TIk(rd) values for
the 19 peptides and then the peptide–peptide distance using
Eq. 9. We calculated only the TIk(rd) that have some rele-
vance for RNase activity according to the QSAR Eqs. 10, 11,

and 12. It means that, we calculated the pseudo-folding indi-
ces ξ1(r2), ξ2(r2), π0(r2), π2(r2), and θ0(r2). In Table 6, we
reported the values of all these TIk(rd) for the 19 peptides.

In Fig. 4, we illustrated with a Two-way joining analy-
sis that the indices calculated at different structural levels
have typical values and forming structural clusters. In fact,
Two-way joining analysis can detect automatically the 2D-
pseudo-folding cluster and the cluster for 3D-folding TIs. It
demonstrates that the method presents variations on the results
depending on the detail level selected to describe the protein
structure. In order to reaffirm this, we calculated the TIs using
3D-folded structure considering all atoms in the protein and
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Table 6 Some ξk(r2), θk(r2), and πk(r2) values for 19 peptides found on the PMF of the new protein

Peptide Sequence θ0(r2) π0(r2) π2(r2) ξ1(r2) ξ2(r2)

P01 ngvlnek 0.60 4 1.00 6.75 6.42

P02 reesir 0.60 4 1.19 4.72 4.06

P03 aheaaaamr 0.90 8 2.40 7.00 5.90

P04 qvvtalrgr 0.85 7 2.04 7.17 6.05

P05 vmpvimgmatslqk 0.90 8 2.00 10.54 9.00

P06 kmnvntgvvtgeeaaeeaasr 1.11 13 3.30 15.66 12.99

P07 gsntnaiqmslglgqqlfdgr 0.90 8 1.40 14.58 11.92

P08 vmpvimgmatslqkefvpgr 1.00 10 2.20 14.01 11.50

P09 tdllrr 0.78 6 1.93 4.84 4.08

P10 mhisglr 0.70 5 1.01 5.07 4.28

P11 tgaveedp 0.85 7 2.04 5.99 5.11

P12 altvagdtgllasvevntarar 1.08 12 2.49 14.75 11.09

P13 aveeeek 0.78 6 1.86 5.64 4.91

P14 slsgypr 0.70 5 1.31 5.00 4.03

P15 dplttsr 0.70 5 1.47 5.38 4.50

P16 hangspgr 0.70 5 1.48 5.90 4.99

P17 rcllcr 0.60 4 1.02 4.98 4.50

P18 avaglesfk 0.70 5 1.33 6.76 5.66

P19 mgescllr 0.70 5 1.42 5.87 4.92

3D-TI aa-Cα-only scheme (PDB file) 3D-TI all-atoms scheme (HIN file)
Pept. θ0(r3) π0(r3) π2(r3) ξ1(r3) ξ2(r3) θ0(r3) π0(r3) π2(r3) ξ1(r3) ξ2(r3)

P01 7.03 7 4.19 0.57 0.63 16.9 107 171.0 1221.5 1248.1

P02 6.47 6 4.22 0.45 0.51 16.9 108 180.2 1252.3 1285.8

P03 7.93 9 4.40 0.58 0.66 17.5 126 186.4 1449.4 1485.7

P04 7.93 9 4.43 0.60 0.68 18.0 147 198.8 1679.7 1722.5

P05 9.53 14 5.49 0.73 0.81 19.5 222 0.0 1653.0 1689.0

P06 10.99 21 7.03 1.18 1.31 20.5 294 0.0 1653.0 1689.0

P07 10.99 21 7.69 1.15 1.27 20.6 304 295.5 3479.0 3551.0

P08 10.82 20 7.07 1.05 1.15 20.8 318 0.0 1653.0 1689.0

P09 6.47 6 4.22 0.46 0.51 17.0 112 174.7 1279.6 1310.4

P10 7.03 7 4.19 0.56 0.62 17.2 117 0.0 1653.0 1689.0

P11 7.51 8 4.18 0.67 0.74 16.7 103 167.6 1179.0 1198.9

P12 11.16 22 7.30 1.28 1.42 20.7 311 294.0 3547.4 3620.8

P13 7.03 7 4.20 0.55 0.62 16.9 108 171.7 1234.3 1255.3

P14 7.03 7 4.20 0.55 0.61 16.9 107 171.6 1230.8 1255.1

P15 7.03 7 4.19 0.57 0.64 16.9 108 171.9 1241.6 1266.9

P16 7.51 8 4.22 0.68 0.75 16.8 105 171.2 1204.9 1240.4

P17 6.47 6 4.48 0.37 0.43 17.0 112 0.0 1653.0 1689.0

P18 7.93 9 4.36 0.58 0.65 17.6 130 187.1 1489.9 1515.7

P19 7.51 8 4.18 0.68 0.76 17.5 127 0.0 1653.0 1689.0

not only Cα atoms as many researchers use to. The results
show that we can detect certain hierarchy in the cluster orga-
nization of the indices (see Fig. 4).

However, in cluster analysis, we can easily note that even
(see Table 6) the three classes of indices have different val-
ues and form different clusters. The overall variability for

all the indices is very similar in each peptide and somehow
peptide specific. It means that peptide-to-peptide variations
are more notable than structural level variations. In fact, the
results of the phylogenetic tree analysis demonstrated rela-
tively larger variations on the alternative clustering of the 19
peptides than on the alternative clustering of TIs using r2,
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Table 7 Comparative study of
pseudo-folding, folding and
all-atoms folding schemes

a Mean distance from this
peptide to the other 11 peptides

2D Pseudo-folding 

Peptide Phylogenetic tree 
Statistics

TI Phylogenetic tree 
Statistics

Peptide Meana TI Mean 
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Linkage Distance
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P0 7

P0 6

P0 5

P0 4

P0 3

P0 9

P13

P11

P18

P19

P16

P15

P14

P10

P17
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P01

P01 3.8 

0 5 10 15 20 25

Linkage Distance

1(r2)

2(r2)

0(r2)

2(r2)

0(r2)

0(r2) 0.8 
P02 2.9 0(r2) 6.7 
P03 4.8 2(r2) 1.7 
P04 4.6 1(r2) 7.9 
P05 6.1 2(r2) 6.6 
P06 9.2 
P07 7.4 
P08 7.7 
P09 3.5 
P10 3.2 
P11 4.2 
P12 8.3 

3D Folding 

0 1 2 3 4 5 6 7
Linkage Distance

P12

P0 8

P07

P0 6

P0 5

P17

P0 9

P0 2

P16

P19

P11

P18

P0 4

P0 3

P14

P13

P10

P15

P01

P01 3.9 

0 5 10 15 20 25

Linkage Distance

0(r3)

2(r3)

1(r3)

2(r3)

0(r3)

0(r3) 8.1 
P02 3.5 0(r3) 10.6 
P03 4.5 2(r3) 5.0 
P04 4.5 1(r3) 0.7 
P05 6.1 2(r3) 0.8 
P06 8.3 
P07 8.4 
P08 8.0 
P09 3.5 
P10 3.9 
P11 4.2 
P12 8.6 

3D Folding All-atoms

0 500 1000 1500 2000 2500 3000

Linkage Distance

P12

P07

P19

P17

P10

P0 8

P0 6

P0 5

P0 4

P1 8

P0 3

P11

P0 9

P0 2

P16

P15

P14

P1 3

P01

P01 552.9 

0 1000 2000 3000 4000 5000 6000 7000 8000

Linkage Distance

2(r3)

1(r3)

2(r3)

0(r3)

0(r3)

0(r3) 18.0 
P02 568.6 0(r3) 161.4 
P03 653.0 2(r3) 133.8 
P04 753.2 1(r3) 1653.0
P05 716.7 2(r3) 1689.0
P06 731.3 
P07 1530.0
P08 736.2 
P09 578.7 
P10 695.2 
P11 533.0 
P12 1558.8

r3 for Cα only, or all-atoms r3 TIs. In Table 7, we depict
the final results obtained for the phylogenetic tree analysis
of either peptides or TIs. This results show that, in princi-
ple, the distance T I Dpq(rd) between a peptide p and other q
based on TIk(r2) is structurally sensitive and codify sufficient
structural information with respect to more detailed structural
level. Actually, an inspection of a simple correlation matrix
demonstrated that all the TIs calculated have correlations
are significant at p < 0.05 except for πk(r3) based on all
atoms, which seems to be the more structurally sensitive TI
calculated in this study. We can conclude that pseudo-fold-

ing TIk(r2) phylogenetic algorithms may become a fast and
efficient alternative to TIk(r3) methods, as well as a higher
structurally detail complement to traditional sequence-only
methods.

Conclusions

In this study, we demonstrate that it is possible to develop
and compare alignment-free QSAR models using sequence
pseudo-folding TIs (based on Markov matrices). In addition,
we compared this indices with similar indices based on 3D

123



364 Mol Divers (2010) 14:349–369

Fig. 4 Two-way joining study
of folding TIs for different
structural levels

structures obtained by MD simulation. We also show with
a practical example, the use of these QSAR and Molecular
Phylogenetic models to predict RNase activity and explore
the molecular diversity of peptides found on the PMFs of
the new query protein isolated here by the first time from
L. infantum.
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