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ABSTRACT

The analysis of small RNA NGS data together with
the discovery of new small RNAs is among the fore-
most challenges in life science. For the analysis
of raw high-throughput sequencing data we imple-
mented the fast, accurate and comprehensive web-
based tool miRMaster. Our toolbox provides a wide
range of modules for quantification of miRNAs and
other non-coding RNAs, discovering new miRNAs,
isomiRs, mutations, exogenous RNAs and motifs.
Use-cases comprising hundreds of samples are pro-
cessed in less than 5 h with an accuracy of 99.4%.
An integrative analysis of small RNAs from 1836 data
sets (20 billion reads) indicated that context-specific
miRNAs (e.g. miRNAs present only in one or few dif-
ferent tissues / cell types) still remain to be discov-
ered while broadly expressed miRNAs appear to be
largely known. In total, our analysis of known and
novel miRNAs indicated nearly 22 000 candidates of
precursors with one or two mature forms. Based on
these, we designed a custom microarray comprising
11 872 potential mature miRNAs to assess the qual-
ity of our prediction. MiRMaster is a convenient-to-
use tool for the comprehensive and fast analysis of
miRNA NGS data. In addition, our predicted miRNA
candidates provided as custom array will allow re-
searchers to perform in depth validation of candi-
dates interesting to them.

INTRODUCTION

MicroRNAs (miRNAs) play a central role in orchestrating
human gene regulation and are consequently prime targets
in biomedical research. Many miRNAs from Homo sapi-
ens and other species are collected in the miRBase (1). Cur-
rently, the fraction of actually true positive miRNAs in this
database is controversially discussed (2–10), especially later
versions seem to contain many false positives (11). On the
one hand, this calls for curated databases, on the other hand
not all miRNAs, especially context specific ones, seem to be
discovered yet.

Various experimental approaches are applied for mea-
suring miRNA expression levels including approaches for
small sets of selected miRNAs like RT-qPCR, CMOS based
assays (12) or immunoassays (13). The most frequently
employed genome-wide assays include microarray screen-
ing and high-throughput sequencing (HT-seq). A compari-
son of 12 different experimental approaches is provided by
Mestdagh et al. (14).

HT-seq enables––beyond quantitative analysis of known
miRNAs––single-base resolution of known and novel miR-
NAs (15) and thus is currently applied to discover the afore
mentioned context-specific miRNAs. For the analysis of
HT-seq data, a wide range of stand-alone and web-based
bioinformatics tools have been implemented allowing the
prediction of novel miRNA candidates and quantification
of miRNAs (16,17), detection of miRNA isoforms (18,19),
miRNA set enrichment analyses (20,21), and prediction of
miRNA targets (22,23) among others. Akthar et al. pub-
lished a comprehensive review on 129 available miRNA
bioinformatics tools (24). The different data formats used
in these tools and the challenges to combine web-based and
stand-alone solutions, however, complicate the design of in-
tegrated pipelines.

*To whom correspondence should be addressed. Tel: +49 681 30268603; Email: tobias.fehlmann@ccb.uni-saarland.de

C© The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.



8732 Nucleic Acids Research, 2017, Vol. 45, No. 15

Our ambition was to develop a web-based application
that combines the most frequently requested analyses. An
important aspect of our tool termed miRMaster (www.ccb.
uni-saarland.de/mirmaster) was to facilitate HT-seq data
analysis of human samples from raw sequencing files pro-
vided in the FASTQ format. Building up on the basic prin-
ciple of miRDeep2 (16) as the most frequently used predic-
tion tool for miRNAs, we implemented an own predictor
with an extended feature set including our previously devel-
oped prediction score (11). Furthermore, we implemented
functionality to report the presence of miRNA motifs to the
user (25–27). MiRMaster allows to search for novel miRNA
candidates, to quantify miRNA expression, to identify iso-
forms and variants of miRNAs. Another feature of miR-
Master is the mapping of non-human small RNA reads
against the NCBI RefSeq collection of bacterial and viral
genomes (28), thereby allowing the detection of contamina-
tions, infections or exogenous miRNAs. To allow the anal-
ysis of targets regulated by miRNAs, we implemented Ap-
plication Programming Interfaces (APIs) to available web-
based tools for considering the targetome (miRTargetLink
(29)) and to carry out miRNA set enrichment (miEAA
(20)).

Since different research groups measured various speci-
mens using different experimental protocols and bioinfor-
matics pipelines and not all data stored in a central repos-
itory, a redundancy between the studies exist. Besides the
miRNAs in the miRBase, and specific studies mentioned
before, several comprehensive analyses (e.g. Londin et al.
(30), Backes et al. (11), Friedländer et al. (31), Jha et al. (32))
propose hundreds to thousands of new miRNAs. To de-
tect as many as possible miRNA candidates we performed
a comprehensive analysis of 1836 data sets containing 20
billion reads.

MATERIALS AND METHODS

Sample collection

As case study we analyzed an in-house NGS miRNA sam-
ple collection of 1097 samples from blood and blood cell
components (33–39). Further we downloaded 739 samples
from four series of the GEO database (40): GSE64142,
GSE53080, GSE49279 and GSE45159. All samples have
been sequenced using Illumina Next-Generation sequenc-
ing. Table 2 presents an overview of these samples including
a description, number of samples, number of reads and file
size.

Positive miRNA dataset for training miRMaster

A straightforward positive dataset would consist of the
complete miRBase (1). However, others and we have ob-
served that miRBase may contain false positives, especially
in the last versions (41). Therefore, we selected all miRNA
precursors from miRBase 1 to 7 and all precursors of miR-
NAs containing strong experimental evidence in the miR-
TarBase (42), leading to 487 high-confidence positive miR-
NAs. We defined precursors by their 5′ and 3′ mature miR-
NAs, i.e. they start with the first base of the 5′ miRNA and
end with the last base of the 3′ miRNA. For miRBase pre-
cursors that had only one form annotated we derived the

other from its hairpin, as described for our prediction al-
gorithm. Therefore, our predictions are independent of the
size of the stem loops provided in miRBase.

Negative miRNA dataset for training miRMaster

Choosing an appropriate negative dataset is a challenging
task, since miRNAs can be located anywhere in the genome
(43). A correct negative dataset plays an important role for
the creation of a well-trained classifier. Overall, since only
a small fraction of the genome and of sequences that form
hairpins are actually precursors, we built five different sets
to cover as many potential wrong predictions as possible.
The different negative datasets were derived from separate
assumptions and combined for our training procedure. The
first dataset was built to cover predictions, where one ac-
tual miRNA is contained in the predicted precursor but
the other miRNA is wrongly annotated. We assume that
real precursors do not overlap. It was created by splitting
in half all known stem–loops from miRBase that contained
two annotated mature miRNAs. We adjusted the length to
the original stem-loop by including the flanking regions.
To determine the positions of the miRNAs in the two new
pseudo precursors, we kept the original miRNAs and de-
rived the other based on it, as in our prediction algorithm.
This dataset was composed of 298 precursors. The second
dataset was created to cover predictions that could stem
from protein coding sequences of genes without known al-
ternative splicing events. It was derived from the widely used
pseudo precursor set built by Xue et al. (44). We first kept
only sequences that aligned perfectly to the latest assem-
bly of the human genome (hg38). Then we segmented these
sequences to enable the computation of segment specific
features. Therefore, we determined the position of one of
the pseudo miRNAs by assigning it to the segment with
most base pairs, having a length of 20 nucleotides and non-
overlapping with the loop region. The other was derived
from it, as in our predicting algorithm. The resulting set
contained 3916 pseudo precursors. The third dataset was
created to cover predictions that could arise from stem-
loops of other ncRNAs. It was shown by others (45) that
for a very small portion of all known miRNAs this could
actually be the case. However, due to their low number and
the false positives largely outweighing the true positives we
considered this set to be useful to reduce the false posi-
tive prediction rate. The dataset was derived from Rfam
(46) (release 11) and composed of 3342 negative precursors.
We considered all human ncRNAs that were not miRNAs
and derived pseudo precursors by retaining only those that
could be partitioned into 5′, 3′ and loop parts. The fourth
dataset was created to account specifically for predictions
that would pass the filtering steps in our algorithm, but
which would overlap with other ncRNAs. It is in fact an ex-
tension of the third dataset. We derived 4031 pseudo precur-
sors by running our prediction on 705 in-house samples and
keeping only those that passed all filtering steps but over-
lapped with other ncRNAs of Rfam. The fifth dataset was
created to account for predictions that were not covered by
the other negative datasets. It was derived from early pre-
dictions performed by our algorithm (trained on the other
four datasets) on our in-house samples. This set addresses
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specifically predictions where the miRNAs contained many
repeated bases and further, miRNA duplexes with high nor-
malized free energy and precursors with high normalized
free energy. We kept all predictions that displayed evidence
for being false positives, i.e. precursors with miRNAs con-
taining at least seven consecutive A or U or 8 C or G. Fur-
ther we kept all with a normalized ensemble free energy of
over –0.15 kcal/mol*nt or with a normalized duplex min-
imum free energy of over –0.15 kcal/mol*nt. The cutoffs
were determined empirically by analyzing the distribution
of the properties of known precursors. This led to 797 addi-
tional negative miRNAs. For the first four datasets we fur-
ther retained only those pseudo precursors without bifurca-
tions, with at least 50% paired bases between the 5′ and 3′
pseudo miRNAs and with a 5′-3′ miRNA length difference
of at most 10. The combination of all negative datasets re-
sulted in 12 384 pseudo precursors, which are listed in Sup-
plementary Table S2.

Independent test sets for evaluating miRMaster

To validate the performance of our model we created two
additional independent test sets. The first set was composed
of human precursors of MirGeneDB (10) that were not used
in our training process, resulting in 129 precursors. For the
pseudo precursors we selected all sequences that were an-
notated as human precursors in earlier miRBase versions
(1–20) and that were not duplicates or merged with known
precursors. This resulted in 28 sequences, of which 6 were
discarded by our algorithm when trying to determine a valid
corresponding second miRNA arm. In addition, we cre-
ated a second set composed of mouse precursors of Mir-
GeneDB that had different sequences than our training pre-
cursors, resulting in 350 precursors. We selected the neg-
ative set analogously to the first negative set from early
annotated mouse precursors, leading to 65 sequences. We
mapped those sequences against the mouse genome (mm10)
and removed all sequences which were not found or found at
multiple positions. Of the remaining 56 sequences, 11 were
discarded by our algorithm when trying to determine a valid
second miRNA.

Features of miRMaster for predicting novel miRNAs

We created a feature set composed of 216 properties, based
on 186 existing features described in (44,47–51) and 30
novel features. Novel features included our previously de-
veloped novoMiRank score (11), open/close parentheses
and unpaired nucleotides in all thirds of a precursor, 5′-3′
miRNA duplex minimum free energy, the number of base
pairs in the 5′ and 3′ miRNAs and in-between, and the nu-
cleotide ratio of the 5′ and 3′ miRNAs. Supplementary Ta-
ble S1 lists all features including a brief description, their
runtime impact and the P-value resulting from a two sided
Wilcoxon rank-sum test after Benjamini–Hochberg adjust-
ment for multiple testing (52) (alpha = 0.05) on our positive
and negative datasets.

Classifier selection for predicting miRNAs

To obtain the best classifier for our positive and nega-
tive dataset in terms of specificity and sensitivity we eval-

uated 180 different combinations of feature scaling, subset
selection and classification methods using the scikit-learn
Python toolkit (53), as shown in Supplementary Table S9.
Since a large fraction of features can be computed in min-
imal time while very few features take very much comput-
ing time we built two models: one is based on all features
and one based on the features with low runtime. For each
combination we tuned the classifier’s hyper-parameter via
particle swarm optimization towards maximum ROC AUC,
resulting in a total of 130,105 models. From those we then
selected all models that performed at least as good as the
best 25% according to ROC AUC, Precision-Recall AUC,
sensitivity, specificity and Matthews correlation coefficient
(MCC). The final model was chosen according to the high-
est F0.5 measure. Supplementary Figure S15 sketches this
process.

Input data of users to miRMaster

Since our ambition was to facilitate comprehensive miRNA
analysis for all researchers, we implemented upload func-
tionality for FASTQ files that are processed and compressed
in the browser before being sent to the server. Thus, no addi-
tional software installation that compresses the files on the
user’s computer is needed. This feature is supported by only
few tools, such as MAGI (54). Further we provide support
for gzip compressed FASTQ files, since they are the typi-
cal storage format of sequencing files, thereby obviating the
need to decompress files before inputting them to miRMas-
ter.

Preprocessing

Before sending the input files to our server we perform three
preprocessing steps consisting of adapter trimming, qual-
ity filtering and read collapsing. Adapter trimming is per-
formed via fuzzy string matching and can be customized by
the user. We allow one mismatch and require an overlap of
at least 10 nucleotides with the read per default. Further the
user has the possibility to trim leading and trailing N, dis-
card reads containing any remaining N and remove reads
shorter than a specific size. For the quality filtering step, we
re-implemented the sliding window filtering approach used
by Trimmomatic (55). This allows reducing the amount of
data sent by up to 99.9% (depending on the sample speci-
mens). To take advantage of multi-core processor capabili-
ties we use JavaScript web workers to allow the preprocess-
ing of multiple files at the same time.

Mapping to various ncRNA databases

We map the collapsed reads using Bowtie (56) and allow
per default no mismatches against human rRNAs, snRNAs,
snoRNAs, scaRNAs and lincRNAs of the Ensembl non-
coding RNA database (release 85) (57), against piRNAs of
piRBase (1.0) (58) and tRNAs of GtRNAdb (59). This al-
lows the user to easily verify if the distribution of reads is as
expected or to investigate specific RNAs. To allow the user
to investigate specific ncRNAs we provide detailed expres-
sion counts for all ncRNAs we are mapping against, as well.
The expression is determined by the number of reads map-
ping to a specific sequence using Bowtie. Further we report
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the mapping of reads against the human miRBase (version
21), which can be used to estimate the potential of finding
novel miRNAs in the samples.

Mapping to reference

Mapping the collapsed reads to the reference genome is per-
formed using Bowtie. Analogous to miRDeep2 (16), we re-
quire no mismatches in the first 18 nucleotides and discard
reads that map to over five different locations.

Precursor excision, segment determination and filtering

The precursor excision, segment determination and fil-
tering according to their structure and signature is per-
formed analogous to miRDeep2. Briefly, local maximum
read stacks in downstream windows of 70 nucleotides are
searched and two precursors excised from each stack. The
secondary structure is computed for each precursor using
RNAfold (60). The maximum read stack represents one
miRNA of the precursor. The other miRNA is determined
by the paired sequence on the other arm with a 2-nucleotide
overhang. Filtering steps are composed of a structure and
signature filter. The secondary structure is required to have
no bifurcations, a minimum percentage of base pairs in the
highest expressed miRNA of 60% and a length difference
of both miRNAs of at most five nucleotides. The signature
is checked by mapping all reads with at most one mismatch
against all excised precursors. At least 90% of all reads need
to map to either a miRNA or in between, thereby discard-
ing reads that do not map according to Dicer processing.
All these thresholds can be customized in the web interface.

Feature computation and prediction

After the potential precursors have been excised and filtered
we compute their feature values and perform the prediction
using our classifier as described in previous parts of the Ma-
terials and Methods section.

Prediction merging and global signature filtering

Once the predictions for all samples have been performed
we merge the resulting potential precursors in order to avoid
multiple predictions shifted by only a few bases. Therefore,
we group all precursors that differ by at most 10 positions
and keep the one that was found in most samples. To make
use of additional information provided by multiple samples
we first normalize the expression of each read of each sam-
ple to reads per million (RPM) and sum up identical reads.
Then we map the normalized reads of all samples against
the merged predictions and score their signature. We weight
each read using the following formula

score (read)

= total RPM(read) · length (read) ·
√

occuring samples (read)
#total samples

Thereby, we penalize reads that occur in only few sam-
ples while giving more weight to longer reads. Reads map-
ping with mismatches are penalized per default by a divid-
ing factor if they occur in at most 10% of all samples (but

at most 10 samples). The dividing factor is the limit of oc-
curring samples minus 1, but at least 2. We then remove all
predictions that have a signature with an inconsistent dicer
processing read portion representing at most 20% of the to-
tal score.

Categories of new miRNAs

We assign to each predicted precursor one of six categories.
(1) Known: when the prediction is overlapping with a miR-
Base entry and both miRNAs are overlapping with known
miRNAs by at least 75%. (2) Shifted known: when the pre-
diction is only partially overlapping with miRBase and only
one miRNA is overlapping by at least 75% with a known
miRNA. (3) One annotated: when the prediction is overlap-
ping with a miRBase entry, but only one miRNA is anno-
tated for that entry and this one is overlapping by at least
75%. (4) Dissimilar overlapping: when the prediction is over-
lapping with a miRBase entry, but the miRNAs are not
overlapping with the annotated ones. (5) Half novel: when
the prediction is not overlapping with any miRBase entry,
but contains at least 75% of one known miRNA. (6) Novel:
when the prediction is not overlapping with any miRBase
entry and does not contain any known miRNA.

Prediction flagging of other ncRNAs

In order to reduce the number of potential false posi-
tives, we map the predicted precursors to the Ensembl hu-
man non-coding RNA database (release 85) and to NON-
CODE 2016 (61) using BLAST+ (62) and flag them accord-
ingly when matches are found. Further we map against the
whole miRBase (v21) to highlight similar miRNAs in other
species. Mappings are valid when over 90% of the aligned
sequences overlap and at most one mismatch is present.

Quantification of known and novel miRNAs, isomiRs and mu-
tations

The quantification of known and novel miRNAs is per-
formed analogously to miRDeep2. Reads are mapped
against the precursors using Bowtie while allowing one mis-
match. The counts are reported for all reads overlapping the
annotated miRNAs in a window of up to two nucleotides
upstream and five nucleotides downstream. IsomiRs are
detected by mapping against the precursors using Bowtie
while tolerating two mismatches. We allow up to two non-
template additions to the 5′ and 3′ ends and up to one mis-
match in between. We also allow a variability of two nu-
cleotides at the 5′ end and of five nucleotides at the 3′ end
per default. When detecting mutations, we focus on single
nucleotide substitutions. The mapping and counting is per-
formed the same way as the quantification, however miR-
NAs with mutations are explicitly counted.

Exogenous read mapping

We map non-human reads (all reads that did not align to
the human genome with at most one mismatch) to all 7556
bacteria and 7026 virus sequences of NCBI RefSeq (28) re-
lease 74 and report the number of perfectly mapping reads.
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Reads mapping to bacteria or viruses can indicate exoge-
nous miRNAs, but also reagent contamination or diseases
such as sepsis.

Motif detection

Recently five miRNA motifs have been reported, namely the
UG, UGU/GUG, CNNC (25), GHG (26) and GGAC (27)
motif. We report for each prediction the present motifs, al-
lowing matching up to two nucleotides upstream or down-
stream of the expected motif position.

Usability

To analyze NGS miRNA samples with miRMaster, the user
needs to provide sequencing files in FASTQ format (uncom-
pressed or gzip compressed) without barcode sequence and
the 3′ adapter used in the library preparation. After click-
ing on the ‘Launch experiment’ button on the homepage or
in the navigation bar, the user will be guided through three
steps. During the first one, one should name the experiment
and also optionally provide an e-mail address to receive a
notification as soon as the analysis of the uploaded samples
is done. During the second step the user needs to specify
the used 3′ adapter and has the opportunity to fine-tune the
parameters of the analysis. The third step consists of the up-
load of the sequencing files. If the samples stem from multi-
ple cohorts, groups can be specified by either clicking on the
‘Add second group’ button or by uploading a tab separated
sample-to-group file. Once the files are chosen and the user
has clicked the ‘Launch’ button, the data will be prepro-
cessed and sent to the server. The preprocessing progress is
shown directly on the web page whereas the server progress
can be followed in real time by clicking the ‘Follow’ but-
ton. This will open the experiment status page in a new tab,
where the user will be able to track the progress of the anal-
ysis of all uploaded samples. Real-time web reports are pro-
vided for each sample that has been uploaded, allowing to
directly inspect the data. These reports provide information
on the preprocessing, mapping, quantification and predic-
tion steps. As soon as all samples have been analyzed, the
results can be downloaded and an overall web-report is cre-
ated with a link to it on the top of the status page.

Validation using custom microarray

To perform a first pass iteration and to minimize the risk
of false positives due to either NGS artifacts or low sam-
ple quality containing many degraded RNAs we designed
a custom microarray containing all human miRNAs from
the miRBase, the miRNAs from the study by Londin et al.
(30) as well as over 5000 miRNAs from the present study.
Among our predicted miRNAs we selected only those ex-
pressed in at least 50 samples which were not flagged as
similar to other ncRNAs. The final microarray contained
11 866 miRNA candidates that have been measured each in
20 replicates (237 320 features per sample).

In order to measure the expression of the novel miR-
NAs in different human cells and tissues, we compiled a set
of eight different human RNA samples: we purchased hu-
man total RNA samples from lung, brain, kidney, testis and

heart tissues from Life Technologies (Cat. No. AM7968,
AM7962, AM7976, AM7972 and AM7966, respectively)
and the human miRNA reference kit from Agilent Tech-
nologies (Cat. No. 750700), that represents a pool of several
human tissues and cell lines. Furthermore, we used a PAX
blood RNA pool and a plasma RNA pool. The PAX blood
RNA pool comprised of 11 blood samples collected in
PAX gene tubes and purified with PAXgene Blood miRNA
Kit from Qiagen according to manufacturer’s instructions.
Blood samples derived from four lung cancer patients, two
Alzheimer’s Disease patients, two patients with Wilms Tu-
mor, and three healthy donors. The plasma RNA pool com-
prised of 10 plasma samples from healthy donors and was
isolated using miRNeasy Serum/Plasma Kit after manu-
facturers recommendation with minor adaptations. To en-
sure sufficient RNA precipitation, we added 1 �l 20 mg/ml
glycogen (Invitrogen) in the precipitation step. RNA con-
centration was measured using Nanodrop (ThermoFisher).
RNA quality was assessed using Agilent Bioanalyzer Nano
kit (for all tissue derived RNAs) or Small RNA kit (for the
plasma sample).

The expression of 11 866 miRNAs and miRNA candi-
dates was determined using the customized Agilent human
miRNA microarrays. As input we used 100 ng total RNA
as measured in Nanodrop for all tissue derived RNAs, and
1 ng miRNA as measured using Bioanalyzer Small RNA
chip for the plasma sample. Using Agilent miRNA Com-
plete Labeling and Hyb Kit after manufacturer’s instruc-
tions, RNAs were dephosphorylated and labeled with Cy3-
pCp. Labeled RNAs were hybridized to the custom mi-
croarrays for exactly 20 hours at 55◦C. After hybridization,
arrays were washed for 5 min in each Gene Expression Wash
Buffer 1 (room temperature) and 2 (37◦C). Subsequently, ar-
rays were dried and scanned in an Agilent microarray scan-
ner (G2505C). Expression data was extracted using Agilent
feature extraction software. Downstream processing of sig-
nals has been carried out with R (version 3.2.4). Specifically,
for clustering the expression intensities hierarchical cluster-
ing using the Euclidean distance has been performed as im-
plemented in the Heatplus package.

To enable other researchers to repeat the experiments
and to perform measurements on own samples, the mi-
croarrays that can be used analogously to standard Ag-
ilent microarrays using the Agilent protocols and SureS-
can platform, will be distributed by Hummingbird Diag-
nostics (Heidelberg, Germany) in three versions: human-
mirna-candidate(full) containing all miRNA candidates
from this study; mirna-candidate(detected) containing all
miRNAs positive in any experiment of this study; mirna-
candidate(blood) containing all miRNAs that have been de-
tected in blood or serum.

RESULTS AND DISCUSSION

The aim in developing miRMaster (www.ccb.uni-saarland.
de/mirmaster) was to implement a comprehensive tool for
the analysis of miRNA NGS data sets. Starting from raw
or compressed FASTQ files with billions of reads and giga-
bytes of data, miRMaster allows a wide variety of miRNA
analyses. The complete workflow is described in detail in
the Methods section and sketched in Figure 1. A brief de-

http://www.ccb.uni-saarland.de/mirmaster


8736 Nucleic Acids Research, 2017, Vol. 45, No. 15

Figure 1. Schematic workflow of miRMaster. The bar at the left shows the runtime impact of each step. Steps performed by the user are shown in orange
and steps performed by the server in blue.

scription on the usability of miRMaster is available in the
Methods section.

In the following, we first focus on the performance of the
novel algorithm for the prediction of new miRNAs. In total,
we investigated 1097 miRNA NGS data sets containing 15
billion reads within a 486 GB file size and compare the miR-
Master results – in terms of performance and runtime––to
those of miRDeep2 using the same data sets. We next pro-
vide a detailed description of the different components of
our miRNA NGS analysis framework and their application
to the above-mentioned data set. Then we report a coarse
description of the human miRNome by predicting small
RNAs from 1836 data sets with 20 billion reads. Finally,

we analyze the expression of potential miRNA candidates
using custom microarrays.

Evaluation of miRNA features

In contrast to most other comparable tools, our miRNA
prediction relies on a broad set of features that are de-
rived both from precursor sequences and from their ma-
ture forms. These features are considered as weak learners
as each feature has a limited impact on the overall deci-
sion to classify or declassify a new miRNA as true miRNA.
The feature set consists of 216 single features including nu-
cleotide composition, secondary structure and others (the
full list is available in Supplementary Table S1). To gain first
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insight into the discrimination power of single features we
derived a positive miRNA precursor set from early miR-
Base (63) versions and from targets with strong experimen-
tal evidence in miRTarBase (42) (487 precursors), as well as
a negative miRNA precursor set from various sources (12
384 negative precursors). A detailed explanation on the cre-
ation of these sets can be found in the Methods section (the
sequences and locations of both sets are shown in Supple-
mentary Table S2). We calculated the significance of all fea-
tures by comparing both sets via Wilcoxon rank-sum tests.
The performance of the 216 features is listed in Supplemen-
tary Table S1. The smallest significance value (10−219) was
calculated for the minimum free energy index 1. Following
adjustment for multiple testing, 158 of the 216 features re-
mained significant (P < 0.05). Since our analysis pipeline
is designed to support the evaluation of large data collec-
tions of up to several thousand samples, performance in
runtime of feature calculation is of importance. We grouped
all features in three different runtime categories with the
fastest category containing features with 10,000-fold de-
creased runtime as compared to the slowest features. Sup-
plementary Figure S1 shows the negative decadic logarithm
of the P-values for features in the three categories. Since the
two fast categories already contained 54 and 86 significant
features, respectively, we evaluated their combined informa-
tion content for predicting miRNAs. We derived classifiers
not only from the complete feature set, but also from the
fast features set only. Prior to classifying miRNAs based on
the features we evaluated the redundancy of the features se-
lected. As shown in the correlation heat map in Supplemen-
tary Figure S2 many of the features were redundant.

Classification of precursors

For combining the predictive power of the weak learners
we applied different feature selection and classification ap-
proaches. We selected a large variety of classifier and feature
selection approaches, since there is no ‘one size fits all’ ap-
proach and our goal was to build a model that performs best
on our datasets. Each of the tested classifiers and feature se-
lection approaches have their strengths and weaknesses (e.g.
SVMs with different kernels are suitable for different kinds
of separation spaces). Since several single features show low
discriminatory power (Supplementary Figure S1) and many
features are correlated to each other (Supplementary Fig-
ure S2) it is important to define feature subsets that allow
to classify or declassify a new miRNA precursor as true
precursor. Different scaling and feature selection methods
can have substantial effects on the used classifier. There-
fore, we performed an exhaustive analysis of all combina-
tions. We evaluated 130 105 different combinations of fea-
ture selection and classifiers using repeated stratified 5-fold
cross validation. Even with the cross-validation, the evalu-
ation of so many different classification attempts may lead
to overoptimistic results. To address this problem, we per-
formed permutation tests. The evaluation of the key per-
formance criteria in Table 1 shows that almost all classifi-
cations were highly accurate. The area under the receiver
operating characteristic curve (ROC AUC) highlights me-
dian performance of 99%, with the 90% quantile of all ap-
proaches being at 99.5% and more impressively the 10%

quantile being at 95.8%. In consequence, 90% of all 130 105
tested classifiers had an AUC exceeding 95.8%.

For both, the complete and the fast feature set AdaBoost
outperformed the other models with an AUC of 99.6%,
a specificity of 99.9% and a sensitivity of 86.9% for the
complete feature set, and an AUC of 99.4%, a specificity
of 99.9% and a sensitivity of 83.4% for the fast feature
set. The selected AdaBoost classifier by itself selects only
features known to improve the prediction and is therefore
well suited for our broad set of features. This comparison
demonstrates that the performance of the fast feature set is
only marginally weaker than the performance of the full fea-
ture set. Nonetheless, we evaluated the performance of these
two models and carried out stratified 5-fold cross-validation
with 1000 repetitions each. The same approach was done
with 1000 permutation tests each. As shown in Supplemen-
tary Figure S3, random test performance did not compare
to the true performance in any of the cases and cross valida-
tion performance was stable and good in all cases. This fur-
ther suggests that the composition of the cross-validation
splits plays no major role for the model performance. In ad-
dition to the cross-validation performance we evaluated our
model with the fast feature set on two independent test sets.
A description of the independent test sets can be found in
the Materials and Methods section. The first test set was
composed of 129 human precursors and 28 human pseudo
precursors. On this set our model reached a sensitivity of
82.9% and a specificity of 100%. The second test set con-
tained 350 mouse precursors and 56 mouse pseudo precur-
sors and resulted in a sensitivity of 81.4% and a specificity
of 98.2%.

Evaluation of prediction from 1097 miRNA NGS samples

Having evaluated the performance of our classifier on the
positive and negative training set we applied the models to
1097 in-house data sets (33–39). These contain 15 billion
reads in a total file size of 486GB (see Table 2). Again, we
first compared the fast feature set versus the complete fea-
ture set. The prediction was carried out for each sample in-
dividually. They were then merged and filtered according
to their global read signature. The differences between the
models regarding known miRNAs were minimal with both
models discovering 900 precursors, while 55 additional were
uniquely found in the fast model opposed to 34 in the full
model, as shown in Supplementary Figure S4. As for the
novel miRNAs both models discovered 10 651 precursors.
We then compared the unique predictions of both models
in regard to their mean probability, novoMiRank score and
the number of samples they were predicted in. We found
that their mean scores and the mean number of samples
they were predicted in were very similar (score of 1.18 for
the complete model, 1.19 for the fast one; predicted in 7.5
samples for the complete and 7.6 for the fast model). How-
ever, we noticed also that for both sets the majority of the
differing predictions were near the decision boundary with
a mean probability below 60% (in contrast to an average of
70% for the common set), meaning that these predictions
were among the less likely precursor miRNA candidates.
Therefore, since both models performed very similarly, ex-
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Table 1. Cross validation performance

Specificity Sensitivity Accuracy NPV Precision ROC AUC F0.5

Median 99.78% 70.62% 98.61% 98.90% 91.37% 98.98% 85.10%
90% quantile 99.91% 82.35% 99.18% 99.34% 95.61% 99.50% 91.81%
10% quantile 99.44% 45.17% 97.41% 97.97% 73.60% 95.85% 64.80%
AdaBoost (all features) 99.98% 86.85% 99.51% 99.51% 99.54% 99.58% 96.71%
AdaBoost (fast features) 99.98% 83.37% 99.38% 99.38% 99.26% 99.39% 95.60%
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Figure 2. Distribution of recovered known miRBase precursors using
miRMaster and miRDeep2. Predicted precursors are regarded as similar
if they overlap by at least 90%. The black boxes show the number of pre-
cursors contained in the training set of miRMaster.

cept for the less likely candidates, we further focused on the
fast model, due to its runtime advantage.

Comparison between miRMaster and miRDeep2

To further evaluate the performance of miRMaster we com-
pared its predictions with the predictions of miRDeep2, one
of the central programs for miRNA discovery. In detail, we
ran miRDeep2 with default parameters on our 1097 NGS
samples and merged the overlapping precursors predicted
by miRDeep2 by retaining the precursors predicted in most
samples. The same procedure was applied for miRMaster.
A more detailed description of the different analysis steps
can be found in the Methods section.

As shown in Figure 2, miRDeep2 recovered 59.5% of the
known miRBase (version 21) precursors detected by quan-
tification while miRMaster found 62.3% of them. Further,
miRMaster consistently recovered more precursors from
our training set than miRDeep2 (in total 414 versus 396).
Specifically, 181 precursors were exclusively found by miR-
Master and 138 by miRDeep2 as shown in Supplementary
Table S3. Figure 2 shows that both tools perform especially
well in earlier miRBase versions with both tools report-
ing nearly all precursors up to miRBase version 7. Precur-
sor miRNAs exclusively detected by miRDeep2 are mainly
found in later miRBase versions and contained only 7 pre-
cursors of miRNAs with strong experimental evidence for
targets in miRTarBase. By contrast miRMaster detected 21
precursors in later miRBase versions with strong experi-
mental evidence for targets in miRTarBase. These results
might be biased since our models contain many more fea-
tures and are trained using human high-confidence miR-
NAs on the one hand, and many miRNAs in later miRBase
versions have already been reported by miRDeep2 on the
other. Overall, the data suggest that our classifier identifies

more known miRNAs and especially more of the strongly
confident miRNAs.

To present a realistic comparison in runtime of miR-
Master and miRDeep2, we measured execution time on the
same infrastructure starting from pre-processed data. The
computations were performed on a node with four AMD
Opteron 6378 (4 × 16 cores totaling 64 cores) at 2.4 GHz
and 512GB DDR3-RAM. MiRDeep2 required 102.5 h (4.4
days) without PDF generation (usually increases the run-
time by 40% and produces reports for each known and pre-
dicted precursor). The respective steps of miRMaster re-
quired only 5.5 h which is a 19-fold decrease in runtime
compared to miRDeep2. The difference is especially notable
since miRMaster performed many additional analyses such
as prediction of isoforms, variants in miRNAs and others.
This difference in runtime is explained by the computed fea-
tures and by different implementations. While miRDeep2
is implemented in Perl, miRMaster relies on a more effi-
cient implementation in C++ for substantial parts of the
program. One example is the precursor excision step, a reim-
plementation of the miRDeep2 Perl code in C++. This part
of the program is roughly 40-fold faster in miRMaster as
compared to miRDeep2.

A detailed break-down of the runtime in the different
steps is presented in Supplementary Figure S5. The reads
are mapped against miRBase and multiple other ncRNA
databases (1.52% of the runtime) and to the human genome
using Bowtie (56) (0.72% of the runtime). The afore men-
tioned precursor excision step requires 0.2% of the run-
time. The following steps that are central for miRMaster
include precursor segmentation, filtering, feature compu-
tation and prediction, altogether requiring 30.92% of the
runtime. The predicted miRNA precursors from different
samples are subsequently merged and filtered according to
the read profiles of all samples (12.60% of the runtime).
The following assignment to one of six categories ‘known’,
‘shifted known’, ‘one annotated’, ‘dissimilar overlapping’,
‘half novel’ or ‘novel’ requires 0.75% of the runtime. For
the prediction flagging step, ncRNAs from Ensembl (57),
lncRNAs from NONCODE (61) and known miRNAs from
miRBase are mapped against the precursors (4.34% of the
runtime). Finally, different secondary analyses are carried
out on known and novel miRNAs, including quantification,
which is again a reimplementation of miRDeep2, detection
of isoforms and single base mutations. These steps, includ-
ing the mapping of non-human reads to a collection of 7556
bacteria and 7026 viruses of NCBI RefSeq, permitting the
detection of potential exogenous miRNAs, require in total
48.96% of the server runtime.
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Table 2. Composition of all 1836 NGS samples

Source / Description #Samples #Reads Compressed File Size

CNS lymphoma patients and controls (in-house) 44 884 Mn 25GB
Alzheimer patients and controls (in-house) 203 3.4 Bn 114GB
Cardiovascular disease patients and controls (in-house) 485 6.9 Bn 205GB
Multiple sclerosis patients and controls (in-house) 217 1.2 Bn 44GB
Blood cell fractions from healthy donors (in-house) 148 3.3 Mn 98GB
GSE64142 (monocyte-derived dendritic cells upon bacterial infection) 116 1.4 Bn 43GB
GSE53080 (myocardium, plasma and serum in heart failure patients) 185 925 Mn 36GB
GSE49279 (adrenocortical tumors) 78 1.2 Bn 34GB
GSE45159 (adipose tissue) 360 786 Mn 24GB
Sum 1836 20 Bn 623GB

Web-based analysis using miRMaster

With the development of miRMaster we aimed to provide a
comprehensive web-based toolbox for an all-in-one miRNA
analysis. In detail, the web-based tool has to (a) enable the
analysis of HT-sequencing raw data without installing any
software, even for data sets in the range of dozens of giga-
bytes; (b) perform the most common and further special-
ized analyses in an integrative manner; (c) return the results
in a manner to be used for identifying interesting hits and
for publication purposes by wet-lab scientists. These anal-
yses are carried out in a fully integrated manner. From the
raw data input (1097 compressed FASTQ files, 486GB) to
final results for all calculations, miRMaster required 23.5
h. Data upload at client side was performed on an Intel
Core i5–5200U Notebook with 12GB DDR3-RAM using
Mozilla Firefox 48 and required most of the time (18 of
the 23.5 h), while the analysis of pre-processed data took
only 5.5 h. At client side, FASTQ files are first pre-processed
(adapter trimming, quality filtering, read collapsing) and
subsequently uploaded. The functionality is implemented
in JavaScript such that no software has to be installed by
the user. The runtime of this step may vary based on the
equipment at user site and the bandwidth for data upload.
Real world tests have demonstrated that studies including
e.g. 50–100 samples can be evaluated in well below 5 h.

Evaluation of variations in miRNAs by miRMaster

First, we investigated the mutation frequency. For each
known miRNA of each of the 1097 samples we searched
the number of single base mutations. To reduce a bias de-
pending on the coverage we considered only miRNAs and
their variants covered by at least 30 reads in 100 samples.
Out of 2147 detected miRNAs 333 fulfilled the criteria. Sup-
plementary Table S4 lists the mutations found in all miR-
NAs. Overall the largest number of variants was discovered
for hsa-miR-486-5p, which is abundantly expressed across
all samples with two precursors. However, for the majority
of miRNAs the number of variants is low with most miR-
NAs having two or less variants (67.3%). For some miR-
NAs, such as hsa-miR-6131 the unmutated form was al-
most never detected and only variants with mutations at
position 8 and 14 were found. Another example is hsa-miR-
1260b with the most abundant form showing an A→G mu-
tation at position 8 (Supplementary Figure S6). However,
for most miRNAs (91.6%) the wildtype was most expressed.
Our results suggest that only a small set of miRNAs is fre-
quently affected by mutations e.g. due to RNA editing. The

low number of mutations is to be expected, since mutations,
especially in the seed region, are likely to highly affect the
miRNA regulation network.

Next, we calculated for each known miRNA the num-
ber of isoforms, analogously to the steps performed for
the detection of single base mutations. After applying the
abovementioned filter criteria, we found 277 miRNAs iso-
forms that are listed in Supplementary Table S5. As for the
mutated miRNAs we found the by far largest number of
isoforms for hsa-miR-486-5p, which is highly expressed in
blood. In consistence with the single base mutation results,
the number of variants is low for the majority of miRNAs
with most miRNAs (53.8%) showing four or less variants.
For most miRNAs (71.5%) we detected the canonical form
as annotated in miRBase. The miRNA with most variants
and without canonical form was hsa-miR-107. As shown
in Supplementary Figure S7, the most expressed form of
hsa-miR-107 with a median of over 60% was trimmed by
four nucleotides from the 3′ end, resulting in a miRNA with
19 nucleotides. Further, we frequently observed a lack of a
dominating isoform over all samples, as for example for hsa-
miR-29a-3p (Figure 3). This is consistent with the idea that
isoform expression varies depending on the context, such as
the cell type, time or population. Since the canonical form
was most expressed in only 33.6% cases, isomiRs apparently
play an essential role in miRNA function.

Comprehensive version of the human miRNome

Currently, the total number of human miRNAs is contro-
versially discussed. While miRBase currently contains 2588
human mature miRNAs (version 21), several studies pro-
pose even larger sets (e.g. Londin et al. (30), Backes et al.
(11), Friedländer et al. (31), Jha et al. (32)). There exist two
major challenges. First, the different miRNA sets are par-
tially overlapping or contain miRNAs shifted only by few
bases, adding a substantial redundancy. Second, the miR-
Base contains many false positive miRNAs, especially in
later versions.

Using miRMaster we attempted to generate a coarse de-
scription of the human miRNome, i.e. we wanted to de-
scribe as many putative miRNA candidates as possible, be-
ing well aware that false positives are included (e.g. tRNA
fragments, piRNAs or artifacts). This collection of poten-
tial candidates can be used to minimize further redundancy
in upcoming high throughput studies.

Thus, in addition to our in-house NGS samples, we col-
lected 739 samples from GEO (40), resulting in 1836 NGS
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Figure 3. Isoform distribution of hsa-miR-29a-3p. Only variants appearing with an evidence of at least 30 reads in 100 samples are shown on the x-axis.
Only reads occurring at least 30 times in a sample are shown for the relative expression to avoid large outlier due to low raw expression. Isoform notation:
the number before F stands for the distance to the canonical 5′ end, in 5′-3′ direction (i.e. positive for trimmed, negative for extended); the number before
the T stands for the distance to the canonical 3′ end (i.e. negative for trimmed, positive for extended). The canonical form is the third most frequent one
and is highlighted in blue. Variants without base exchange are frequently shorter or shifted in the 5′ direction (orange), those with base exchanges match
either the star/stop of the canonical miRNA (green) or are shifted slightly to the 5′ (light green) or 3′ (dark green) direction.

Figure 4. Distribution of the number of expressed precursors according
to an evidence in a minimum number of samples and a total minimum
number of reads. (A) The distribution of the number of expressed novel
precursors. (B) The distribution of the number of known precursors.

samples (Table 2), and predicted novel miRNAs on those
samples. The run resulted in 21 996 novel predicted miRNA
precursors that are listed Supplementary Table S6. Those
predictions can be inspected on the miRMaster webpage
and downloaded as FASTA format. As shown in Figure 4A,
most of the novel precursors were weakly expressed and in
few samples. Considering only miRNAs with an expression
in at least 30 samples reduced the number of predictions to
5845. As displayed in Figure 4B, the known precursors of
miRBase (version 21) seem to be less affected by the aug-
menting number of samples or reads. Supplementary Fig-
ure S8 shows the number of expressed known and novel
precursors according to their expression in multiple sam-
ples. The number of novel precursors decreases exponen-
tially and faster than the known precursors with increasing
number of required samples. This suggests that the major-
ity of the commonly expressed miRNome is already known

and that mainly tissue specific, time specific or other context
specific miRNAs remain to be discovered.

Precursors of known and new miRNAs are evenly dis-
tributed on the positive and negative strands as shown in
Supplementary Figure S9. The chromosomal distribution
of known precursors largely matches with the distribution
of the novel precursors as displayed in Supplementary Fig-
ure S10. In both cases, the least number of precursors can
be found on chromosome Y. Chromosome 13, 18 and 21
harbor few known and novel precursors.

As for the number of motifs found in known and novel
precursors with two annotated mature miRNAs, we found
a slight enrichment of motifs in miRBase miRNAs (Sup-
plementary Figure S11). A more fine-grained motif distri-
bution is shown in Supplementary Figure S12.

Since miRNAs often occur in genomic clusters, we also
searched genomic regions that are enriched by novel miR-
NAs. Supplementary Table S7 lists the positions of clusters
when allowing a distance of at most 10 kb between the mid-
dle position of known or novel precursors. The largest clus-
ter was composed of 46 known precursors and spanned 96
kb on chromosome 19. The largest cluster that contained
both known and novel precursors was found on chromo-
some 14 and contained 42 known and 2 novel precursors
and spanned 45 kb. In total 3969 clusters contained either
known or novel precursors. Of these, 3423 clusters con-
tained exclusively novel precursors. Further, 455 clusters
contained both known and novel precursors and 91 exclu-
sively known precursors. Supplementary Figure S13A and
B shows the number of clusters with at least two or five pre-
cursors on each chromosome. Most clusters (394) with a
minimum size of 2 could be found in chromosome 1. When
focusing on clusters with at least five members, the num-
bers decreased to 154 clusters, 93 of which contained ex-
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and 19 (size 42 and 46) were trimmed for a better visualization. The sum of the number of novel or known precursors in all clusters of a chromosome with
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clusively novel precursors. Most clusters were observed on
chromosome 11. Figure 5 shows the distribution of all clus-
ters with five or more precursors over the human genome
and demonstrates that many clusters contain both, known
as well as novel precursors. The largest novel cluster with 12
precursors was found on chromosome 12.

To estimate how close our reported predictions might be
to the coverage of the human miRNome, we performed pre-
dictions for different numbers of samples, each 10x ran-
domly selected from our sample set. Supplementary Figure
S14 shows the number of predictions according to the num-
ber of samples. We observe that the increase in number of
predictions clearly exponentially diminishes with the num-
ber of samples. Since these predictions contain many false
positives we expect the real part to be much smaller and the
increase in predictions smaller as well. Therefore, we sug-
gest that, at least for the tissues covered by our samples, we
are close to the complete coverage of the human miRNome.
We are aware and expect that the addition of samples of
further tissue types or different conditions might add new
candidates to our predicted set.

Expression analysis of miRNA candidates using custom mi-
croarrays

To provide further evidence that a relevant fraction of the
aforementioned mature miRNAs is not only due to NGS
bias or other artifacts such as RNA degradation, we built
a custom human microarray. This array contains all miR-
Base v21 miRNAs, the miRNAs from the study by Londin
et al. (30) and the top ranking miRNAs from the present
study. The final microarray contained 11 866 miRNA can-
didates that have been measured each in 20 replicates (237

320 features per sample). For the microarray hybridization,
we selected tissues from our Tissue Atlas (64) that contained
the most miRNAs and added body fluids harboring like-
wise many miRNAs (65). The set of samples included a
pool of PAXGene blood samples, a pool of plasma sam-
ples, lung tissue, brain tissue, kidney tissue, testis tissue,
heart tissue and a reference pool from Agilent. Since de-
graded RNA is known to affect the miRNA patterns, we
ensured high-quality of the used RNA samples. The RIN
values of the different specimens ranged between 7.5 and
9. For the three sets of miRNAs the percentage of positive
miRNAs in the hybridization experiments is presented in
Figure 6A. For 56% of miRBase miRNAs, 55% of miR-
NAs by Londin et al. and 73% of miRNAs from the present
study no positive signal in any sample was observed. On the
other extreme, 11%, 17% and 8% were respectively positive
in all experiments. The larger fraction of miRNAs not de-
tected in any sample in the third set can be explained by
the fact that many of the high abundant markers were pre-
viously already detected while we selected the candidates
from the not yet discovered and likely much less abundant
fraction. Still the results presented above can contain false
positives (e.g. reagent contamination or positive signals in-
duced by fragmented other RNAs) and false negatives (e.g.
since other tissues or samples may harbor the miRNAs neg-
ative in the presently used samples or that are negative be-
cause of the limit of detection of microarrays). The same
pattern as described can be recovered from the cluster anal-
ysis of all miRNAs from the three sets in Figure 6B. The
lower part of this heat map shows that especially context
sensitive miRNAs are observed among the set of miRNAs
candidates only reported by miRMaster. In sum, the data
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Figure 6. Expression of miRNA candidates on custom microarrays. (A) Distribution of the percentage of detected miRNAs in different samples. The colors
correspond to the miRNAs of three studies: miRBase, dark gray; Londin et al., medium grey; this study, light gray. (B) Heatmap of the logarithmized
expression intensities of all miRNAs according to different tissues. For better visualization all expression values superior to 1000 were trimmed. The
hierarchical clustering was performed with Euclidean distance.

strongly suggest that miRNAs exist which are currently not
annotated in the miRBase. These miRNAs deserve further
validation. All miRNAs from this analysis are contained in
Supplementary Table S8.

CONCLUSIONS

The use of multiple web-based and standalone tools com-
bined with different data formats makes the analysis of
HT-seq miRNA data difficult, especially for wet-lab sci-
entists. Therefore, we propose a web service that performs
the most frequently requested applications directly from the
raw FASTQ files. At the same time, experimental methods
are advanced such that large-scale studies are feasible. Stud-
ies with many hundred or thousand samples are hard to
be evaluated by current tools. Besides accuracy and speci-
ficity, runtime is among the most important criteria. Al-
though miRMaster carries out a far greater number of anal-
yses than other tools like miRDeep2, the running time of
the miRMaster analysis was up to 20-fold faster. Of course,
the precursor candidates predicted by miRMaster should in
subsequent steps undergo a manual inspection and the se-
lected ones be experimentally validated before calling them
real miRNAs. A first validation step could be performed
with our custom microarray followed by a more in depth
validation of the detected interesting candidates using e.g.
northern blotting. Applications such as target prediction,
functional analysis and differential expression of known
and novel miRNAs will in the future complete the portfolio
of miRMaster.
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