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Abstract: Water resources in arid and semi-arid regions are limited where the demands of agriculture,
drinking and industry are increasing, especially in drought areas. These regions are subjected to
climate changes (CC) that affect the watershed duration and water supplies. Estimations of flash
flooding (FF) volume and discharge are required for future development to meet the water demands
in these water scarcity regions. Moreover, FF in hot deserts is characterized by low duration, high
velocity and peak discharge with a large volume of sediment. Today, the trends of flash flooding
due to CC have become very dangerous and affect water harvesting volume and human life due
to flooding hazards. The current study forecasts the peak discharges and volumes in the desert of
El-Qaa plain in Southwestern Sinai, Egypt, for drought and wet seasons by studying the influence of
recurrence intervals for 2, 5, 10, 25, 50 and 100 years. Watershed modeling system software (WMS)
is used and applied for the current study area delineation. The results show that the predictions of
peak discharges reached 0, 0.44, 45.72, 195.45, 365.91 and 575.30 cubic meters per s (m3 s−1) while the
volumes reached 0, 23, 149.80, 2,896,241.40, 12,664,963.80 and 36,681,492.60 cubic meters (m3) for 2, 5,
10, 25, 50 and 100 years, respectively, which are precipitation depths of 15.20, 35.30, 50.60, 70.70, 85.90
and 101 mm, respectively. Additionally, the average annual precipitation reached 13.37 mm, with
peak flow and volume reaching 0 m3 s−1 where all of water harvesting returned losses. Moreover,
future charts and equations were developed to estimate the peak flow and volume, which are useful
for future rainwater harvesting and the design of protection against flooding hazards in drought
regions due to CC for dry and wet seasons. This study provides relevant information for hazard
and risk assessment for FF in hot desert regions. The study recommends investigating the impact of
recurrence intervals on sediment transport in these regions.

Keywords: watershed; forecast; El-Qaa Plain; Sinai and WMS; hazards; hydrograph

1. Introduction

Flash flooding is becoming more common as a result of extreme weather condi-
tions, and affects on human and animal mortality, accidents, mental health difficulties,
vector-borne infections, and waterborne diseases [1,2]. Many coastal areas are effected by
freshwater boundary changes due to over-pumping and CC [3]. FF hazards are responsible
for economic and human life loss. Estimation of runoff is an important hydrological aspect
and plays a vital role in the planning and management of natural processes, such as soil
erosion, flood and drought risks. The limitation is the availability of hydrological data in
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dry valleys [4]. The variation in high-velocity of the rainfall over a short duration is respon-
sible for FF values the heavy sediment load that threatens the lower part of settlements in
the wadis and affects the livelihood of the community of the watershed [5].

Rainfall forecasting is critical for providing early warnings before FF events, allowing
disasters to be avoided or minimized [6]. The volume of water collected, penetrated, stored,
evaporated, transpired and subtracted from the precipitation (i.e., runoff) is calculated
using the rainfall-runoff model. Infiltration and evaporation are two types of flood losses.
Infiltration is calculated using the Green–Ampt model (GAM), the Horton formula, and
the soil conservation service (SCS) curve number (CN) approach [7]. The findings of
the two approaches, i.e., the GAM and CN equation, were compared by Smemoe et al.
(2004) [8]. The results showed that the GAM was superior to the CN method. Chahinian
et al. (2005) [9] applied Philip, Morel-Seytoux, Horton and SCS infiltration models to the
test on 14 different events. The mathematical framework and calibration parameters of
these models were different, but the input hydrologic data were the same. The results
revealed that the Morel-Seytoux model outperformed the others, with the SCS coming in
last. Horton’s model performed better than Philip’s in terms of overall consistency.

The runoff discharge could be estimated by several synthetic unit hydrograph (UH)
methods including SCS dimensionless UH and Snyder UH, while the peak discharge
could be estimated by the rational approach. Jena and Tiwari (2006) [10] employed GIS to
investigate two watersheds and associated sub-watersheds in West Bengal’s Midnapore
and Bankura districts. Flow data and UH were used to create the runoff hydrographs.
Garambois et al. (2014) [11] used statistical analysis to investigate FF storms and the
hydrological responses of catchments in the Pyrenean foothills up to the Aude area. The
findings showed that increasing initial soil saturation led to faster catchment flood response
times, ranging from 3 to 10 h, as well as flooding caused by rainfall near the catchment
outlet, where the topography was lower.

Due to severe weather conditions, mostly heavy rainfall, the Sinai Peninsula receives
a great deal of rain, which generates a lot of FF in the area. The impact of floods in south
Sinai has increased in recent decades, and several researchers, including JICA (1999) [12],
Youssef et al. (2011) [13], Nahla (2016) [14] and Maria et al. (2020) [15] have evaluated its
impact values. The main cause of FF in the Sinai Peninsula is a short duration of rainfall
accompanied by snowmelt runoff and a low infiltration capacity of the soil, among other
factors, resulting in an increased overland flow even though total fall rainfall amounts in
these areas are relatively small [16]. Awadallah et al. (2011) [17] developed the Intensity
Duration Frequency (IDF) of a region in Angola’s north-west, using limited data from
ground rainfall stations and TRMM data. Cools et al. (2012) [18] used the best available data
to construct and assess an early warning system (EWS) for FF in Egypt’s Sinai Peninsula.
According to the data, 90 percent of the entire rainfall volume was lost due to infiltration
and transmission losses. Wahid et al. (2016) [19] used GIS to analyze the developed datasets
for runoff and potential flash floods, as well as to visualize the spatial distribution of flood
and runoff potential in the southwestern Sinai coastal plain. The study concluded that the
slope and soil types are the two most important elements in determining runoff levels and
FF potential.

According to the Intergovernmental Panel on CC (IPCC, 2013, 2014) [20,21] a signifi-
cant variations for the regional temperature and precipitation from the global-scale pattern
are projected (Christensen et al. 2013) [22]. Climate data from 1970 to 2014 revealed rapid
CC in Egypt’s Sinai Peninsula, with decreased rainfall and rising average temperatures.
For several years, this tendency resulted in severe droughts that were abruptly interrupted
by high and erratic rainfall that varied greatly in locations and duration. Many plant and
animal species’ population dynamics will also be badly impacted, with many of them
being essential to residents [23]. The El-Qaa Plain in the Sinai Peninsula is a region that is
constantly growing in population [24]. Mostafa et al. (2019) [25] estimated the future tem-
perature and precipitation trends in Egypt for 2100 based on the past data from 1950 to 2017;
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the results showed that, in Northern Egypt, the projected patterns of annual precipitation
have been reduction to 0.48 from 1.40 mm yr−1.

The current study was simulated using the Watershed Modeling System (WMS) to
forecast the peak flooding in the desert of El-Qaa plain in Southwestern Sinai, Egypt, due to
the impact of CC which affect the recurrence intervals for 2, 5, 10, 25, 50, and 100 years. The
prediction of future hydrographs for peak discharge and volume will be estimated in the
current study with the future recurrence intervals and rainfall depths. Also, the estimation
of future flood volumes and depths will help in the development of this desert area which
consider the only water resource for its people.

2. Materials and Methods
2.1. Wadi El-Aawag Watershed (Case Study Area)

The southwestern corner of the Sinai Peninsula contains the El-Qaa Plain, located
between latitudes 28◦15′, 28◦45′ north and longitudes 33◦20′, 34◦00′ east and neighbouring
the Gulf of Suez [26]. The watershed of Wadi El-Aawag (WEA) is considered one of the
largest basins in the Gulf of Suez’s drainage system with an area of about 1960 km2. The
watershed direction extends generally from north and northeast to southwest for about 58
km; the location of the current study is presented in Figure 1a. In addition, it debouches
to the Gulf of Suez coastal plain, which is locally named Sahl El-Qaa. This plain stretches
for around 3500 km2 along the southwest coast of Sinai. A test site was chosen in the
Sinai Peninsula’s El-Qaa Plain as it falls under promising development zones in the Sinai
Peninsula, particularly in terms of tourism. These opportunities have already resulted in a
progressive growth in the number of people living in the area, as well as an extension of
land exploitation [27,28].

WEA watershed’s geology is predominantly composed of Precambrian and Cambrian
rocks. The Quaternary deposits (wadi deposits and undifferentiated deposits) occupy
mainly the Sahl El-Qaa area (El-Qaa Plain), which is a promising area for groundwater
reserves (see Figure 1b).

The hydrogeology of Sahl El-Qaa is drained by several watersheds (wadies), which
originate from these granitic mountainous masses. These wadies are buried through
different cycles of sedimentation and alluviation during the Quaternary times and become
active during the rainy periods [29]. These various drainage networks play an important
role in the water supply in the studied area.

2.2. Meteorological Data and Hydrological Frequency Analysis

The historical climate data are taken from the weather of El Tur station. The recorded
Tmin, annual average temperature (◦C); Tmax, annual average maximum temperature
(◦C); Taver, annual average; V, annual average wind speed (km hr−1); PT, total annual
precipitation of snow (mm); RA, number of days with rain (-); Pmax, maximum daily
rain or snow precipitation total annual (mm); and Paver, average annual rain or snow
precipitation total annual (mm), are used in the current study.

Table 1 presents the annual rainfall at El Tur station from 1995 to 2021, with the
maximum value reaching 70.10 mm in a day and 273.31 mm in a year. The data show that
the trends of precipitation are variable in that it was increased in 2015 and 2017, also it
was decreased from 2018 to 2020 and increased in 2021, which will affect the estimation of
recurrence intervals and peak floods.

The predicted values of precipitation for different recurrence intervals were estimated
using the hydrological frequency analysis (hyfran-plus) software version-v2.1, which is
available at this link (http://www.wrpllc.com/books/HyfranPlus/indexhyfranplus3.html
accessed on 11 April 2022) for different distributions including exponential, GEV, Gumbel,
Weibull, Normal, Gamma and Log-Pearson type III. The data were carried out by the best
fitting using the exponential distribution, as shown in Figure 2. The predicted values of
precipitation are 11, 26.40, 38.10, 53.50, 65.10, 76.80 and 88.40 mm for 2, 5, 10, 25, 50, 100 and

http://www.wrpllc.com/books/HyfranPlus/indexhyfranplus3.html


Int. J. Environ. Res. Public Health 2022, 19, 6049 4 of 12

200 years. The following equation was used to estimate the rainfall frequency to reach 50%,
20%, 10%, 5%, 4%, 2% and 1% for the recurrence intervals of 2, 5, 10, 25, 50 and 100 years.

Figure 1. El-Aawag Watershed for (a) location map of the study area (Google earth 2022) and
(b) geological map. (after, UNSECO 2004 [30]).

The following equation was used to calculate the instantaneous rainfall intensity at
any point during the storm duration:

It = (
60× Pt

t
) (1)

where It = instantaneous rainfall intensity at time (t) from the storm start (mm h−1); Pt is
the precipitation depth recorded at time (t) from the storm start (mm); and t is time passed
from the storm start (min).
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Table 1. Historical climate data form weather of El Tur station.

Year Tmin Tmax Taver V PT RA Pmax Paver

1995 22.9 27.7 18.1 24.8 0 1 0 0
1996 23.2 28.2 18.5 24.5 13.46 2 12.95 6.73
1997 22.9 28 17.9 22.4 1.02 2 1.02 0.51
1998 23.7 28.4 19.1 23 3.05 1 2.03 3.05
2000 22 27.2 17 24.1 11.44 5 5.08 2.288
2001 23.3 28.2 18.1 25.7 11.94 1 11.94 11.94
2003 23.3 28.2 18.3 24.8 3.05 1 2.03 3.05
2004 22.9 27.7 18.2 25 0 1 0 0
2006 23.4 28.2 18.6 24.4 0.76 1 0.76 0.76
2007 23.6 28.6 18.8 23.6 0 1 0 0
2008 23.7 28.7 18.8 23.5 2.54 1 2.03 2.54
2009 23.7 28.9 18.6 22.6 0 1 0 0
2010 24.9 30 20 22.3 23.37 2 13.97 11.685
2011 23.5 28.1 18.7 24.1 2.03 2 2.03 1.015
2015 23.9 28.9 19 26.2 77.72 2 70.1 38.86
2017 23.5 28.5 18.6 19.5 70.61 2 70.1 35.305
2019 23.8 28.9 19 22.3 3.3 3 2.03 1.1
2021 24.3 28.9 19.4 26.2 273.31 4 199.9 68.3275

Figure 2. Relation between rainfall depth and frequency for El Tor station.

2.3. Watershed Modeling

The watershed modeling system (WMS) (https://www.aquaveo.com/downloads.
wms accessed on 11 April 2022) was applied for the current study to delineate the stream
flow and discharges based on the key geologic features and rock contacts. The model of the
WEA watershed attains the 6th order (see Figure 3). The drainage network of the study area
was delineated using the WMS from Digital Elevation Model (DEM) with 30 m resolution
(http://gdem.ersdac.jspacesystems.or.jp/search.JSP accessed on 11 April 2022). The losses
for the watershed in the WMS were estimated using the SCS Curve Number (CN) method
(Soil Conservation Service, 1972) [7]; this method considering the watershed for soil type,
land cover and antecedent moisture condition.

SCS (1972) [7] developed the dimensionless UH method, which consists of the lag
time (TL) in hr. The peak discharge was estimated using HEC-1 in the WMS based on UH,
using the SCS method. The rainfall for the storm distribution was generated using the
SCS type II which is applicable to rainfall stations where extreme storms last more than
3 hrs on average, and its distribution is suitable for deriving the 24-h time distribution
during extreme events in many regions [17,31]. The WMS uses the time of concentration to

https://www.aquaveo.com/downloads.wms
https://www.aquaveo.com/downloads.wms
http://gdem.ersdac.jspacesystems.or.jp/search.JSP
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estimate the lag time and compute peak flow and time to peak from the following equations
used in the calculation of the main flood factors [32]:

Tc =
0.00013L0.77

S0.385 (2)

TL = 0.60Tc (3)

Tp =
Tr

2
+ TL (4)

Qp =
2.08× A

Tp
(5)

where L is length of the overland flow in feet; S is average overland slope in ft/ft (-); Tc is
the time of concentration in hours; Tr is storm duration (h); Tp is peak time (h); TL is lag
time in hours; QP is peak discharge (m3 s−1); and A is the drainage area (km2). The lag
time is the time from the centroid of the excess rainfall to the hydrograph peak, while the
time of concentration, which is denoted as Tc, is defined as the time required for a particle
of water to flow from the hydraulically most distant point in the watershed to the outlet or
design point.

Figure 3. Study area (a) digital elevation model and (b) watershed characteristics in the study area.

3. Results and Discussion

This section presents the rainfall analysis and the hydrology of the basin results due to
the impact of CC on the watershed basin in high-stress regions.



Int. J. Environ. Res. Public Health 2022, 19, 6049 7 of 12

3.1. Impact of the Recurrence Intervals on Rainfall Intensity

Figure 4 presents the intensity duration frequency (IDF) curve for the study area at
different storm times of 0, 30, 60, 90 and 120 min and recurrence intervals of 2, 5, 10, 25, 50
and 100 years, respectively. These charts can be used for the design of protection structures
and drainage systems for different predictions of storm time and rainfall depths.

Figure 4. IDF curve for the study area.

3.2. Estimation of a Watershed Hydrograph

The WMS results were presented in Table 1 for the differences between 2, 5, 10, 25, 50,
100 and 200 years.

3.2.1. The Peak Discharge Value

The results showed that the peak discharge reached 0, 0.44, 45.72, 195.45, 365.91 and
575.30 m3 s−1 at recurrence intervals of 2, 5, 10, 25, 50, and 100 years, with time to peak of 0,
2010, 1710, 1590, 1560 and 1530 min and precipitation of 15.20, 35.30, 50.60, 70.70, 85.90, and
101 mm, respectively, as shown in Figure 5. Moreover, the annual peak discharge reached
0 m3 s−1 at average annual precipitation of 13.37 mm; the 0 m3 s−1 value of runoff indicates
that all precipitation goes as losses in the study area.

Figure 5. Runoff discharge for W. El Aawag watershed for different recurrence interval.
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3.2.2. The Flood Volume Value

The flood volume reached 0, 23,149.80, 2,896,241.40, 12,664,963.80 and 36,681,492.60 m3

at recurrence intervals of 2, 5, 10, 25, 50, and 100 years, respectively (see Figure 5). Addi-
tionally, the flood volume reached 0 at average annual precipitation of 13.37 mm, meaning
all precipitation goes as losses, as presented in Table 2.

Table 2. Runoff discharge for W. El Aawag watershed.

Recurrence Intervals (Y) Average Annual 2 5 10 25 50 100

Depth (mm) 13.37 15.3 35.30 50.60 70.70 85.90 101
Time (min) Flow (m3 s−1)

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00
180 0.00 0.00 0.00 0.00 0.00 0.00 0.00
360 0.00 0.00 0.00 0.00 0.00 0.00 0.00
540 0.00 0.00 0.00 0.00 0.00 0.00 0.00
720 0.00 0.00 0.00 0.00 0.47 1.39 2.71
900 0.00 0.00 0.00 1.39 17.05 39.42 68.99
1080 0.00 0.00 0.00 7.84 66.92 145.47 246.98
1260 0.00 0.00 0.00 21.07 136.34 278.63 457.76
1440 0.00 0.00 0.03 35.11 183.02 354.73 565.87
1620 0.00 0.00 0.15 44.14 195.25 361.82 562.28
1800 0.00 0.00 0.34 44.85 173.38 307.78 465.77
1980 0.00 0.00 0.44 37.35 134.35 233.32 348.32
2160 0.00 0.00 0.40 27.17 95.09 163.81 243.31
2340 0.00 0.00 0.30 17.98 62.41 107.21 158.96
2520 0.00 0.00 0.18 11.35 39.50 67.90 100.71
2700 0.00 0.00 0.12 7.28 25.30 43.47 64.45
2880 0.00 0.00 0.08 4.67 16.22 27.88 41.36
3060 0.00 0.00 0.05 2.98 10.37 17.83 26.44
3240 0.00 0.00 0.03 1.90 6.63 11.39 16.89
3420 0.00 0.00 0.02 1.22 4.29 7.40 11.01
3600 0.00 0.00 0.01 0.80 2.80 4.83 7.18
3780 0.00 0.00 0.01 0.51 1.75 2.97 4.38
3960 0.00 0.00 0.01 0.31 0.94 1.52 2.15
4140 0.00 0.00 0.00 0.16 0.46 0.72 1.00
4320 0.00 0.00 0.00 0.07 0.19 0.30 0.41
4500 0.00 0.00 0.00 0.02 0.05 0.08 0.11
4680 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4860 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5040 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5220 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5400 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4. Discussion

Water resources for floods, droughts, severe summers, extreme heatwaves, mild
cool weather occurrences, storms and other extreme weather events are all caused by
CC [33–35]. Drought ranks top among CC-induced natural hazards in terms of the impact
on the livelihood of the community [25,36–38]. Droughts are one of nature’s most harmful
and destructive events. A drought is defined as a time when an area or region receives
insufficient or below-normal precipitation. Reduced soil moisture, as well as surface and
groundwater storages, are the results. A meteorological drought is defined as a scenario in
which rainfall falls below 75% of the climatological normal in a certain area [39]. Increased
warmth, water stress, the frequency of El Nino occurrences and the absence of available
moisture in the sky all cause precipitation to decrease, resulting in fewer rainy days and
more droughts, particularly in arid and semi-arid agro-ecologies [40,41]. Droughts have
dramatically affected crop productivity and the quality of pastoral ecosystems in arid
and semi-arid areas. Reduced and uneven rainfall during the monsoon season causes
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crop failure in early-season droughts and production losses in mid-season and late-season
droughts in arid and semi-arid regions, according to reports [42,43].

From the analysis of rainfall at El Tur stations from 1995 to 2021 using Hyfran-plus
software, the results showed the depths of predicted precipitation as 15.20, 35.30, 50.60,
70.70, 85.90 and 101 mm, respectively, at recurrence intervals of 2, 5, 10, 25, 50 and 100 years
with an annual depth of 13.37mm. The rainfall intensity was also estimated at different
duration of the storms. Moreover, the WMS results showed that the flood volume reached 0,
23149.80, 2,896,241.40, 12,664,963.80 and 36,681,492.60 m3 and the peak discharge reached 0,
0.44, 45.72, 195.45, 365.91 and 575.30 m3 s−1 at the recurrence intervals of 2, 5, 10, 25, 50 and
100 years, respectively. The average annual yearly discharge and volume reached 0 m3 s−1

and 0 m3, respectively. Figure 6 showed the relation between the predicted precipitation
depths and hydrograph volume and discharge in the study area. Furthermore, Equation (6)
is useful to get the predicted hydrograph volume while the Equation (7) estimates the
predicted discharge in the study area at diffrent depths of precipitation that is will change
due to CC for drought.

y = 0.0067x2 − 0.3469x + 3.7337 (6)

y = 0.0583x2 − 3.8884x + 51.873 (7)

Figure 6. Relation between the projection precipitation depths and watershed hydrograph.

Modrick et al. (2015) [44] showed that the increasing in FF occurrences for the moun-
tainous in small basins of Southern California due to projected CC between 30% and 40%.
Overall, a decrease in the total number of precipitation events was found, although with
increased precipitation intensity, increased event duration and higher soil saturation con-
ditions for the 21st century. This combination could signify more hazardous conditions,
with fewer precipitation events but higher rainfall intensity and over soils with higher
initial soil moisture saturation, leading to the more frequent occurrence of FF. Esposito et al.
(2018) [45] showed that increased frequency of FF events occurred on the coastline of the
Campi Flegrei Volcanic Area, Italy. The variation in FF frequency is likely not related to
urbanization changes, as no increase in the urban area occurred after the year 2000. The
observed increase of FF events in recent years (2000–2014) can be reasonably ascribed to
variations in the rainfall regime. Ragettli et al. (2021) [46] studied the impact of CC on
summer flood frequencies in two mountainous catchments in China and Switzerland. The
study recalibrated the weather generator with the climate statistics for 2021–2050 which it
obtained from ensembles of bias-corrected regional climate models. Across all assessed
return periods (10–100 years) and two emission scenarios, nearly all model chains indicate
an intensification of flood extremes. According to the ensemble averages, the potential
flood magnitudes increase by more than 30% in both catchments.
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5. Conclusions

Water resources in desert regions are highly sensitive to CC, water demand and FF.
The current study was developed in the desert of El-Qaa plain in Southwestern Sinai,
Egypt, using the watershed modeling system software (WMS) to study the influence of
CC considering different recurrence intervals of 2, 5, 10, 25, 50, 100 and 200 years. The
results showed that the flood volume reached 0, 23,149.80, 2,896,241.40, 12,664,963.80
and 36,681,492.60 m3 while the peak discharge reached 0, 0.44, 45.72, 195.45, 365.91 and
575.30 m3 s−1 at recurrence intervals of 2, 5, 10, 25, 50 and 100 years, respectively. The
annual volume and discharge reached 0 m3 and m3/s, respectively.

The prediction results of FF hazards for figures and equations at different recurrence
intervals are useful for the decision-makers and engineers to consider in the future planning,
development and design of rainwater harvesting and protection structures to keep the
people living and safe in this desert area. Moreover, the study recommends estimating the
sediment transport volume due to the influence of recurrence intervals under CC in desert
regions around the world.
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