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Fitness cost associated with resistance to fluoroquinolones was recently shown to vary
across clones of methicillin-resistant Staphylococcus aureus and extended-spectrum
β-lactamase-producing Klebsiella pneumoniae. The resulting dissimilar fitness should
have influenced the clonal dynamics and thereby the rates of resistance for these
pathogens. Moreover, a similar mechanism was recently proposed for the emergence of
the H30 and H30R lineages of ESBL-producing E. coli and the major international clone
(ribotype 027) of Clostridium difficile. Furthermore, several additional international clones
of various multiresistant bacteria are suspect to have been selected by an analogous
process. An ability to develop favorable mutations in the gyrase and topoisomerase IV
genes seems to be a prerequisite for pathogens to retain fitness while showing high-level
resistance to fluoroquinolones. Since, the consumption of other “non-fluoroquinolone”
groups of antibiotics have also contributed to the rise in resistance rates a more judicious
use of antibiotics in general and of fluoroquinolones in particular could ameliorate the
international resistance situation.
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INTRODUCTION

Though, clonal spread has always been a hallmark of many serious pathogens it is striking and
remains enigmatic why the clonal spectra of several multiresistant bacteria have undergone a
reduction at some point during the last three decades. We have witnessed a worldwide clonal
shrink among others in methicillin-resistant Staphylococcus aureus (MRSA), extended-spectrum
β-lactamase (ESBL)-producing Klebsiella pneumoniae and Clostridium difficile. The question arises
what sort of driving force(s) could have reshaped the clonal landscape?

It is well-established that some clones of MRSA have for some time been on the advance
replacing others and disseminating in novel geographic areas. Among the foraying MRSA
clones ST22 (EMRSA-15) and CC5 proved particularly adept. In Europe where solid, up-to-date
information on the clonal distribution of MRSA is available they are well-established to have
become the dominant clones at the expense of multiple others (Grundmann et al., 2014). In
addition, the ST22 clone has lately proved the most common sequence type in the healthcare
setting in Australia (Coombs et al., 2014), and Singapore (Hsu et al., 2015). CC5 was reported
the most widespread MRSA clone in the healthcare setting in Africa (Abdulgader et al., 2015) and
it is dominant or on the rise in several Asian countries (Chen and Huang, 2014). CC5 has also
remained the second most common clone in invasive infections in the United States though a novel
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antibiotic resistant variant of the CC8 clone (USA300) has
recently emerged as the most frequent type of MRSA in blood
samples (Tenover et al., 2011). In contrast various long prevalent
MRSA clones, especially ST30 and ST239, have been losing
ground to or have been replaced by CC5 and ST22 strains in
hospitals worldwide (Velazquez-Meza et al., 2004; Ma et al.,
2006; Amorim et al., 2007; Conceição et al., 2007; Aires-de-
Sousa et al., 2008; Knight et al., 2012; Espadinha et al., 2013;
Lim et al., 2013; Coombs et al., 2014; Hsu et al., 2015; Lawes
et al., 2015). Furthermore, the ST228 (South-German) clone
is also on the retreat. It has been reported replaced by ST22
isolates in both German and Italian facilities (Albrecht et al., 2011;
Baldan et al., 2012). The surveillance conducted by the European
Staphylococcal Reference Laboratory Working Group observed
the overall decline of these latter clones between 2006 and 2011
(Grundmann et al., 2014). In addition, it reported a decrease in
the incidence of the ST8 clone on the continent (Grundmann
et al., 2014).

A reduction has also been observed in the clonal spectrum of
ESBL-producing K. pneumoniae. A few STs of the pathogen
mostly genetically related to each other have become
internationally dominant during the last decade (Damjanova
et al., 2008; Lee et al., 2011; Woodford et al., 2011; Rodrigues
et al., 2014; Park et al., 2015). Interestingly, a marked reduction
in the abundance of ESBL-producing K. pneumoniae STs
was associated with a shift in the type of ESBL produced:
while prior to the clonal reduction ESBLs of the SHV group
prevailed strains of the novel major international STs produce
primarily CTX-M-15 enzymes (Damjanova et al., 2008;
Woodford et al., 2011). In addition a sole sequence type of
K. pneumoniae, ST258, related to the major international clones,
contributed significantly to the dissemination of carbapenem
resistance worldwide (Woodford et al., 2011; Chen et al.,
2014).

Moreover, a few major clones of C. difficile also attained
international prominance (Smits, 2013; Tickler et al., 2014;
Valiente et al., 2014; Freeman et al., 2015).

Strikingly all of these events took place at some point during
the last three decades.

EXPERIMENTAL PROCEDURES

Methicillin-Resistant Staphylococcus
aureus
Two clonal replacements have been observed in HA-MRSA in
Hungary during the last 15 years. A dramatic shift took place
about 15 years ago when strains of the New York–Japan (ST5)
and South-German (ST228) clones almost completely supplanted
isolates of the then resident Hungarian/Brazilian clone (ST239;
Conceição et al., 2007). Moreover, we have been witnessing
another MRSA clone replacement in Hungary during the last
couple of years: the Western European clone ST22 (EMRSA-15)
has been gradually expanding at the expense of mainly the South-
German clone (ST228; Grundmann et al., 2014). Interestingly,
both clonal shifts were associated with a transient increase in the

rate for MRSA1. The incidence of MRSA from invasive infections
in Hungary between 2001 and 2014 are shown in Figure 1.

Since, the observed clonal shifts in MRSA were supposed
to have been promoted by varying fitness cost associated with
resistance to some antibiotic the impact of fluoroquinolone
resistance on the vitality of MRSA has been tested by us in a clonal
affiliation (Horváth et al., 2012).

Propagation assays from various clones of MRSA showing
similar MIC values for fluoroquinolones established that isolates
from the New York–Japan (ST5) and South-German clones
(ST228) retained significantly more fitness than strains from
the Hungarian/Brazilian clone (ST239) which they replaced in
Hungary (Horváth et al., 2012). In addition isolates from the
EMRSA-15 clone (ST22) maintained more vitality than the
subsequently supplanted South-German strains. Moreover, a
fluoroquinolone resistant isolate from the ST30 CA-MRSA clone
suffered much greater fitness cost than strains from any other
clone tested. Furthermore, fluoroquinolone resistant strains from
two additional CA-MRSA clones (ST8 and ST80) also displayed
fitness inferior to that of the EMRSA-15 (ST22), New York–Japan
(ST5) and South-German (ST228) strains, though, this difference
was smaller than that observed with the ST30 and ST239 isolates
(Horváth et al., 2012). These results should account not just for
the clonal shifts observed in Hungary but also for the failure
of the ST30, ST80, and ST8 CA-MRSA clones to disseminate in
Hungarian hospitals.

The superior fitness shown by the newly invading MRSA
clones should well-explain the increase in the rate for MRSA
detected transiently subsequent to both clonal replacements
(Figure 1).

However, it must have been a rise in the use of
fluoroquinolones that could have allowed the widespread
dissemination of the highly fluoroquinolone resistant major
clones of MRSA in Hungary. Trends in the rate for MRSA
indeed proved significantly associated with trends in the
consumption of fluoroquinolone type antibiotics in the country
(Pearson correlation, significance two-tailed: 0.03; Figures 1
and 2). The MRSA rates also displayed a significant association
with the consumption of second generation cephalosporins
though the relationship proved somewhat weaker (Pearson
correlation, significance two-tailed: 0.05). The consumption of
third generation cephalosprorins was unrelated to the rate for
MRSA (Pearson correlation, significance two-tailed: 0.140)1,2.

Subsequently, Knight et al. (2012) investigating the clonal
dynamics of MRSA in a British hospital published findings
consistent with our results. In addition, Holden et al. (2013)
showed that the development of resistance to fluoroquinolones
played a pivotal role in the widespread dissemination of the
ST22 clone. Moreover, Lawes et al. (2015) considered the use
of fluoroquinolones significant in the clonal shifts of MRSA
in Scotland and Hsu et al. (2015) also suggested that the
use of fluoroquinolones could have contributed to a clonal
rearrangement in MRSA in Singapore. Moreover, the results are
propped up by substantial literature on the replacement of the

1http://ecdc.europa.eu/en/healthtopics/antimicrobial_resistance/database
2http://ecdc.europa.eu/en/activities/surveillance/ESAC-Net/Pages/index.aspx
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FIGURE 1 | The rate for MRSA among Staphylococcus aureus strains isolated from invasive infections in Hungary between 2001 and 2014%
(http://ecdc.europa.eu/en/healthtopics/antimicrobial_resistance/database; see explanation in text).

ST30, ST239, ST228, and ST8 clones by ST22 and CC5 strains
in the healthcare setting in various parts of the world referred to
above.

Apart from demonstrating differences in the fluoroquinolone
resistance-associated fitness cost between individual clones
of MRSA our work also showed that some differences
between isolates affiliated with the same STs also exist
(Horváth et al., 2012). Thus, STs are having “sublineages”
showing to some extent diverse fitness costs associated with
resistance to fluoroquinolones. The recent dissemination of
the originally CA-MRSA USA300 (CC8) clone in American
hospitals should be related to the emergence of such a novel
sublineage commanding better fitness relative to previous
lineages when showing resistance to fluoroquinolones. It is
probably no accident that Tenover et al. (2011) and Alam
et al. (2015) both emphasized that in contrast to previous
strains many of the recently tested USA300 isolates proved
resistant to fluoroquinolones. Moreover, the emergence of a
new sublineage within the USA300 clone should not come as
a surprise since the clone ab ovo consisted of a genetically
related but diverse group of strains (Tenover and Goering,
2009).

Though, a variety of pathogenicity factors and resistance
markers to “non-fluoroquinolone” antibiotics should also affect
the dissemination of MRSA the findings with fluoroquinolone
resistance-associated fitness cost strongly suggest that it is the
primary determinant of the epidemiology of MRSA in every area
where fluoroquinolones remain in extensive use. There has to
date been no report convincingly demonstrating that any other
factor – with the obvious exception of the abandonment of the
use of β-lactam antibiotics – could have exerted a more profound
effect on the clonal dynamics of the pathogen in the healthcare
setting.

Whole-genome sequencing to compare the genetic
composition of various clones of MRSA and, thus, identify
determinants influencing clonal dynamics have been performed
by two groups. Hsu et al. (2015) reported on the displacement
of the ST239 MRSA clone by the ST22 clone in Singapore.
A thorough review of the genetic makeup of both clones
interestingly showed that in contrast to the ST22 isolates
many of the ST239 strains harbored genes of the “arginine
catabolic mobile element” (ACME), nevertheless, they have
been readily replaced by the ST22 isolates. No additional
suspect pathogenicity factor could be demonstrated in either
clones. However, authors hint that it could have been fitness
cost associated with resistance to fluoroquinolones that was
responsible for the success of the ST22 clone.

Moreover, Alam et al. (2015) genetically investigated the novel
lineage (clade) of the USA300 clone that has recently been
emerging in the USA. Though, whole-genome sequencing on
many isolates have been performed they failed to identify any
suspect pathogenicity factor that could have accounted for the
novel clade’s dissemination. Nevertheless, they observed that, in
contrast to strains of the old lineage, isolates of the emerging clade
were all resistant to fluoroquinolones and harbored “classical”
gyrase and topoisomerase mutations.

Though, the superior production of biofilm was reported to
promote the dissemination of the ST22 (EMRSA-15) clone its
general biofilm-producing capacity is in fact inferior compared
with those of the ST228 and ST8 strains it readily replaces in the
healthcare setting (Baldan et al., 2012).

Although, resistance markers to “non-fluoroquinolone”
antibiotics should also impact the fitness of MRSA the
preeminence of fluoroquinolone resistance-associated fitness
cost is reflected in the observation that our CA-MRSA strains
were usually more susceptible to various additional groups of
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antibiotics than the major clone HA-MRSA isolates, nevertheless,
they suffered more fitness cost upon acquiring resistance to
fluroquinolones than them. Interestingly, the CA-MRSA isolate
suffering the most fitness cost subsequent to the induction of
resistance to ciprofloxacin was the ST30 strain showing resistance
exclusively to β-lactam antibiotics apart from fluoroquinolones
(Horváth et al., 2012).

ESBL-Producing K. pneumoniae and
ESBL-Producing E. coli
A couple of years subsequent to the “epidemiological earthquake”
observed with MRSA a major clonal shift took place with
ESBL-producing K. pneumoniae in Hungary (Damjanova et al.,
2006, 2008). Prior to 2003 ESBL-producing K. pneumoniae
had been polyclonal in the country and the isolates produced
SVH type enzymes (Damjanova et al., 2007). However, after
2004 we witnessed the emergence of three major STs of ESBL-
producing K. pneumoniae two of which (ST11, ST15) were
originally detected in France3. Interestingly, in contrast to
previous isolates, all of the novel strains carried the CTX-
M-15 ESBL gene (Damjanova et al., 2006, 2008). The new
major clones disseminated exclusively in adult hospital ward
where fluoroquinolones were in extensive use and not in
the perinatal intensive care units where fluoroquinolones are
not considered a drug of choice (Szilágyi et al., 2010). In
the perinatal intensive care units the previous epidemiological
situation prevailed: the isolates remained polyclonal and
continued to produce SHV type enzymes (Szilágyi et al.,
2010).

Similarly, to the MRSA situation the observed clonal change
was associated with a rise in the rate for ESBL-producing
K. pneumoniae in Hungary4 (Data not shown). This rise, however,
in contrast to MRSA, was not expected to be significantly
associated with the consumption of fluoroquinolones for two
reasons.

(1) The new ESBL-producing K. pneumoniae clones “invaded
Hungary” a couple of years subsequent to the increase in
the consumption of fluoroquinolones and, thus, commenced
to expand in 2004 after the advent of the widespread use of
fluoroquinolones in the country (Figure 2; Damjanova et al.,
2006, 20085).

(2) The dissemination of the major ESBL-producing
K. pneumoniae clones did not prove as exclusive as that of
the major HA-MRSA clones in Hungary (Szilágyi et al., 2010)
and rates for clones not selected by fluoroquinolones are not
supposed to be governed by changes in the consumption of
these agents.

Though, varying fitness cost associated with resistance to
fluoroquinolones was obviously influencing the clonal dynamics
of MRSA in the hospital setting we have demonstrated an
even more pronounced difference between minor clone and
major clone strains in ESBL-producing K. pneumoniae. Some

3http://bigsdb.web.pasteur.fr/klebsiella/klebsiella.html
4http://ecdc.europa.eu/en/healthtopics/antimicrobial_resistance/database
5http://ecdc.europa.eu/en/activities/surveillance/ESAC-Net/Pages/index.aspx

FIGURE 2 | Trend of the consumption of fluoroquinolones (ATC group
J05), second-generation cephalosporins (ATC group J05) and
third-generation cephalosporins (ATC group J05) in the hospital sector
in Hungary from 1998 to 2014 (DDD per 1000 inhabitants and per year;
http://ecdc.europa.eu/en/activities/surveillance/ESAC-Net/Pages/ind
ex.aspx).

of our minor clone Klebsiella strains, originally susceptible to
fluoroquinolones, suffered a dramatic drop in fitness when
resistance to ciprofloxacin was induced in them while others
proved unable to assume high-level resistance to ciprofloxacin
(Tóth et al., 2014). Interestingly, in contrast to major clone
isolates which all carried three mutations in the gyrA and parC
genes, the minor clone ESBL-producing K. pneumoniae strains
either failed to develop any of the well-known gyrA and parC
mutations or had fewer of them (Tóth et al., 2014).

Additional determinants of fluoroquinolone resistance were
also investigated (Tóth et al., 2014). The qnrA, B, C, D, and S;
qepA and oqxAB were not detected in any of our isolates. The
aac(6′)-Ib-cr was demonstrated in all of the four major clone
strains and in one of the minor clones isolates (the single strain
carrying a CTX-M-15 plasmid). Moreover, an active efflux system
was observed in three of the four minor clone ciprofloxacin
resistant isolates but in none of the major clone strains (Tóth
et al., 2014).

These results should account for the clonal dynamics of
ESBL-producing K. pneumoniae in Hungary and could explain
the widespread international dissemination of the CTX-M-
15 enzyme. Nevertheless it remains to be established why
major clone strains proved more adept in developing favorable
mutations in the gyrA and parC genes than minor clone isolates.
In addition the background of clonal affiliation of fitness cost
elicited by the CTX-M-15 plasmid also needs to be elucidated.

Antibiotics other than fluoroquinolones have not been
observed to appreciably impact the clonal dynamics of
K. pneumoniae. Most of our minor clone K. pneumoniae
isolates showed similar MIC values to aminoglycosides to those
of major clone strains (Tóth et al., 2014). In addition, though
three of the four minor clone isolates eliminated the SHV
plasmids during the induction of resistance to ciprofloxacin
which was associated with a dramatic drop in β-lactam resistance
they suffered much greater fitness costs than the major clone
strains carrying the CTX-M-15 plasmids and showing high level
resistance to β-lactams (Tóth et al., 2014).
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Apart from fitness cost associated with resistance to antibiotics
virulence factors should also influence the clonal dynamics of
ESBL-producing K. pneumoniae. Nevertheless data available in
the literature strongly suggest that the role of virulence factors
remains inferior relative to that of fitness cost associated with
resistance to fluoroquinolones.

Lascols et al. (2013) compared the virulence arsenal of major
and minor clone strains of ESBL-, and carbapenemase-producing
strains of K. pneumoniae and observed that – in contrast to
expectation – the minor clone isolates harbored somewhat more
virulence factors. Andrade et al. (2014) hinted that the production
of biofilm could have contributed to the success of the ST11
major clone of K. pneumoniae and Melegh et al. (2015) found
that the major clone strains of K. pneumoniae were more likely
to produce biofilm than minor clone isolates. However, Diago-
Navarro et al. (2014) observed “heterogeneity” in the formation
of biofilm in ST258 strains of K. pneumoniae – a close relative of
the ST11 clone. Moreover, Kong et al. (2012) questioned the role
of biofilm formation in the development of systemic infection
with K. pneumoniae. Furthermore, Melegh et al. (2015) also
observed that the major clone isolates of K. pneumoniae displayed
significantly higher MIC values to ciprofloxacin than the minor
clone strains!

A similar mechanism was reported by an American group
for E. coli last year. The multiresistant ST131 clone of E. coli
emerged as an international pathogen in 2008 (Nicolas-Chanoine
et al., 2008) and contributed to the worldwide spread of the CTX-
M-15 ESBL gene (Nicolas-Chanoine et al., 2014; Mathers et al.,
2015). Johnson et al. (2015) recently demonstrated that the main
multiresistant international lineages of the clone (H30, H30R)
command a “fitness advantage” relative to isolates from other
clones when showing high level of resistance to fluoroquinolones.
This “fitness advantage” – similarly to major clone isolates
of ESBL-producing K. pneumoniae – was associated with the
quantity of favorable mutations in the gyrA, parC, and parE
genes and a significantly weaker efflux activity relative to isolates
from other lineages (Johnson et al., 2015). Furthermore a very
recent revision of the topic based on the analysis of whole-
genome sequences concluded that “strong selection pressure
exerted by the widespread use of fluoroquinolones and extended-
spectrum cephalosporins” “most likely” played a crucial role in
the emergence of the H30 and H30R lineages (Stoesser et al.,
2016).

Clostridium difficile and Additional
Pathogens
It is well-established that the acquisition of fluoroquinolone
resistance is a novel characteristic in the major international
ribotype 027 of C. difficile compared with earlier strains of the
pathogen (He et al., 2013; Spigaglia, 2016). Moreover, Wasels
et al. (2015) recently showed that resistance to fluoroquinolones
in ribotype 027 strains is associated with a very modest fitness
cost; a trait linked to the presence of a favorable mutation
(Thre82Ile) in the gyrA gene. This result strongly argues for a
mechanism similar to that observed with HA-MRSA and ESBL-
producing K. pneumoniae since the same mutation has also

been demonstrated in isolates of some additional international
ribotypes genetically related or unrelated to ribotype 027
(Carman et al., 2009; Saxton et al., 2009; Spigaglia et al., 2010;
Walkty et al., 2010; Lin et al., 2011; Solomon et al., 2011; Lee et al.,
2014; Baldan et al., 2015; Kuwata et al., 2015).

The presence of the energetically favorable Thre82Ile gyrA
mutation in many strains of the major international ribotypes
of C. difficile should have promoted their dissemination in
a fluoroquinolone affected area that may partly account for
the relative diversity of the clonal spectrum of the pathogen
(Bauer et al., 2011; Tickler et al., 2014; Freeman et al., 2015).
This contrasts with the clonal landscape of ESBL-producing
K. pneumoniae where the capacity of developing favorable gyrA
and parC mutations seems to be the hallmark of just a few
genetically related international STs (Tóth et al., 2014).

A well-documented clonal shift of C. difficile occurred in a
Korean hospital reflecting the findings of Wasels et al. (2015).
The earlier prevalent C. difficile ribotype 001 strains were replaced
by isolates from the 014, 017, and 018 ribotypes within a
couple of years (Lee et al., 2014). Interestingly, all of the novel
ribotype strains carried the energetically favorable Thre82Ile
gyrA mutation while the Korean ribotype 001 isolates harbored
the Thre82Va gyrA mutation that has been shown by Wasels et al.
(2015) to be associated with a significant fitness cost.

Moreover, the proposed “fluoroquinolone mechanism” is
supported by the observation that the proportion of the ribotype
027 clone is significantly greater in adult ward than in pediatric
units (McFarland et al., 2016).

Apart from favorable fitness various virulence factors
produced by ribotype 027 strains have certainly contributed to
the clone’s dissemination (Stabler et al., 2009; Valiente et al.,
2014), although, differences between individual strains do exist
(Carlson et al., 2013). Furthermore, strains of additional major
ribotypes 001 and 106 have also been shown to command
superior virulence relative to many other clones (Vohra and
Poxton, 2011). Nevertheless Sarma et al. (2015) recently reported
that a significant decrease in the consumption of fluoroquinolone
type antibiotics resulted in the partial replacement of the ribotype
027, 001, and 106 strains – all reported to have been carrying
the Thre82Ile gyrA mutation (Carman et al., 2009; Saxton et al.,
2009; Cartman et al., 2010; Solomon et al., 2011) – by a variety
of minor clones. Consequently, superior virulence could not
prevent the demise of strains from any of these ribotypes once the
selecting pressure of fluoroquinolone exposure ceased. Moreover,
these findings are also in agreement with the national C. difficile
statistics of the UK (Wilcox et al., 2012).

Furthermore, Wasels et al. (2015) demonstrated that the gyrB
Asp426Asn and Asp426Val mutations confer an extra fitness on
C. difficile irrespective of exposure to fluoroquinolones. These
genetic alterations should also influence the clonal dynamics of
the pathogen. However, to properly investigate their impact their
prevalence should be investigated in a clonal affiliation.

In addition to the pathogens mentioned above the prospect
of a “fluoroquinolone resistance-associated fitness mechanism”
in the dissemination of a variety of multiresistant pathogens
would be worth investigated. Among others the ST198 clone
of Salmonella Kentucky (Le Hello et al., 2013) and the
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fluoroquinolone resistant clone of Streptococcus pneumoniae
(Ben-David et al., 2014).

To our understanding there may be a single species of bacteria
that seems to have efficiently adapted to resistance against
fluoroquinolones and varying fitness cost has to date certainly
failed to select a major international clone in it: Campylobacter
jejuni (Luo et al., 2004; Zeitouni and Kempf, 2011). The excellent
adaptation of C. jejuni is probably due to the hyperplasticity of its
genome (Stahl and Stintzi, 2011).

In summary our results and those of others indicate that
diverse fitness cost associated with resistance to fluoroquinolones
influenced the evolution and extensive dissemination of the
major international clones of a variety of important multiresistant
pathogens.

PRACTICAL CONSEQUENCES AND
DISCUSSION

Since the fitness of the major clones of multiresistant pathogens
mentioned above proved superior to those of the previously
prevalent minor clone isolates they may have disseminated
more quickly and, thus, could have influenced the rates
for the multiresistant pathogens in facilities/ward where
fluoroquinolones remained in extensive use. This process, as
indicated above, seemed obvious in Hungary with both MRSA
and ESBL-producing K. pneumoniae.

However, if the extensive use of fluoroquinolones – and
that of additional groups of antibiotics – contributed to a
rise in the incidence of various multiresistant bacteria, then
a more judicious consumption of antibiotics in general and
of fluoroquinolones in particular should lower the rate of
resistance for these pathogens. The available quantity and quality
of information in this respect varies across species. The data
on MRSA is the most abundant and seem to be the most
appropriate for drawing inferences from. This is no accident
since the selection of all major international clones of HA-
MRSA have been influenced by fluoroquinolones. Though, most
studies investigating a possible link between the consumption
of fluoroquinolones and the rate for MRSA did not establish
the clonal affiliation of the isolates at the facilities observed,
basically all surveys necessarily investigated the prevalence of
“fluoroquinolone-associated clone” isolates.

Most of the literature published on the influence of
fluoroquinolone consumption on the rate for MRSA show a clear
relationship: the more fluoroquinolones are used the higher the
rate for MRSA will rise and vice versa. The association seemed
so close that both the Society of Healthcare Epidemiology of
America (SHEA) in its 2003 guideline (LeDell et al., 2003) and
the British Department of Health in its 2011 guideline (Byrne
and Wilcox, 2011) recommended a restriction in the use of
fluoroquinolones as a control measure to curb the spread of
MRSA. Moreover, an abundance of papers demonstrated a direct
link between fluoroquinolone use and the incidence of MRSA
between 1998 and 2015 (Hill et al., 1998; Crowcroft et al.,
1999; Gruson et al., 2000; Harbarth et al., 2000; Graffunder and
Venezia, 2002; Weber et al., 2003; Aubert et al., 2005; Nseir

et al., 2005; Charbonneau et al., 2006; Cook et al., 2006, 2011;
LeBlanc et al., 2006; Madaras-Kelly et al., 2006; Muller et al.,
2006; Rogues et al., 2007; Aldeyab et al., 2008; Liebowitz and
Blunt, 2008; Vernaz et al., 2008; Kaier et al., 2009; Jacoby et al.,
2010; Thabet et al., 2010; Huang et al., 2011; Parienti et al., 2011;
Bertrand et al., 2012; Lafaurie et al., 2012; Dancer et al., 2013;
Couderc et al., 2014; Lawes et al., 2015). Nevertheless, a few
researchers after controlling for multifold confounding factors
failed to observe a significant association (Wibbenmeyer et al.,
2010; Datta et al., 2014). In addition three papers reported that
the use of distinct antibiotics from the group of fluoroquinolones
had diverse effects on the rate for MRSA, contradicting partly to
each other (MacDougall et al., 2005; Bosso and Mauldin, 2006;
Salangsang et al., 2010). Moreover, as mentioned above, trends in
the rate for MRSA and in the consumption of fluoroquinolone
type antibiotics in Hungary during the past 15 years are also
suggestive of a relationship (Figures 1 and 2). Despite this
strong circumstantial evidence the abscence of an established
mechanism for how fluoroquinolones could influence the rate
of β-lactam resistance in Staphylococcus aureus might have
precluded the acceptence of a causal relationship (Füzi, 2014).

An additional factor may complicate the situation somewhat
further. One of the groups investigating a possible link between
fluoroquinolone use and the rate for MRSA (Parienti et al., 2011)
observed a decline in the incidence of MRSA subsequent both to a
decrease and an increase in the consumption of the incriminated
antibiotics. The mechanism described above posits that the
development of resistance to fluoroquinolones is associated with
a significant fitness cost in minor clone strains of MRSA (Horváth
et al., 2012), however, the findings also imply that sooner or later
all MRSA strains – even the most able isolates – will suffer some
fitness cost when exposed to the pressure of fluoroquinolones in
the long term, that may account for the observation of Parienti
et al. (2011). Nevertheless, not surprisingly, Parienti et al. (2011)
reported a much greater decline in the rate for MRSA if the use
of fluoroquinolones was restricted relative to that associated with
an increase in consumption. This “long-term fluoroquinolone
pressure” on prevailing resident clones should also influence the
rate for MRSA in the healthcare setting.

Since the recognition of novel lineages/sublineages of MRSA
seem to be of utmost importance efficient techniques for the
identification of newly emerging variants of the pathogen are
warranted. Spa typing proved very useful in detecting variations
within STs (Grundmann et al., 2014) and the continuous
combined surveillance of spa types and multiple-locus variable
number tandem repeat fingerprint (MLVF) types were reported
to be an excellent means to monitor the dynamics of MRSA
lineages and sublineages (Glasner et al., 2013). Nevertheless, it is
the sequence-based approach that will provide a comprehensive
and highly reliable account of lineage/sublineage distribution
of the pathogen. Our results should help in establishing the
disseminating potential of newly emerged lineages or sublineages.
By determining the fluoroquinolone resistance-associated fitness
cost of strains from newly emerged groups of MRSA (and various
other pathogens) will allow the prediction of their “disseminating
capacity” in ward where fluoroquinolones remain in extensive
use.
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The available literature on C. difficile is also relevant: the
proportion of the “fluoroquinolone-related” clones is substantial
(Tickler et al., 2014; Freeman et al., 2015); in addition many
studies disclosed the clonal affiliation of the investigated isolates
allowing for a specific monitoring of the “fluoroquinolone-
related” ribotypes. Similarly, to MRSA an abundance of papers
clearly shows that the incidence of C. difficile infections decreases
subsequent to a reduction in the consumption of fluoroquinolone
type antibiotics (Muto et al., 2007; Valiquette et al., 2007; Debast
et al., 2009; Price et al., 2010; Wilcox et al., 2012; Dancer et al.,
2013; Kanerva et al., 2015; Sarma et al., 2015; Gordon et al., 2016).

An additional strong argument for the influence of
fluoroquinolone consumption on the clonal dynamics of
C. difficile is the well-established fact that the incidence of the
ribotype 027 strains remains significantly lower in pediatric units
compared with adult ward (McFarland et al., 2016) which is
in agreement with our finding with the major clones of ESBL-
producing K. pneumoniae in Hungary (Szilágyi et al., 2010) and
should reflect the differing use of fluoroquinolones in the two
departments.

In contrast to MRSA and C. difficile the reliable impact
of fluoroquinolone use on the incidence of ESBL-producing
K. pneumoniae and ESBL-producing E. coli will be elucidated by
future studies investigating the clonal distribution of the isolates.

The question arises how can the findings reviewed in this
paper be reconciled with the abundant literature reporting only
a slight fitness cost associated with antibiotic resistance and the
observations that fitness cost suffered upon acquiring resistance
can be reversed by developing compensatory mutations?

First, these studies cannot be compared with those reviewed
here since none of them investigated a crucial aspect of the
mechanism: the clonal affiliation of the isolates.

Second, fitness cost – or the abscence of it – associated with
resistance to antimicrobial agents is often a function of the drug
of choice. For instance resistance to streptomycin and rifampicin
will often not result in any fitness cost or the suffered loss
in vitality can readily be reversed by compensatory mutations
(Björkman et al., 1998; Maisnier-Patin et al., 2002; Sander et al.,
2002; Trindade et al., 2009; Brandis et al., 2015; Durão et al.,
2015). In contrast resistance in fungi to amphotericin B (Vincent
et al., 2013) and resistance in plasmodium to antimalarial agents
(Rosenthal, 2013) are always associated with fitness cost that
cannot be wholly recovered. As we have seen resistance to
fluoroquinolones is usually associated with fitness cost, though it
is a function of clonal affiliation and cannot be wholly recovered
at higher MIC values (Horváth et al., 2012; Knight et al., 2012;
Tóth et al., 2014).

Third, the fitness cost associated with resistance to antibiotics
is often related to the level of resistance of the strain tested.
Fluoroquinolone type antibiotics undoubtedly belong to this
group. Several authors reported small fitness cost and sometimes
slight fitness gain in strains with low level resistance to quinolones
(Giraud et al., 2003; O’Regan et al., 2010; Baker et al., 2013;
Fàbrega et al., 2014). However, fitness costs associated with higher
MIC values were usually greater and could not be reversed
(Giraud et al., 2003; Komp Lindgren et al., 2005; Marcusson et al.,
2005; O’Regan et al., 2010; Pope et al., 2010; Horváth et al., 2012;

Baker et al., 2013; Fàbrega et al., 2014; Tóth et al., 2014). Melnyk
et al. (2015) recently reviewed much of the related literature and
demonstrated that higher MIC values for many antibiotics are
generally associated with higher fitness costs. They also observed
that this trend unfortunately remains poorly explored since many
of the investigators failed to disclose the MIC values of their
isolates.

Moreover, the non-reversibility of fitness cost associated with
resistance to fluoroquinolones in minor clone strains (Tóth et al.,
2014) is strongly supported by international epidemiological
data. The clonal landscape for the multiresistant pathogens
mentioned above remains largely stable: usually a few big clones
or STs are competing with each other for “territory.” If minor
clone strains could easily reverse the fitness cost associated
with resistance to fluorquinolones novel international clones of
various multidrugresistant pathogens should regularly emerge
and replace the “resident major clones,” something we have not
been witnessing.

Though, the findings discussed above show an important
role for fluoroquinolones in the selection and dissemination of
multiresistant clones of various bacteria additional antibiotics
should also have contributed to this process, thus, a more
judicious use of antibiotics in general and of fluoroquinolones in
particular could improve the antibiotic resistance situation.

The genetic base of the “fluoroquinolone selection
mechanism” has in part already been elucidated. The data
obtained to date clearly show that favorable mutations in the
gyrase and topoisomerase IV genes play a crucial role in the
development of high-level resistance to fluoroquinolones with a
concurrent preservation of fitness. This has been demonstrated
for K. pneumoniae (Tóth et al., 2014), C. difficile (Wasels et al.,
2015) and a novel emerging lineage of the ST8 MRSA clone in
America (Alam et al., 2015).

However, not all changes detected in the gyrase and
topoisomerase genes proved favorable. We have observed a
cluster of synonymous and non-synonymous mutations in the
grlB gene of our ST30 MRSA strain that could have contributed
to its compromised fitness relative to that of isolates from other
clones of MRSA (Horváth et al., 2012).

Additional mechanisms associated with resistance to
fluoroquinolones seem to command an inferior role compared
with mutations in the gyrA and parC genes. In our Klebsiella
study (Tóth et al., 2014) we failed to demonstrate the presence
of the plasmid-mediated quinolone resistance determinants
(PMQRDs): qnrA, qnrB, qnrC, qnrD, qnrS, qepA, and oqxAB
in any of our isolates. In contrast all of the major clone strains
and one of the minor clone isolates possessed the aac(6′)-lb-cr
determinant that was related to the carriage of plasmids
harboring CTX-M-15 ESBL genes. Moreover, none of the major
clone strains but three of the four minor clone isolates showed
efflux activity.

The data presented by us suggest that the ability of the
reviewed bacteria to transmit between individuals is strongly
influenced by the “speed of multiplication”; a trait we call fitness.
This “speed of multiplication” can be reliably measured in vitro
and seems to impact heavily on the disseminating capacity
of the isolate. Data published on MRSA, ESBL-producing
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K. pneumoniae and C. difficile indicate that virulence factors
play an inferior role in the dissemination of these species
relative to fitness. A possible reason could be the competition
of bacteria during the initial colonization stage. At this stage
the “speed of multiplication” could often decide the “winner”
and pathogenicity factors – certainly with the exception of those
involved in attachment to host or killing other bacteria – remain
less essential. If a strain is getting outgrown by another in the
area of colonization it will have limited value of most of its
pathogenicity factors which are directed against the host. This
is, of course, not to deny that virulence factors of the reviewed
pathogens could strongly impact dissemination when the fitness
of the competing isolates remain equal. Nevertheless, fitness
studies conducted with individual strains in animals in vivo
remain less relevant for transmissibility than propagation assays
performed in vitro, similarly, to competitive in vivo studies where
the infection of the animal did not resemble the usual way of
natural transmission.

However, in other species of bacteria virulence factors could
assume greater significance in dissemination most certainly in a
clone-affiliated fashion.

In conclusion we can say that:

(1) Major international clones of several multiresistant
pathogens have emerged during the past three decades (see
literature above).

(2) Experimental findings show that diverse fitness cost
associated with resistance to fluoroquinolones could have
influenced the clonal dynamics in MRSA, ESBL-producing
K. pneumoniae, ESBL-producing E. coli, and multiresistant
C. difficile. These findings are based on two lines of
evidence.

(a) The major international clones/lineages of MRSA, ESBL-
producing K. pneumoniae, ESBL-producing E. coli, and
C. difficile were shown to command favorable fitness
when displaying high-level resistance to fluoroquinolones
(Horváth et al., 2012; Knight et al., 2012; Tóth et al.,
2014; Johnson et al., 2015; Wasels et al., 2015). For
MRSA identical findings have been reported from two
independent laboratories (Horváth et al., 2012; Knight
et al., 2012).

(b) Genetic investigations demonstrated that the ability
to develop favorable mutations in the gyrase and
topoisomerase IV genes constitutes a prerequisite
for retaining fitness in MRSA, ESBL-producing
K. pneumoniae, multiresistant C. difficile, and
ESBL-producing E. coli when showing high-level
resistance to fluoroquinolones (see literature above). Some
additional mechanisms of resistance to fluoroquinolones
in K. pneumoniae seem to be either expendable (qnr type
resistance) or may not provide a viable alternative (efflux;
Tóth et al., 2014). The same was reported on efflux in
ESBL-producing E. coli (Marcusson et al., 2009; Johnson
et al., 2015).

(3) In vitro observations concerning the fitness of various
clones of MRSA (Horváth et al., 2012; Knight et al.,

2012) are supported by a plethora of papers describing
clonal shifts of the pathogen worlwide. All of the clonal
replacements reported in the literature (see references
above) are in agreement with the results of the fitness assays
obtained by us (Horváth et al., 2012) and by Knight et al.
(2012). Clonal shifts and clonal distributions observed with
C. difficile also support the “fluoroquinolone mechanism”
(Lee et al., 2014; McFarland et al., 2016).

(4) The observations that plasmids harboring the CTX-M-
15 gene – in contrast to those with SHV type ESBL
genes – proved impossible to eliminate from K. pneumoniae
showing resistance to fluoroquinolones may account for the
worldwide dissemination of this enzyme at the expense of
SHV type ESBLs in this species (Tóth et al., 2014). The issue
should be further investigated in both ESBL-producing
K. pneumoniae and ESBL-producing E. coli.

The impact of fluoroquinolone consumption on the
prevalence of MRSA and the major international clones of
C. difficile is well-established (see literature above).

The influence of fluoroquinolone use on the incidence of
ESBL-producing K. pneumoniae and ESBL-producing E. coli
could be properly investigated by determining the clonal
affiliation of the isolates and appreciating the change exclusively
in the rates of those major clone strains which are known to have
been selected by fluoroquinolones.
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et al. (2013). The global establishment of a highly-fluoroquinolone resistant
Salmonella enterica serotype Kentucky ST198 strain. Front. Microbiol. 4:395.
doi: 10.3389/fmicb.2013.00395

LeBlanc, L., Pepin, J., Toulouse, K., Ouellette, M. F., Coulombe, M. A.,
Corriveau, M. P., et al. (2006). Fluoroquinolones and risk for methicillin-
resistant Staphylococcus aureus, Canada. Emerg. Infect. Dis. 12, 1398–1405. doi:
10.3201/eid1209.060397

LeDell, K., Muto, C. A., Jarvis, W. R., and Farr, B. M. (2003). SHEA guideline
for preventing nosocomial transmission of multidrug-resistant strains of
taphylococcus aureus and Enterococcus. Infect. Control Hosp. Epidemiol. 24,
362–386. doi: 10.1086/502213

Lee, J. H., Lee, Y., Lee, K., Riley, T. V., and Kim, H. (2014). The changes
of PCR ribotype and antimicrobial resistance of Clostridium difficile in a
tertiary care hospital over 10 years. J. Med. Microbiol. 63, 819–823. doi:
10.1099/jmm.0.072082-0

Lee, M. Y., Ko, K. S., Kang, C. I., Chung, D. R., Peck, K. R., and Song, J. H. (2011).
High prevalence of CTX-M-15-producing Klebsiella pneumoniae isolates in
Asian countries: diverse clones and clonal dissemination. Int. J. Antimicrob.
Agents 38, 160–163. doi: 10.1016/j.ijantimicag.2011.03.020

Liebowitz, L. D., and Blunt, M. C. (2008). Modification in prescribing practices for
third generation cephalosporins and ciprofloxacin is associated with a reduction
in meticillin-resistant Staphylococcus aureus bacteraemia rate. J. Hosp. Infect. 69,
328–336. doi: 10.1016/j.jhin.2008.04.026

Lim, K. T., Hanifah, Y. A., Mohd Yusof, M. Y., Ito, T., and Thong, K. L. (2013).
Comparison of methicillin-resistant Staphylococcus aureus strains isolated in
2003 and 2008 with an emergence of multidrug resistant ST22: SCCmec IV
clone in a tertiary hospital, Malaysia. J. Microbiol. Immunol. Infect. 46, 224–233.
doi: 10.1016/j.jmii.2013.02.001

Lin, Y. C., Huang, Y. T., Tsai, P. J., Lee, T. F., Lee, N. Y., Liao, C. H., et al. (2011).
Antimicrobial susceptibilities and molecular epidemiology of clinical isolates of
Clostridium difficile in taiwan. Antimicrob. Agents Chemother. 55, 1701–1705.
doi: 10.1128/AAC.01440-10

Luo, N., Pereira, S., Sahin, O., Lin, J., Huang, S., Michel, L., et al. (2004). Enhanced
in vivo fitness of fluoroquinolone-resistant Campylobacter jejuni in the absence
of antibiotic selection pressure. Proc. Natl. Acad. Sci. U.S.A. 102, 541–546. doi:
10.1073/pnas.0408966102

Ma, X. X., Ito, T., Chongtrakool, P., and Hiramatsu, K. (2006). Predominance of
clones carrying Panton-Valentine leukocidin genes among methicillin-resistant
Staphylococcus aureus strains isolated in Japanese hospitals from 1979 to 1985.
J. Clin. Microbiol. 44, 4515–4527. doi: 10.1128/JCM.00985-06

MacDougall, C., Harpe, S. E., Powell, J. P., Johnson, C. K., Edmond,
M. B., and Polk, R. E. (2005). Pseudomonas aeruginosa, Staphylococcus
aureus, and fluoroquinolone use. Emerg. Infect. Dis. 11, 1197–1204. doi:
10.3201/eid1108.050116

Madaras-Kelly, K. J., Remington, R. E., Lewis, P. G., and Stevens, D. L. (2006).
Evaluation of an intervention designed to decrease the rate of nosocomial
methicillin-resistant Staphylococcus aureus infection by encouraging decreased
fluoroquinolone use. Infect. Control Hosp. Epidemiol. 27, 155e–169e. doi:
10.1086/500060

Maisnier-Patin, S., Berg, O. G., Liljas, L., and Andersson, D. I. (2002).
Compensatory adaptation to the deleterious effect of antibiotic resistance in
Salmonella Typhimurium. Mol. Microbiol. 46, 355–366. doi: 10.1046/j.1365-
2958.2002.03173.x

Marcusson, L. L., Frimodt-Møller, N., and Hughes, D. (2009). Interplay in the
selection of fluoroquinolone resistance and bacterial fitness. PLoS Pathog.
5:e1000541. doi: 10.1371/journal.ppat.1000541

Marcusson, L. L., Olofsson, S. K., Komp Lindgren, P., Cars, O., and Hughes, D.
(2005). Mutant prevention concentrations of ciprofloxacin for urinary tract
infection isolates of Escherichia coli. J. Antimicrob. Chemother. 55, 938–943. doi:
10.1093/jac/dki136

Mathers, A. J., Peirano, G., and Pitout, J. D. (2015). Escherichia coli ST131: the
quintessential example of an international multiresistant high-risk clone. Adv.
Appl. Microbiol. 90, 109–154. doi: 10.1016/bs.aambs.2014.09.002

McFarland, L. V., Ozen, M., Dinleyici, E. C., and Goh, S. (2016). Comparison
of pediatric and adult antibiotic-associated diarrhea and Clostridium difficile
infections. World J. Gastroenterol. 22, 3078–3104. doi: 10.3748/wjg.v22.i11.3078

Melegh, S., Schneider, G., Horváth, M., Jakab, F., Emödy, L., and Tigyi, Z.
(2015). Identification and characterization of CTX-M-15 producing Klebsiella
pneumoniae clone ST101 in a Hungarian university teaching hospital. Acta
Microbiol. Immunol. Hung. 62, 233–245. doi: 10.1556/030.62.2015.3.2

Melnyk, A. H., Wong, A., and Kassen, R. (2015). The fitness costs of antibiotic
resistance mutations. Evol. Appl. 8, 273–283. doi: 10.1111/eva.12196

Muller, A., Mauny, F., Talon, D., Donnan, P. T., Harbarth, S., and Bertrand, X.
(2006). Effect of individual-and group-level antibiotic exposure on MRSA
isolation: a multilevel analysis. J. Antimicrob. Chemother. 58, 878–881. doi:
10.1093/jac/dkl343

Muto, C. A., Blank, M. K., Marsh, J. W., Vergis, E. N., O’Leary, M. M., Shutt,
K. A., et al. (2007). Control of an outbreak of infection with the hypervirulent
Clostridium difficile BI strain in a university hospital using a comprehensive
“bundle” approach. Clin. Infect. Dis. 45, 1266–1273. doi: 10.1086/522654

Nicolas-Chanoine, M. H., Bertrand, X., and Madec, J. Y. (2014). Escherichia coli
ST131, an intriguing clonal group. Clin. Microbiol. Rev. 27, 543–574. doi:
10.1128/CMR.00125-13

Nicolas-Chanoine, M. H., Blanco, J., Leflon-Guibout, V., Demarty, R., Alonso,
M. P., Caniça, M. M., et al. (2008). Intercontinental emergence of Escherichia
coli clone O25:H4-ST131 producing CTX-M-15. J. Antimicrob. Chemother. 61,
273–281. doi: 10.1093/jac/dkm464

Nseir, S., Di Pompeo, C., Soubrier, S., Delour, P., Lenci, H., Roussel-Delvallez, M.,
et al. (2005). First-generation fluoroquinolone use and subsequent emergence
of multiple drug-resistant bacteria in the intensive care unit. Crit. Care Med. 3,
283–289. doi: 10.1097/01.CCM.0000152230.53473.A1

O’Regan, E., Quinn, T., Frye, J. G., Pagès, J. M., Porwollik, S., Fedorka-Cray,
P. J., et al. (2010). Fitness costs and stability of a high-level ciprofloxacin
resistance phenotype in Salmonella enterica serotype Enteritidis: reduced
infectivity associated with decreased expression of salmonella pathogenicity
island 1 genes. Antimicrob. Agents Chemother. 54, 367–374. doi: 10.1128/AAC.
00801-09

Parienti, J. J., Cattoir, V., Thibon, P., Lebouvier, G., Verdon, R., Daubin, C., et al.
(2011). Hospital-wide modification of fluoroquinolone policy and methicillin-
resistant Staphylococcus aureus rates: a 10-year interrupted time-series analysis.
J. Hosp. Infect. 78, 118–122. doi: 10.1016/j.jhin.2011.03.008

Park, D. J., Yu, J. K., Park, K. G., and Park, Y. J. (2015). Genotypes of
ciprofloxacin-resistant Klebsiella pneumoniae in Korea and their characteristics
according to the genetic lineages. Microb. Drug Resist. 21, 622–630. doi:
10.1089/mdr.2015.0001

Pope, C. F., Gillespie, S. H., Moore, J. E., and McHugh, T. D. (2010). Approaches to
measure the fitness of Burkholderia cepacia complex isolates. J. Med. Microbiol.
59(Pt 6), 679–686. doi: 10.1099/jmm.0.017830-0

Price, J., Cheek, E., Lippett, S., Cubbon, M., Gerding, D. N., Sambol, S. P., et al.
(2010). Impact of an intervention to control Clostridium difficile infection on
hospital- and community-onset disease; an interrupted time series analysis.
Clin. Microbiol. Infect. 16, 1297–1302. doi: 10.1111/j.1469-0691.2009.03077.x

Rodrigues, C., Machado, E., Ramos, H., Peixe, L., and Novais, Â (2014).
Expansion of ESBL-producing Klebsiella pneumoniae in hospitalized patients:
a successful story of international clones (ST15, ST147, ST336) and epidemic
plasmids (IncR, IncFIIK). Int. J. Med. Microbiol. 304, 1100–1108. doi:
10.1016/j.ijmm.2014.08.003

Rogues, A. M., Dumartin, C., Amadéo, B., Venier, A. G., Marty, N., Parneix, P.,
et al. (2007). Relationship between rates of antimicrobial consumption
and the incidence of antimicrobial resistance in Staphylococcus aureus and
Pseudomonas aeruginosa isolates from 47 French hospitals. Infect. Control Hosp.
Epidemiol. 28, 1389–1395. doi: 10.1086/523280

Rosenthal, P. J. (2013). The interplay between drug resistance and fitness in malaria
parasites. Mol. Microbiol. 89, 1025–1038. doi: 10.1111/mmi.12349

Salangsang, J. A., Harrison, L. H., Brooks, M. M., Shutt, K. A., Saul, M. I., and Muto,
C. A. (2010). Patient- associated risk factors for acquisition of methicillin-
resistant Staphylococcus aureus in a tertiary care hospital. Infect. Control. Hosp.
Epidemiol. 31, 1139–1147. doi: 10.1086/656595

Frontiers in Microbiology | www.frontiersin.org 11 July 2016 | Volume 7 | Article 1017

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-07-01017 July 5, 2016 Time: 15:11 # 12

Fuzi Fluoroquinolones Impact Fitness and Clonality

Sander, P., Springer, B., Prammananan, T., Sturmfels, A., Kappler, M.,
Pletschette, M., et al. (2002). Fitness cost of chromosomal drug resistance-
conferring mutations. Antimicrob. Agents Chemother. 46, 1204–1211. doi:
10.1128/AAC.46.5.1204-1211.2002

Sarma, J. B., Marshall, B., Cleeve, V., Tate, D., Oswald, T., and Woolfrey, S. (2015).
Effects of fluoroquinolone restriction (from 2007 to 2012) on Clostridium
difficile infections: interrupted time-series analysis. J. Hosp. Infect. 91, 74–80.
doi: 10.1016/j.jhin.2015.05.013

Saxton, K., Baines, S. D., Freeman, J., O’Connor, R., and Wilcox, M. H. (2009).
Effects of exposure of Clostridium difficile PCR ribotypes 027 and 001 to
fluoroquinolones in a human gut model. Antimicrob. Agents Chemother. 53,
412–420. doi: 10.1128/AAC.00306-08

Smits, W. K. (2013). Hype or hypervirulence: a reflection on problematic C. difficile
strains. Virulence 4, 592–596. doi: 10.4161/viru.26297

Solomon, K., Fanning, S., McDermott, S., Murray, S., Scott, L., Martin, A.,
et al. (2011). PCR ribotype prevalence and molecular basis of macrolide-
lincosamide-streptogramin B (MLSB) and fluoroquinolone resistance in Irish
clinical Clostridium difficile isolates. J. Antimicrob. Chemother. 66, 1976–1982.
doi: 10.1093/jac/dkr275

Spigaglia, P. (2016). Recent advances in the understanding of antibiotic resistance
in Clostridium difficile infection. Ther. Adv. Infect. Dis. 3, 23–42. doi:
10.1177/2049936115622891

Spigaglia, P., Barbanti, F., Dionisi, A. M., and Mastrantonio, P. (2010). Clostridium
difficile isolates resistant to fluoroquinolones in Italy: emergence of PCR
ribotype 018. J. Clin. Microbiol. 48, 2892–2896. doi: 10.1128/JCM.02482-09

Stabler, R. A., He, M., Dawson, L., Martin, M., Valiente, E., Corton, C., et al.
(2009). Comparative genome and phenotypic analysis of Clostridium difficile
027 strains provides insight into the evolution of a hypervirulent bacterium.
Genome Biol. 10:R102. doi: 10.1186/gb-2009-10-9-r102

Stahl, M., and Stintzi, A. (2011). Identification of essential genes in C. jejuni
genome highlights hyper- variable plasticity regions. Funct. Integr. Genomics
11, 241–257. doi: 10.1007/s10142-011-0214-7

Stoesser, N., Sheppard, A. E., Pankhurst, L., De Maio, N., Moore, C. E., Sebra, R..,
et al. (2016). Evolutionary history of the global emergence of the Escherichia coli
epidemic clone ST131. MBio 7:e02162-15. doi: 10.1128/mBio.02162-15

Szilágyi, E., Füzi, M., Damjanova, I., Böröcz, K., Szonyi, K., Tóth, A.,
et al. (2010). Investigation of extended-spectrum beta-lactamase-producing
Klebsiella pneumoniae outbreaks in Hungary between 2005 and 2008. Acta
Microbiol. Immunol. Hung. 57, 43–53. doi: 10.1556/AMicr.57.2010.1.4

Tenover, F. C., and Goering, R. V. (2009). Methicillin-resistant Staphylococcus
aureus strain USA300: origin and epidemiology. J. Antimicrob. Chemother. 64,
441–446. doi: 10.1093/jac/dkp241

Tenover, F. C., Tickler, I. A., Goering, R. V., Kreiswirth, B. N., Mediavilla,
J. R., Persinga, D. H., et al. (2011). Characterization of nasal and blood
culture isolates of methicillin-resistant Staphylococcus aureus from patients in
United States hospitals. Antimicrob. Agents Chemother. 56, 1324–1330. doi:
10.1128/AAC.05804-11

Thabet, L., Memmi, M., Turki, A., and Messadi, A. A. (2010). The impact
of fluoroquinolones use on antibiotic resistance in an intensive care burn
department. Tunis Med. 88, 696–699.

Tickler, I. A., Goering, R. V., Whitmore, J. D., Lynn, A. N., Persing, D. H.,
Tenover, F. C., et al. (2014). Strain types and antimicrobial resistance patterns of
Clostridium difficile isolates from the United States, 2011 to 2013. Antimicrob.
Agents Chemother. 58, 4214–4218. doi: 10.1128/AAC.02775-13

Tóth, A., Kocsis, B., Damjanova, I., Kristóf, K., Jánvári, L., Pászti, J., et al. (2014).
Fitness cost associated with resistance to fluoroquinolones is diverse across
clones of Klebsiella pneumoniae and may select for CTX-M-15 type extended-
spectrum β-lactamase. Eur. J. Clin. Microbiol. Infect. Dis. 33, 837–843. doi:
10.1007/s10096-013-2022-6

Trindade, S., Sousa, A., Xavier, K. B., Dionisio, F., Ferreira, M. G., and Gordo, I.
(2009). Positive epistasis drives the acquisition of multidrug resistance. PLoS
Genet. 5:e1000578. doi: 10.1371/journal.pgen.1000578

Valiente, E., Cairns, M. D., and Wren, B. W. (2014). The Clostridium difficile
PCR ribotype 027 lineage: a pathogen on the move. Clin. Microbiol. Infect. 20,
396–404. doi: 10.1111/1469-0691.12619

Valiquette, L., Cossette, B., Garant, M. P., Diab, H., and Pépin, J. (2007).
Impact of a reduction in the use of high-risk antibiotics on the course of an
epidemic of Clostridium difficile-associated disease caused by the hypervirulent
NAP1/027 strain. Clin. Infect. Dis. 45(Suppl. 2), S112–S121. doi: 10.1086/
519258

Velazquez-Meza, M. E., Aires de Sousa, M., Echaniz-Aviles, G., Solórzano-
Santos, F., Miranda-Novales, G., Silva-Sanchez, J., et al. (2004). Surveillance
of methicillin-resistant Staphylococcus aureus in a pediatric hospital in
Mexico City during a 7-year period (1997 to 2003): clonal evolution
and impact of infection control. J. Clin. Microbiol. 42, 6877–6880. doi:
10.1128/JCM.42.8.3877-3880.2004

Vernaz, N., Sax, H., Pittet, D., Bonnabry, P., Schrenzel, J., and Harbarth, S. (2008).
Temporal effects of antibiotic use and hand rub consumption on the incidence
of MRSA and Clostridium difficile. J. Antimicrob. Chemother. 62, 601–607. doi:
10.1093/jac/dkn199

Vincent, B. M., Lancaster, A. K., Scherz-Shouval, R., Whitesell, L., and Lindquist, S.
(2013). Fitness trade-offs restrict the evolution of resistance to amphotericin B.
PLoS Biol. 11:e1001692. doi: 10.1371/journal.pbio.1001692

Vohra, P., and Poxton, I. R. (2011). Comparison of toxin and spore production in
clinically relevant strains of Clostridium difficile. Microbiology 157, 1343–1353.
doi: 10.1099/mic.0.046243-0

Walkty, A., Boyd, D. A., Gravel, D., Hutchinson, J., McGeer, A., Moore, D., et al.
(2010). Molecular characterization of moxifloxacin resistance from Canadian
Clostridium difficile clinical isolates. Diagn. Microbiol. Infect. Dis. 66, 419–424.
doi: 10.1016/j.diagmicrobio.2009.12.002

Wasels, F., Kuehne, S. A., Cartman, S. T., Spigaglia, P., Barbanti, F., Minton, N. P.,
et al. (2015). Fluoroquinolone resistance does not impose a cost on the fitness
of Clostridium difficile in vitro. Antimicrob. Agents Chemother. 59, 1794–1796.
doi: 10.1128/AAC.04503-14

Weber, S. G., Gold, H. S., Hooper, D. C., Karchmer, A. W., and Carmeli, Y.
(2003). Fluoroquinolones and the risk for methicillin-resistant Staphylococcus
aureus in hospitalized patients. Emerg. Infect. Dis. 9, 1415–1422. doi:
10.3201/eid0911.030284

Wibbenmeyer, L., Williams, I., Ward, M., Xiao, X., Light, T., Latenser, B.,
et al. (2010). Risk factors for acquiring vancomycin-resistant Enterococcus and
methicillin-resistant Staphylococcus aureus on a burn surgery step-down unit.
J. Burn Care Res. 31, 269–279. doi: 10.1097/BCR.0b013e3181d0f479

Wilcox, M. H., Shetty, N., Fawley, W. N., Shemko, M., Coen, P., Birtles, A., et al.
(2012). Changing epidemiology of Clostridium difficile infection following the
introduction of a national ribotyping-based surveillance scheme in England.
Clin. Infect. Dis. 55, 1056–1063. doi: 10.1093/cid/cis614

Woodford, N., Turton, J. F., and Livermore, D. M. (2011). Multiresistant
Gram-negative bacteria: the role of high-risk clones in the dissemination of
antibiotic resistance. FEMS Microbiol. Rev. 35, 736–755. doi: 10.1111/j.1574-
6976.2011.00268.x

Zeitouni, S., and Kempf, I. (2011). Fitness cost of fluoroquinolone resistance in
Campylobacter coli and Campylobacter jejuni. Microb. Drug Resist. 17, 171–179.
doi: 10.1089/mdr.2010.0139

Conflict of Interest Statement: The author declares that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2016 Fuzi. This is an open-access article distributed under the terms
of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) or licensor
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Microbiology | www.frontiersin.org 12 July 2016 | Volume 7 | Article 1017

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive

	Dissimilar Fitness Associated with Resistance to Fluoroquinolones Influences Clonal Dynamics of Various Multiresistant Bacteria
	Introduction
	Experimental Procedures
	Methicillin-Resistant Staphylococcus aureus
	ESBL-Producing K. pneumoniae and ESBL-Producing E. coli
	Clostridium difficile and Additional Pathogens

	Practical Consequences And Discussion
	Author Contributions
	Funding
	Acknowledgments
	References


