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Abstract

Molecular Dynamics (MD) simulations seek to provide atomic-level insights into conforma-

tionally dynamic biological systems at experimentally relevant time resolutions, such as

those afforded by single-molecule fluorescence measurements. However, limitations in the

time scales of MD simulations and the time resolution of single-molecule measurements

have challenged efforts to obtain overlapping temporal regimes required for close quantita-

tive comparisons. Achieving such overlap has the potential to provide novel theories,

hypotheses, and interpretations that can inform idealized experimental designs that maxi-

mize the detection of the desired reaction coordinate. Here, we report MD simulations at

time scales overlapping with in vitro single-molecule Förster (fluorescence) resonance

energy transfer (smFRET) measurements of the amino acid binding protein LIV-BPSS at

sub-millisecond resolution. Computationally efficient all-atom structure-based simulations,

calibrated against explicit solvent simulations, were employed for sampling multiple cycles

of LIV-BPSS clamshell-like conformational changes on the time scale of seconds, examining

the relationship between these events and those observed by smFRET. The MD simula-

tions agree with the smFRET measurements and provide valuable information on local

dynamics of fluorophores at their sites of attachment on LIV-BPSS and the correlations

between fluorophore motions and large-scale conformational changes between LIV-BPSS

domains. We further utilize the MD simulations to inform the interpretation of smFRET data,

including Förster radius (R0) and fluorophore orientation factor (κ2) determinations. The

approach we describe can be readily extended to distinct biochemical systems, allowing for

the interpretation of any FRET system conjugated to protein or ribonucleoprotein com-

plexes, including those with more conformational processes, as well as those implementing

multi-color smFRET.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008293 November 5, 2020 1 / 24

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Girodat D, Pati AK, Terry DS, Blanchard

SC, Sanbonmatsu KY (2020) Quantitative

comparison between sub-millisecond time

resolution single-molecule FRET measurements

and 10-second molecular simulations of a

biosensor protein. PLoS Comput Biol 16(11):

e1008293. https://doi.org/10.1371/journal.

pcbi.1008293

Editor: Alexander MacKerell, University of

Maryland School of Pharmacy, UNITED STATES

Received: June 1, 2020

Accepted: August 27, 2020

Published: November 5, 2020

Copyright: This is an open access article, free of all

copyright, and may be freely reproduced,

distributed, transmitted, modified, built upon, or

otherwise used by anyone for any lawful purpose.

The work is made available under the Creative

Commons CC0 public domain dedication.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: This work was supported by NIH NIGMS

grant R01-GM072686 and DOE LANL LDRD

20200222DR (to KS), by NSF, by NIH NIGMS

grants R01-GM079238-13 and R01-GM098859-07

(to SCB). The funders had no role in study design,

https://orcid.org/0000-0001-5539-7031
https://orcid.org/0000-0001-9021-0084
https://orcid.org/0000-0003-2717-9365
https://orcid.org/0000-0002-7965-7392
https://doi.org/10.1371/journal.pcbi.1008293
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008293&domain=pdf&date_stamp=2020-11-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008293&domain=pdf&date_stamp=2020-11-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008293&domain=pdf&date_stamp=2020-11-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008293&domain=pdf&date_stamp=2020-11-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008293&domain=pdf&date_stamp=2020-11-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008293&domain=pdf&date_stamp=2020-11-05
https://doi.org/10.1371/journal.pcbi.1008293
https://doi.org/10.1371/journal.pcbi.1008293
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/


Author summary

Förster (fluorescence) resonance energy transfer (FRET) has been used extensively by bio-

physicists as a molecular-scale ruler that yields fundamental structural and kinetic insights

into transient processes including complex formation and conformational rearrange-

ments required for biological function. FRET techniques require the identification of

informative fluorophore labeling sites, spaced at defined distances to inform on a reaction

coordinate of interest and consideration of noise sources that have the potential to

obscure quantitative interpretations. Here, we describe an approach to leverage advance-

ments in computationally efficient all-atom structure-based molecular dynamics simula-

tions in which structural dynamics observed via FRET can be interpreted in full atomistic

detail on commensurate time scales. We demonstrate the potential of this approach using

a model FRET system, the amino acid binding protein LIV-BPSS conjugated to self-heal-

ing organic fluorophores. LIV-BPSS exhibits large scale, sub-millisecond clamshell-like

conformational changes between open and closed conformations associated with ligand

unbinding and binding, respectively. Our findings inform on the molecular basis of the

dynamics observed by smFRET and on strategies to optimize fluorophore labeling sites,

the manner of fluorophore attachment, and fluorophore composition.

Introduction

Computational advancements have enabled the field of molecular dynamics (MD) simulations

of biomolecular components to progress from sub-nanosecond to millisecond simulation time

scales [1–3]. The combination of enhanced sampling algorithms and increased compute

power has led to extended time scale simulations and rapid growth in the number of MD pub-

lications [1]. As MD simulations for studying conformational dynamics in biological systems

venture into the realm of milliseconds and beyond, we are now at the precipice of MD simula-

tion time scales that are temporally commensurate to an increasing number of in vitro experi-

mental techniques. Congruence between MD and experimental time scales is also made

increasingly possible as in vitro techniques advance towards collecting data at increasingly

rapid time resolutions by leveraging improvements in laser, fluorophore, and detector perfor-

mance [4–7]. Quantitative comparison of in vitro biochemical and spectroscopic data with in
silico MD simulation on comparable time scales has the potential to provide rigorous struc-

tural and molecular interpretations of dynamic biomolecular events in atomic detail.

It is becoming standard practice in the field of MD simulations to perform explicit-solvent

equilibrium simulations of small proteins in the microsecond range, while coarse-graining

approaches have reached millisecond time scales [8,9]. Simulations have been used to predict

chemical shifts and directly compare these results to nuclear magnetic resonance (NMR)

experiments [10–23]. Simulations have also been used to recapitulate small angle X-ray scatter-

ing (SAXS) data [24–37]. Temporal information can be gleaned in NMR or SAXS by a diverse

variety of means, including peak broadening in NMR, or by performing SAXS in time-

resolved modes [38]. When data from these techniques are directly compared to MD simula-

tions, the time scale of the simulations is often not considered critical, so long as sampling is

sufficient to avoid equilibration artifacts [10–35]. Beyond these techniques, MD simulations

can provide atomistic insights into structural dynamics for a multitude of experimental

approaches [39–46]. Yet, close quantitative comparisons between in vitro experimental data

and in silico simulations at commensurate time scales are relatively rare.
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Single-molecule Förster Resonance Energy Transfer (smFRET), an experimental technique

used to study the dynamics of a wide variety of biomolecules, from polymerases to ribosomes,

to G-protein coupled receptors, could benefit greatly from quantitative MD simulation com-

parison [47–51]. Investigations involving MD interpretations of smFRET experiments have

been a major focus for some time [52]. Recent pioneering studies utilized a 400 microsecond

MD simulation in combination with machine learning and restraints derived smFRET experi-

ments to recapitulate or interpret smFRET states and the transitions between them [53–56].

Multiple groups have also employed MD simulations to model FRET efficiencies derived from

protein conformational ensembles [57–59]. Still others have used smFRET data to inform sim-

ulations of peptides [60]. To our knowledge, direct one-to-one comparisons of MD simula-

tions with smFRET data of full-length proteins on congruent time scales have, however, yet to

be performed.

To expand the predictive power of MD simulations for direct one-to-one comparisons with

experiment, all-atom simulations must be performed on time scales that overlap with experi-

mental observables (i.e., aggregate sampling of seconds). Explicit solvent simulations on the

time scale of smFRET investigations are not trivial and can require hundreds of GPU core

years. Explicit solvent simulations of small biological systems, such as a single protein, are also

difficult to scale efficiently to supercomputers. For a 23,558 atom system, the Anton 2 super-

computer has proven capable of producing 85 μs/day [61]. To achieve explicit solvent simula-

tions on Anton on time scales commensurate with smFRET, i.e. 10 seconds, MD calculations

would, therefore, have to be performed continuously for several years.

To address this issue, we sought to leverage advances in the computationally economical,

all-atom Gō-like structure-based models and to assess our findings with kinetic theory to com-

pute rates [62]. More specifically, we employed a multibasin Gō-like structure-based simula-

tion approach where multiple FRET states can be defined as native basins in the simulation,

allowing for interconversion between states[63]. Simulations of this kind define contacts

within a given state as a native basin, but allow for large-scale, spontaneous conformational

changes [64,65]. For this technique, specific hydrogen bonds, electrostatic interactions, and

rotamer angles are implicitly included in the native basin. By combining this approach with

explicit-solvent equilibrium simulations, one can achieve comprehensive views of the dynamic

ensemble of a biomolecule by explicitly resolving even more subtle interactions, such as

explicit hydrogen bonds, electrostatics, or solvation effects [65,66].

Here, we take advantage of such methods to perform comparisons of MD simulations and

smFRET data on commensurate time scales. This effort has been enabled by numerous

advances in both fields of research, including the aforementioned breakthroughs in MD simu-

lations and rapidly evolving smFRET instrumentation, self-healing organic fluorophores, and

the identification of the amino acid binding protein leucine-isoleucine-valine binding protein

(LIV-BP) as a robust model system [5,67–69]. This biosensor, with the inclusion of mutations

to remove native cysteines (LIV-BPSS), rapidly binds leucine, isoleucine, and valine amino

acids with a kon of 30 μM-1 s-1 for Leu [68]. We use this system to develop a pipeline for reca-

pitulating smFRET data in silico for a direct structural interpretation of the underlying confor-

mational processes associated with amino acid binding and unbinding. We then employ

kinetic theory to determine rates of transitions between FRET states to enable direct compari-

sons between our in silico and in vitro results [62]. Using all-atom structure-based simulations

on comparable time scales to in vitro experiments, together with explicit solvent simulations

on shorter time scales, we examine the key variables and determinants of smFRET data,

including quantitative descriptions of Förster radius (R0) and fluorophore orientation factor

(κ2) parameters that inform on the FRET-distance relationship. Importantly, this pipeline is
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not restricted to LIV-BPSS. It can be reconstituted for any smFRET assay to gain all-atom

structural perspectives on experimental data.

Results

Single-molecule FRET experiments and molecular simulations resolve

LIV-BPSS conformational changes on commensurate time scales

The LIV-BP model system employed here for smFRET experiments and MD simulations cor-

responds to the LIV-BPSS protein described previously [68]. Previous experimental investiga-

tions using a fluorescently labeled LIV-BPSS protein have shown that ligand binding rates

approach the diffusion limit (ca. ~108 M-1 s-1) [68]. In the present study, analogous to prior

investigations [68,70], LIV-BPSS was labelled at positions 67 and 181 by mutating native resi-

dues to Cys and performing maleimide chemistry with the self-healing fluorophores LD555

and LD655 (Fig 1A). In the MD simulations, LD555 and LD655 fluorophores were explicitly

modeled at these same positions. As previously described [68], the sites of labeling in LIV-BPSS

were selected based on X-ray crystal structures of ligand-bound (closed conformation) and

ligand-free (open conformation) states (PDB ID: 1Z15, 1Z16, 1Z17, and 1Z18) (Fig 1B) [71] to

report on the conformational changes upon amino acid binding and dissociation, respectively.

This conformational change can be described as a “clamshell” or “fly-trap” motion, where the

two domains of LIV-BPSS approach each other in the ligand-bound state (closed conformation)

Fig 1. Models of Liv-BPSS conjugated to self-healing fluorophores. (a) Molecular structures of the LD555 and LD655

fluorophores. (b) Conformation of Liv-BPSS in the open (apo) conformation–blue, and closed (Leu-bound)

conformation–green. For multibasin Gaussian potential simulations the open (apo) conformation and the closed (Leu-

bound) conformations were set as native states. The models were also used as initial structures for explicit solvent

simulations.

https://doi.org/10.1371/journal.pcbi.1008293.g001
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(Fig 1B). Capturing the conformational dynamics between the closed and open LIV-BPSS con-

formations using smFRET require camera exposure times below 5 ms (Fig 2A) [68,70]. Notably,

typical explicit solvent MD simulations have time steps of 1–4 fs. By contrast, reduced-descrip-

tion MD simulations can exhibit up to nanosecond individual time steps. Thus, any smFRET

time resolution can, in principle, be matched with MD simulations. However, to simulate the

large number of conformational transitions observed in smFRET experiments, time scales on

the order of hundreds of milliseconds to seconds are required. Such an undertaking is not trivial

to achieve.

For comparison to MD simulations, we examined the conformational changes of LIV-BPSS

in smFRET experiments at varied camera frame rates (100 ms to 0.25 ms) (Fig 2A) [70]. To

ensure a robust comparison between experimental FRET efficiencies and those derived from

simulations, we corrected the experimental smFRET data for spectral crosstalk, relative detec-

tion efficiencies and quantum yields (QD), and acceptor direct excitation (see Methods). Nota-

bly, in the presence of the leucine (Leu) ligand at the KD of ligand binding (~4.5 μM) in the

100 ms exposure regime, only one FRET state is evidenced that exhibits ~0.52 FRET efficiency

(see Methods). This finding reflects time-averaging effects related to the rapid association and

dissociation rates of leucine to LIV-BPSS(~30 μM-1 s-1 and ~212 s-1, respectively) [68,70]. Con-

sistent with this interpretation, at exposure times of 3 ms and below, two distinct FRET states

exhibiting ~0.65 and ~0.35 FRET efficiency, corresponding to open and closed LIV-BPSS con-

formations, respectively, are resolved (Fig 2A).

To perform MD simulations of LIV-BPSS congruent with these experimental studies, site-

specifically labelled LIV-BPSS proteins, as described above, were used in dual-basin all-atom

structure-based simulations to describe conformational changes between open and closed con-

formations (Fig 2B). In addition, explicit solvent simulations of apo and Leu-bound states

Fig 2. Recapitulation of experimental smFRET data from 200 simulations at 500 million-timesteps (total of 100

billion-time steps). (a) Representative experimental smFRET traces of the LIV-BPSS system at 0.25, 1, 3, and 100 ms

exposure times [70]. (b) Representative FRET trajectories from MD simulations (including dye-linker interactions, see

below) at the same exposure times as smFRET experiments. Effective exposure times for the MD simulations were

controlled by averaging together the FRET efficiency values of consecutive time steps; for example, each data point in

the 100 ms exposure is an average of 4x109 time steps. For all MD simulations and smFRET experiments, fluorophores

were conjugated to position 67 and 181 of LIV-BPSS.

https://doi.org/10.1371/journal.pcbi.1008293.g002
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were performed for an in-depth investigation of the dynamics of LIV-BPSS near the open and

closed basin minima. Structure-based simulations in the presence of Leu were used to observe

transitions between the open and closed conformations. However, due to technical consider-

ations related to the structure-based potential, Leu binding and unbinding events were not

explicitly simulated (S1 Text). Because the ligand itself contributes relatively few native con-

tacts to the bound (closed) state, this exclusion has little effect on the number and time scale of

simulated transitions.

An advantage of structure-based potentials is that they can be relatively easily calibrated to

experimental systems. Here, the structure-based potentials were calibrated to the opening and

closing events observed at the KD of Leu binding (~4.5 μM) to LIV-BPSS in smFRET experi-

ments. This approach enabled us to simplify the simulations, while recapitulating LIV-BPSS

opening and closing dynamics. In so doing, we were able to clearly define a double Gaussian

potential for the LIV-BPSS protein, where each basin is defined by the native contacts present

in both the open and closed conformations (S1 Fig). In this approach, both conformations are

set as native basins, allowing for the protein to transition between each conformation through

barrier crossing events. Previous implementations of Gaussian basins involved studying

kinetic processes such as protein folding and conformational changes [72,73]. By contrast, our

simulations using the double Gaussian potential are expected to provide information regard-

ing the conformational changes of LIV-BPSS. This implementation also enables analyses of

LD555 and LD655 fluorophore dynamics, tumbling behaviors, and the simulation of FRET

efficiencies based on the measured inter-fluorophore distances according to Förster theory.

Proper conversion of FRET efficiency values to fluorophore distances, or vice versa, requires

accurate determination of the fluorophore positions in the system in three-dimensional space.

To characterize the fluorophore distance correlation between MD simulations and smFRET

experiments, we measured the distance in the MD simulations between the centers of mass of

the explicit LD555 and LD655 chromophores (Rdye) attached to positions 67 and 181 of the

protein, respectively (S2 Fig). As expected, the fluorophore distances were observed to fluctu-

ate, where the dye center of masses exhibited mean inter-fluorophore distance values of 69 ± 5

Å and 56 ± 8 Å for the open and closed conformations, respectively.

Precisely ascertaining the time interval of each time step of any simulation based on a

reduced description potential is non-trivial. In the case of structure-based potentials, the time

intervals are dependent on the size of the system, the number of particles, the contact weights,

and the harmonic potentials employed. However, through direct comparison with in vitro
experiments or explicit solvent simulations, estimates of the time scales for structure-based

simulations can be achieved [65,74]. To estimate the time scales of the simulated LIV-BPSS

conformational changes, we directly compared the simulated dwell times of the closed confor-

mation evidenced in our structure-based simulations to the corresponding dwell times

observed in high-FRET state by smFRET.

At the KD of Leu binding (4.5 μM), LIV-BPSS spends approximately 50% of its time in both

open and closed conformations (Fig 3A–3C) [68,70]. The experimentally estimated opening

rate under these conditions (~212 s-1) corresponds to Leu unbinding [68]. This measurement

indicates that the average duration of the Leu-bound state is approximately 4.7 ms. By defini-

tion of the KD, the average lifetime of the open conformation must, therefore, also be ~4.7 ms.

These data are globally consistent with the estimated KD (~4.5 μM) and a near diffusion-lim-

ited ligand binding rate (~108 M-1s-1).

The average dwell time of the closed conformation in the MD simulations was 1.9 ± 0.19 x

107 time steps of simulation time (Fig 2B). This dwell time was determined by measuring the

number of time steps LIV-BPSS stays in the closed conformation (Rdye < 60 Å), where 0.19 x

107 corresponds to the standard deviation of this value. Considering the dwell times evidenced
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in smFRET experiments, we correspondingly infer that each time step reflects approximately

0.25 ns. These estimates, which relate the time steps in structure-based models to physiological

time scales, are similar in nature to those reported by Yang, et al for structure-based simula-

tions, which estimated each simulated time step to be 0.05–1 ns [74].

A key determinant of the FRET-distance relationship is the fluorophore orientation factor

(κ2), which relates to the relative orientation of the transition dipole moments of each fluoro-

phore. The transition dipole moments of individual fluorophores are often assumed to be ran-

domized by rotational diffusion. In such cases, the average fluorophore orientation is

approximately isotropic, yielding a κ2 value of 2/3. Accurate κ2 values are required to accu-

rately calculate the Förster distance (R0).

Fluorophore conjugation to a biomolecule can, however, influence its tumbling behaviors

due to steric restrictions and hydrophobic and/or electrostatic effects. Correspondingly, a

fluorophore’s position may be non-random. To ascertain if the fluorophores conjugated to

Fig 3. Population level correlation of smFRET and MD simulation FRET distributions. (a) smFRET traces were summed into FRET-time contour plots to show

the distribution of FRET populations at 15, 5, 3, 1, and 0.25 ms camera exposure times [70]. (b) Contour plots of MD simulations at the equivalent exposure times

(to achieve required sampling for 15ms exposure, 7 simulation trajectories were combined into one trajectory). (c) Histograms of the smFRET experiments (bars)

fitted to a two gaussian functions (lines) to identify distinct states with data obtained using TIRF imaging of immobilized particles [70]. (d) Histograms of MD

simulations at the equivalent exposure times as smFRET experiments. At 5 and 3 ms sampling, a 3 Gaussian fit was used as an intermediate population between the

two FRET states is observed.

https://doi.org/10.1371/journal.pcbi.1008293.g003
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LIV-BPSS are randomly orientated, we first determined the transition dipole moment of the

fluorophores with quantum mechanical (QM) calculations (S3 Fig). Using these dipole

moments in conjunction with our structure-based simulations, we determined that the self-

healing LD555 and LD655 fluorophores conjugated to LIV-BPSS have κ2 = 0.58 ± 0.22, close to

the theoretical 2/3 value (S1 Table). From explicit solvent simulations of open and closed

LIV-BPSS conformations performed in triplicate, we find κ2 values of 0.45 ± 0.19 and

0.41 ± 0.10, respectively. The lower estimation of κ2 from explicit solvent simulations is likely

due to the limited sampling of fluorophore positions during the 1 μs simulation. The devia-

tions of κ2, calculated in structure-based simulations (0.58 ± 0.22) from the ideal value (0.66) is

expected to shorten R0 by 1 Å. More skewed fluorophore orientations would have greater

effects. Such findings are consistent with the notion that the tumbling behaviors of fluoro-

phores at their sites of attachment can influence estimations of the FRET-distance relationship,

albeit modestly in the case of LIV-BPSS. Using the calculated κ2 value (0.58) based on struc-

ture-based simulations, and the experimentally determined LD555 quantum yield attached to

LIV-BPSS (0.48; see Methods), we estimated the R0 of the LD555/LD655 pair to be approxi-

mately 62.0 Å. This finding is in good agreement with the inter-fluorophore distance (Rdye)

changes estimated from our structure-based MD simulations of 69 ± 5 Å (open) and 56 ± 8 Å
(closed) and the experimentally derived FRET efficiencies (~0.65 and 0.35 FRET, respectively),

which are above and below 50% transfer efficiency for the LD555/LD655 pair (~62.0 Å) (dis-

cussed below).

Correlating smFRET efficiencies with computed FRET efficiencies from

MD simulations

Using the estimated duration of the simulated time steps (0.25 ns) and the estimated R0 (62.0

Å), we generated simulated FRET efficiency traces from the all-atom structure-based MD sim-

ulations (S4 Fig). As expected from experiment, simulated smFRET efficiencies at 1 ms expo-

sure time (averaging 4 x 106 time steps to reach 1 ms exposure) exhibited step-like transitions

between high- and low-FRET states. However, the averaged FRET values were higher than

those expected from smFRET experiments (~0.65 and ~0.35 for the experimentally observed

open and closed conformations, respectively) (Figs 2A and 3A). We note in this context that

the open and closed LIV-BPSS conformations in our all-atom structure-based MD simulations,

exhibit estimated FRET efficiencies of ~0.84 and ~0.47, respectively, roughly 0.1–0.2 higher

FRET efficiency than those observed experimentally (S4 and S5 Figs.). In considering the ori-

gins of this difference, we noted that the structure-based simulations did not include the

potential intramolecular contacts for the fluorophores observed in our explicit solvent simula-

tions. As a result, LD555 and LD655 were highly dynamic and extended outward from the pro-

tein surface throughout the structure-based simulations, similar to antennae from an ant.

To examine the hypothesis that such a scenario may be unrealistic—for instance, by dis-

counting fluorophore-linker or fluorophore protein interactions—we added contacts between

the fluorophore and its linker (dye-linker interactions), which we discerned from our three,

1 μs explicit solvent simulations of LIV-BPSS in apo and Leu-bound states. Here, fluorophore

atoms that come within 3 Å of a linker atom were considered and added as a native contact to

the structure-based simulations. This analysis led to the addition of 111 native contacts in the

structure-based model for both fluorophores combined (S5 Fig). In the explicit solvent simula-

tions, fluorophore atoms approach the protein as well. Nevertheless, these interactions were an

order of magnitude fewer (39) in number and they were observed to be relatively transient in

nature. We therefore did not consider them likely to significantly alter the observed fluoro-

phore dynamics to the same extent as the intramolecular fluorophore-linker contacts. For
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example, the longest enduring interaction (distance shorter than 3 Å) between LD555 and the

protein lasted for< 500 ns, and was only formed in one of the 6 explicit solvent simulations.

By contrast, dye-linker interactions were observed in all explicit solvent simulations, most of

which maintained for> 500 ns in both the open and closed conformations. Correspondingly,

interactions between the fluorophores and protein were not considered for the structure-based

simulations. The inclusion of the fluorophore-linker interactions, used to yield more accurate

FRET values do not significantly impact the κ2 values (S1 Table), yet were introduced to pro-

vide a more precise fluorophore-fluorophore distances.

To examine the impacts of these contacts on the average fluorophore positions in our struc-

ture-based simulations, we scaled their strength from 0.1 to 1.0. Using this procedure, we

empirically determined that a scaling of 0.5 for dye-linker contacts closely recapitulated the

FRET values of the experimental traces (Fig 2A and 2B). At 100 ms exposure time for both the

smFRET and MD simulations, only a single FRET population at ~0.5 FRET efficiency was

observed (Fig 2A and 2B), consistent with the experimental observations. In line with the

experimental smFRET trajectories, at the equivalent of 3 ms, 1 ms, and 0.25 ms exposure time,

the MD simulations also clearly revealed two distinct FRET populations (~0.6 and 0.4 FRET

efficiency) that rapidly interconverted (Fig 2A and 2B). Decreasing the time step averaging to

1 ms or 0.25 ms, revealed that the FRET efficiencies of these two states reached a maximum

separation of ~0.3 FRET, corresponding to FRET efficiency values of approximately 0.65 and

0.35 FRET for open and closed conformations, respectively (Fig 2B).

Importantly, the estimated κ2 value in this system (0.61 ± 0.11) revealed that that the fluoro-

phore tumbling behaviors remained within 8% of the expected value for perfect isotropic tum-

bling (0.66). These findings corroborate the accuracy of the experimentally derived

approximations of R0 and κ2 employed for our simulations and suggest that the average posi-

tions of the LD555 and LD655 fluorophores on LIV-BPSS may be modestly compacted towards

their sites of attachment at the LIV-BPSS surface. Such findings are consistent with the

expected flexibility of the alkyl chain linker connecting the protein and fluorophore, which

may be exacerbated by short-lived fluorophore-linker and/or fluorophore-protein interactions

that lead to compaction of the dye center of mass towards the protein surface.

MD simulations recapitulate population-level smFRET data

Single-molecule fluorescence and FRET experiments seek to determine how a system func-

tions by evaluating the compositional and conformational dynamics of large ensembles of

individual molecules. In the case of LIV-BPSS, function is inferred from the opening and clos-

ing dynamics that arise from amino acid binding and unbinding in the experimental system.

To accurately determine the mean FRET efficiencies and standard deviations of the experi-

mentally measured FRET states, individual smFRET traces were compiled into population

FRET histograms that were then fit to Gaussian distributions (Fig 3A–3C). Histograms of this

kind clearly illustrate that the low- and high-FRET states of LIV-BPSS, which correspond to

open and closed conformations, respectively, only become fully resolved at exposure times

below ~5 ms in the experiments. At 5 ms exposure time high- (~0.6) and low- (~0.4) FRET

states exhibit significant overlap due to the existence of exchange processes between open and

closed conformations that occur on the integration time scale. Decreasing the integration time

in the experiments leads to gradual resolution of two distinct FRET peaks, where the open and

closed conformations exhibited ~0.65 and ~0.35 mean FRET efficiency values, respectively

(Table 1).

In the MD simulations, we observe a similar behavior to the experiments. In particular, the

open and closed FRET efficiencies become more clearly differentiated as the estimated

PLOS COMPUTATIONAL BIOLOGY Atomistic analysis of smFRET experiments through MD simulations at congruent time scales

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008293 November 5, 2020 9 / 24

https://doi.org/10.1371/journal.pcbi.1008293


exposure time is decreased (Fig 3B). To identify the mean of these populations we fit the histo-

grams of the simulated FRET data to a sum of two Gaussian distributions (Fig 3D). These fits

revealed that the mean FRET efficiencies obtained from MD simulations are approximately

0.33 and 0.62 for open and closed conformations, respectively (Table 1). These computation-

ally estimated FRET values, while slightly lower than expected from experiment—the observed

differences of ~0.02 to 0.03 correspond to distances of ~1–2 Å, respectively—remain in close

agreement with those estimated by smFRET (Table 1).

The modest differences in the mean FRET efficiency values between the MD and smFRET

experiments may arise from a number of potential sources. This may include inaccuracies in

the fluorophore-linker and fluorophore-protein contacts used to calibrate structure-based sim-

ulations, corrections used to estimate experimentally derived FRET efficiencies, or the absolute

values of specific fluorophore parameters (namely R0) used to convert the distances observed

in MD simulations to FRET efficiency.

In addition to the open and closed conformations of LIV-BPSS, we also observed an inter-

mediate population in our simulations at relatively slow time regimes (3 and 5 ms) (Fig 3D).

This may be akin to the blurring of low and high-FRET states observed experimentally in slow

exposure regimes, (Fig 3C and 3D), where artifactual intermediates appear to arise due to the

time averaging of the simulated FRET signal.

The slight difference in FRET efficiency values or time-averaging intermediates observed in

MD may arise from subtle distinctions in the simulated fluorophore-linker interactions com-

pared to those present in the fully solvated experimental setting. As the simulations performed

treat hydrogen bonding and electrostatic interactions as implicit contacts, it is likely the fluoro-

phore dynamics differ slightly from those that actually occur in vitro. Nonetheless, the simu-

lated dynamics of LIV-BPSS closely recapitulate those observed experimentally by smFRET.

Further iterations of the simulated contacts can be explored to determine how the FRET effi-

ciency values for open (apo) and closed (Leu-bound) LIV-BPSS conformations vary with linker

and dye composition. Such efforts are expected to inform on potential optimizations and the

influence of the site of protein attachment on experimentally derived and simulated FRET effi-

ciency values.

Single-molecule and molecular dynamics simulated-FRET changes reflect

interdomain movements in LIV-BPSS

We next sought to quantitatively examine the extent to which the fluctuations in FRET effi-

ciency observed in our simulations correspond to conformational changes of the LIV-BPSS

protein. Due to the flexible nature of the fluorophore linkers, LD555 and LD655 can, in princi-

ple, approach each other without the protein undergoing a complete conformational transition

from apo (open) to Leu-bound (closed) state, and vice versa. In other words, the fluorophores

could fail to precisely track the changes in distance between the two LIV-BPSS domains to

which they are attached.

Table 1. FRET efficiencies determined from Gaussian distribution of FRET distributions. Gaussian distribution used to fit histograms is defined by Eq 7, listed are the

means ± variance of the low and high FRET states corresponding to experimental smFRET and MD simulation.

Low FRET State High FRET State

Experimental Simulation Experimental Simulation

5 ms 0.41 ± 0.10 0.35 ± 0.06 0.61 ± 0.10 0.56 ± 0.15

3 ms 0.40 ± 0.10 0.35 ± 0.06 0.64 ± 0.07 0.56 ± 0.15

1 ms 0.36 ± 0.09 0.32 ± 0.09 0.65 ± 0.07 0.63 ± 0.11

0.5 ms 0.34 ± 0.09 0.32 ± 0.10 0.65 ± 0.07 0.63 ± 0.13

https://doi.org/10.1371/journal.pcbi.1008293.t001
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To assess the potential contributions of such divergences to our analyses, we sought to

examine the correlation between the inter-fluorophore distance–and therefore FRET efficien-

cies–with the actual LIV-BPSS domain movements in the simulations. While these two values

are often assumed to be closely correlated, it is not obvious that they are actually correlated in

light of, for example, relatively long linker lengths required for smFRET experiments. The

assumption of close correlation between the fluorophore and the domain to which it is

attached actually entails two implicit assumptions: (i) the residue position on the protein accu-

rately reflects movement of an entire domain, as opposed to a local rearrangement, and (ii) the

flexible linkers can be approximated by rigid bodies, fully correlated with movement of the

protein.

To examine the extent to which this assumption holds for the entire domain to which the

fluorophores are attached, we sought out an alternative reaction coordinate that captures the

maximum amplitude of LIV-BPSS conformational change, independent of any possible restric-

tions on labeling positions imposed by the practicalities of experiments. We chose a maximum

amplitude reaction coordinate that optimizes separation of conformations on approximate

free energy landscapes, aiding in estimations of barrier height. To find this reaction coordinate

we measured the distance between all Cα atoms in domain 1 to all Cα atoms in domain 2.

These distances were compared between the open and closed conformations to generate

changes in distance, Δ, for each amino acid pair between domains 1 and 2 (S6 Fig). This analy-

sis revealed areas of the protein that undergo the largest interdomain distance changes during

conformational change.

We found that the amino acid pair Ser 12 and Ala 237, displayed the largest distance change

(Δ ~13 Å) between open and closed conformations. Thus, we define the alternative reaction

coordinate, Rdomain, to be the distance between Cα atoms of Ser 12 and Ala 237. We note that,

while the change in Rdomain is larger than the change for the label positions used in the experi-

ments, the Rdomain states are too close (~35 ± 4 Å and ~22 ± 3 Å for open and closed states,

respectively) for FRET-based experimental measurements due to practical considerations (S2

Fig). A Boltzmann-weighted approximate free energy landscape was calculated, indicating that

Rdomain and Rdye are correlated (Pearson’s correlation of 0.73) (Fig 4A). Here, the open confor-

mation exhibits a mean Rdye value of ~69 Å and a Rdomain of ~35 Å, whereas, the closed confor-

mation exhibits a mean Rdye value of ~56 Å and a Rdomain of ~20 Å. The 34 Å or 36 Å distance

difference between Rdye and Rdomain is a result of fluorophore linker length and positions 12

and 237, used to measure Rdomain, being closer together than positions 67 and 181, the sites of

fluorophore conjugation in our smFRET experiments. From Rdomain or Rdye, the apparent bar-

rier heights of LIV-BPSS conformational change can be approximated to 3.8 kcal/mol or 2.5

kcal/mol, respectively (Fig 4B and 4C). To connect the barrier heights to rates we used the rela-

tionship between protein diffusion coefficients, rates, and free energy barriers [75,76]. As the

reaction coordinate Rdomain leads to the larger barrier height we used it to determine the rate

of LIV-BPSS conformational change (S2 Text). From these calculations we observed Leu-

bound and apo LIV-BPSS to undergo conformational changes at rates of 750 s-1 to 6000 s-1 and

14773 s-1 to 19530 s-1, respectively, where the lower limit is approaching the rate determined

by smFRET of 210 s-1 (S7 Fig; S2 Table) [68]. As diffusion is determined by the degree of

roughness in the landscape, the overestimation of the rate of conformational transitions by

LIV-BPSS is likely a result of the low degree of roughness in the free energy landscapes from

structure-based model approaches. The rate difference between the apo and Leu-bound states

is a result of the up to 10-fold difference in prefactor (S2 Table). The prefactor represents the

attempt frequency, and is measured from the time dependent variance of Rdomain in explicit

solvent simulations. As the apo state is more dynamic, the time dependent variance of Rdomain

is larger, leading to the larger prefactor (see below) (Fig 4D–4F). The rate is proportional to
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the prefactor and to the exponential term (dependent on the barrier height), resulting in both

making important contributions to rate estimates. Barrier height calculations are often limited

by sampling; however, the all-atom structure-based potential significantly enhances sampling.

On the other hand, the prefactor, determined by explicit solvent simulations, is somewhat lim-

ited in terms of sampling. Thus, longer simulations or implementation of explicit solvent

enhanced sampling techniques to estimate diffusion may improve the accuracy of our

methodology.

To examine the effect of finite linker length, we considered a third reaction coordinate,

RCα, which measures the distances between the Cα atoms at the labeling positions used in the

smFRET experiments (positions 67 and 181). This pair exhibited a distance change (Δ)

between open (~57 Å) and closed (~49 Å) conformations of approximately 7.7 Å (S6 Fig).

Comparing this reaction coordinate with Rdye, the distance between the fluorophores (each of

which is attached to a linker), we obtained a Pearson correlation coefficient of 0.8, indicating

the fluorophore fluctuations correlate with domain motions of LIV-BPSS (S8 Fig).

The open state of LIV-BPSS is inherently dynamic

We performed explicit solvent simulations of two systems: (i) LIV-BPSS in the open state with-

out ligand (apo) and (ii) LIV-BPSS in the closed state with ligand (Leu-bound). Comparison of

Rdomain and Rdye for explicit solvent simulations of the apo state indicates that this LIV-BPSS

Fig 4. Correlation of the fluorophore and inter-domain distances of LIV-BPSS. (a) Boltzmann-weighted free energy landscape with reaction

coordinates of inter-domain distance (Rdomain; left axis) and inter-dye distance (Rdye; bottom axis) from 100 x 500 million-time steps structure-

based simulations (50 billion-time steps). The vertical axis (scale bar at right) represents the fraction of simulation time, calculated as a relative

free energy (see Methods). The centers of the energy basins refer to the apo and Leu-bound structures, highlighted with black circles. The

Pearson correlation coefficient for the two reaction coordinates is 0.73 indicating a correlation between the estimated distances between the

LIV-BPSS domains and conjugated fluorophores. The barrier between the Leu-bound and apo states (black circles) is ~ 2–4 kcal/mol. (b) Free

energy along the reaction coordinate Rdomain. (c) Free energy along the reaction coordinate Rdye. (d-e) Rdomain with respect to Rdye for explicit

solvent simulations of LIV-BPSS in the (d) apo and (e) Leu-bound states. Free energy landscapes of explicit solvent simulations are from three,

1 μs simulations, as such the separate peaks of the apo states are from different trajectories. (f) A zoom in on the Leu-bound free-energy

landscape (panel e).

https://doi.org/10.1371/journal.pcbi.1008293.g004
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state is significantly more flexible than the Leu-bound state (Fig 4D). Three 1 μs simulations of

LIV-BPSS in the apo (open) or Leu-bound (closed) states were combined to create approximate

free energy landscapes comparable to those from structure-based simulations (Fig 4D–4F). In

the Leu-bound state simulation, a single conformational basin was observed with a minimum

at a Rdomain and Rdye of 20 Å and 38 Å, respectively (Fig 4E). Upon closer inspection, this mini-

mum was found to exhibit some heterogeneity (Fig 4F), indicative of modest interdomain and

interdye distance variations in the Leu-bound state, albeit orders of magnitude less than varia-

tions in the all-atom structure-based MD simulations.

By contrast, the apo state explicit solvent simulations exhibited two well-separated FRET

populations, corresponding to a Rdomain value of either ~45 Å or ~25 Å and Rdye values of ~75

Å and ~50 Å, respectively. As the explicit solvent simulations were initiated from the open

conformation, the differences in the occupied positions for each simulation on the free energy

landscape are a result of the fluctuations sampled. Close inspection of these simulations

revealed that the two LIV-BPSS domains can indeed approach each other in the absence of

ligand to achieve a conformation similar in nature to the closed conformation (S9 Fig). Here,

we note that while the two domains of LIV-BPSS approach each other, they do not reach the

same conformational space adopted by Leu-bound LIV-BPSS (Fig 4D–4F). The trajectories of

the apo state simulations that approach the closed conformation all initiate their transition

fairly rapidly in the simulation (within the first 10 ns). Interconversion between the closed and

open conformation is not observed in the explicit solvent simulations in the 1 μs sampling

regime. However, the apo state simulations are observed to be more dynamic as reflected by

width of the free energy landscape populations (Fig 4D and 4E) and the RMSD and RMSF val-

ues, which were both on average ~1.5 Å larger than the Leu-bound simulations of LIV-BPSS

(S10 and S11 Figs). Altogether, the results indicate that the open state is more dynamic and

correspondingly more likely to interconvert between the closed and open conformations, with

longer sampling.

Discussion

Efforts to quantify the relationships between data obtained through smFRET imaging and MD

simulation have the potential to provide atomic descriptions of rate-limiting, large-scale con-

formational changes in biological systems critical to cellular function and regulation. Atomis-

tic-resolution information on such large-scale events are currently limited by the

computational costs of explicit solvent simulations over long time scales.

To overcome these limitations, we have used a computationally efficient all-atom structure-

based approach to simulate the model protein LIV-BPSS that recapitulates smFRET data on

the same time scale as in vitro experiments. The LIV-BPSS system undergoes a relatively simple

clamshell-like transition in converting between open and closed conformations. The integra-

tion of smFRET and simulation is not, however, limited to small proteins. In fact, it is also

suited to larger and more complex systems that undergo a diversity of conformational changes

potentially dominated by more than one mode. More complex systems, such as the ribosome,

can be observed to undergo large-scale conformational transitions by smFRET, but the nature

of these conformational changes is difficult to understand even when informed by high-resolu-

tion structural information. Our long-term goal is to employ the integration of smFRET with

MD simulations to enable atomistic, structural dynamic descriptions of the complex rotations,

counter rotations, swivel- and tilt-like domain movements that have been evidenced to under-

pin ribosome functions during translation.

As demonstrated, MD simulations of the kind described herein provide direct insight into

the relationship between dynamics of a system and the observed FRET values evidenced
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experimentally. In doing so they have the potential to provide dynamic structural descriptions

of the underlying physical barriers separating states of a system. Such efforts hold the promise

of providing complete descriptions of the reaction coordinate evidenced by smFRET investiga-

tions and critical information about the nature of the conformational changes observed. At the

same time, MD simulations can be used to inform on strategies to maximize smFRET signals

or to investigate alternative reaction coordinates. Such strategies could involve optimization of

FRET pairs utilized, given the impact on κ2 from the labelling position environment measured

in simulations. Improvements from this symbiotic relationship between experiment and simu-

lations can be extended to gain a deeper understanding of the fluorophore-linker, fluoro-

phore-protein and fluorophore tumbling behaviors at their chosen sites of attachment.

Ultimately, this relationship aims to delineate the most accurate FRET distance relationships

possible. For instance, simulations could be employed to inform chemical synthesis efforts to

alter the fluorophore linker lengths for a given FRET pair to optimize κ2, all of which can be

performed in silico using the approach described above. In so doing, the functional reaction

coordinate of interest can be fully revealed to the experimentalist and more informative experi-

ments can be implemented.

Future endeavors in this area of inquiry will benefit from further advances in the experi-

mental strategies used to site-specifically incorporate extrinsic fluorophores within composi-

tionally diverse biomolecules. The bridge between experiment and simulation will be further

enhanced by continuing imaging platform and fluorophore developments that further extend

smFRET studies into the microsecond time domain. Such time scales will reduce computa-

tional burdens and ultimately afford explicit solvent simulations of smFRET data on commen-

surate time scales. Likewise, as computational resources extend the simulated time scales, the

gap between experiment and simulation approaches will decrease. Synergistic endeavors of

this kind provide a deeper understanding of complex biological systems and the structural

dynamic events that occur during conformational transitions between distinct states evidenced

in smFRET experiments. Continued focus on this frontier is ultimately expected to inform the

developments that will enable MD simulations to recapitulate more fully biological systems of

interest and extend their predictive capacity for increasingly diverse areas of inquiry.

Methods

Modelling of Liv-BP Conjugated to self-healing Cy3 and Cy5 fluorophores

The coordinates for the E. coli LIV-BP protein were accessed from the protein data bank, PDB

ID: 1Z15 –super open form, 1Z16 –LIV-BP•Leu, 1Z17 –LIV-BP•Ile, and 1Z18 –LIV-BP•Val

[71]. Positions Cys53 and Cys78 were altered to Ser to recapitulate the Liv-BPSS variant rapid

kinetics used in Fitzgerald et al. 2019 [68]. Coordinates for the self-healing fluorophores,

LD555 and LD655, were designed and geometries optimized with Avogadro 1.2.0 and

GAUSSIAN 09, respectively [77,78]. B3LYP theory and a 6-31G(d) basis was used for the

GAUSSIAN geometry optimization [79,80]. Positions Asn67 and Asp181 of LIV-BPSS were

altered to Cys and the self-healing fluorophores LD555 and LD655 were conjugated to these

positions, respectively, through thiol-maleimide reaction. This was repeated for the super

open (apo), Leu, Ile, and Val bound LIV-BP complexes.

Explicit solvent equilibrium simulations

Each of the LIV-BPSS systems were solvated in a 12.0 Å SPCE water box and neutralized to a

salt concentration of 100 mM KCl and 5 mM MgCl2 with the tleap package in AMBER18. The

parameters for the self-healing LD555 and LD655 fluorophores were created in the antecham-

ber AMBER package [82,83]. The potential energy of the water and total LIV-BPSS system was
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minimized for 1,000 and 10,000 steps, respectively, using a steepest descent approach in

AMBER18 using AMBER ff19SB parameters [81]. Each system was heated to 300 K in steps of

10 K over 50 ps using a Langevin thermostat and equilibrated for 300 ps prior to simulation.

Simulations were performed with AMBER18 using Lennard-Jones interactions with a 10 Å
cut-off, with periodic boundaries and the particle-mesh Ewald method [81]. The SHAKE algo-

rithm was used for all bonds involving a constrained hydrogen. A step size of 2 fs was used in

the simulations and all explicit solvent simulations were performed for a minimum of 1 μs,

totaling 12 μs of aggregate simulation time.

All atom Gō-like structure-based simulations

All atom Gō-like structure-based simulations were performed as previously described [48,66].

AMBER minimized structures of the apo LIV-BPSS protein or bound to Leu, Ile, or Val (excluding

hydrogens) were used as starting structures for structure-based models. Coordinate and topology

files for structure-based models were constructed using Smog-2.2 [84]. A multi-basin Gaussian

contact potential (Cij) described previously by Noel et al. 2012 [85], was used, defined by:

Cijðrij; r
ij
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; rijbÞ ¼ 1þ

sNC
rij
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Where, rij is the distance between atoms i and j, α and β are the open and closed conforma-
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where, σ is the width of the gaussian well which is set to a depth of -1. With this approach both

the open and closed conformations non-bonded contacts, bond-distances, and angles are set

as native states. The potential (Vij) used for the simulations is defined by:
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where, εr = 50 ε0, εθ = 40 ε0, εχi = 10 ε0, εχp = 40 ε0, εNC = 0.1 ε0, ε0 = 1, σNC = 2.5 Å and

εFD = ε (1—cosF) + ε/2 (1 –cos 3F). The parameters r0, θi,0, χi,0, and Fi,0 correspond to the

initial bond distances, angles, planar angles, or dihedral angles, respectively, of the structure

the simulation was initiated from.

All simulations were performed using a modified version of Gromacs v4.5.4, totaling 300

simulations each at 500 million time steps of size 0.002, for an aggregated 150 billion time

steps [86]. The temperature of the simulations was set to 0.02–1.16 in reduced units which was

maintained by Langevin dynamics to identify a temperature that reflects dynamics of the

LIV-BPSS protein at 300 K under explicit solvent conditions (S1 Text, S12 Fig.). A temperature

of 0.3 reduced units was used for all subsequent simulations of LIV-BPSS. Simulations were cal-

ibrated against smFRET data to estimate the time scale of each time step ~ 0.25 ns. Addition-

ally, the weights of the contacts were set to 0.2–0.46 to find a conformational equilibrium

(S1 Text, S13 Fig.).
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Measurements of reaction coordinates

The reaction coordinate Rdye is the distance between the center of mass of the fluorophores,

excluding linkers. To obtain a reaction coordinate describing the movements of LIV-BPSS

domains that displays the most variation between the open and closed conformations, the dis-

tance from the Cαs in domain 1 was measured to each Cα in domain 2 of LIV-BPSS, culminat-

ing in a matrix of domain 1 to domain 2 Cα distances. Ser 12 and Ala 237 displayed the largest

distance difference between the open and closed conformation, therefore, the distance between

these amino acids was used to measure the movements of LIV-BPSS domains (Rdomain).

Rdye was converted into a FRET efficiency value with the equation:

FRET ¼
1

1þ
Rdye
R0

� �6
ð4Þ

where, R0 is the Förster distance of the fluorophore pair defined by:

R6

0
¼

2:07

128p5NA

k2QDJ
n4

ð5Þ

where, NA is Avogadro’s constant, κ2 is the orientation factor, QD is the quantum yield of the

donor fluorophore (0.48), and n is the refractive index of the medium and J is the spectral

overlap of the two dyes. Simulations performed in implicit solvent were considered to be in a

refractive index of water (1.33). The orientation factor was determined by:

k2 ¼ ðcosyAD � 3cosyD cosyAÞ
2

ð6Þ

where, θAD is the angle between the transition dipole moment vector of the acceptor and

donor fluorophore, θD is the angle between the transition dipole moment vector of the donor

fluorophore and the separation vector between the fluorophores, and θA is the angle between

the transition dipole moment vector of the acceptor fluorophore and the separation vector

between the fluorophores. The transition dipole moment vectors for the fluorophores was cal-

culated with the Schrodinger computational suite [87].

Resulting FRET efficiencies were fit to a two gaussian distribution to identify the low and

high FRET states corresponding to the apo and Leu-bound states. The two gaussian distribu-

tion is defined as:

counts ¼ Ae
� ðx� �xaÞ2

2s2
a þ Be

� ðx� �xbÞ
2

2s2
b ð7Þ

where, A and B are the height of the first and second gaussian distribution, �xa and �xb are the

mean of the first and second distribution, and σa and σb are the deviation of distribution 1

and 2.

Analysis of structure-based simulations

Approximate Boltzmann-weighted free-energy landscapes were prepared as previously

described [41]. In brief, landscapes were calculated using the g_sham package in GROMACS

v4.5.4, using the equation:

DG� ¼ � kBTln
PðxiÞ
PmaxðxÞ

� �

ð8Þ

where, ΔG� is the approximate free energy, P(xi) is the probability of being in state i, Pmax(x) is

the probability of the most observed state, kB is the Boltzmann constant, and T is the
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temperature (300 K). The free energy landscape evaluated as a function of Rdom and Rdye. The

barrier crossing rate (k) was calculated using the relationship between LIV-BPSS kinetics and

free energy profile:

1

k
¼
R Rfinal
Rinitial

dR
R R
1
dRdomain

0 e
ðGðRdomainÞ� GðRdomain

0 ÞÞ

kBT

DðRdomainÞ
ð9Þ

where, G is Gibb’s free energy, D(Rdomain) is the effective diffusion coefficient along the reac-

tion coordinate Rdomain, and R is the reaction coordinate. The integral was simplified by using

a constant value for D(Rdomain); however, the maximum and minimum diffusion coefficients

were considered providing a range of estimated rates.

Analysis of smFRET data

Experimental smFRET data were previously published [70]. In that study, smFRET imaging

was performed using a custom-built total internal reflection fluorescence (TIRF) microscope

using scientific complementary metal-oxide semiconductor (sCMOS) detectors [5]. LD555

was excited using a 532 nm laser (Laser Quantum) and imaged at the specified time resolution.

The fluorescence from LD555 and LD655 was separated using a T635lpxr dichoric (Chroma)

and projected onto two Flash 4.0 v2 sCMOS cameras (Hamamatsu) using a MultiCam LS

device (Cairn). Microfluidic imaging chambers passivated with a mixture of PEG and biotin-

PEG were incubated for 5 min each with 0.8 μM streptavidin (Invitrogen) and 10 nM biotin-

tris-NTA-Ni2+ [68,70,88]. His-tagged LIV-BPSS (a construct with native disulfide residues

removed and labeled at engineered cysteine residues in positions 67 and 181) was surface

immobilized via the His-tag:Ni2+ interaction in for 2 minutes. All experiments were performed

with 30 mM Tris (pH 7) and 150 mM NaCl buffer and with leucine present at 4.5 μM, which

corresponds to the KD for LIV-BPSS where bound and unbound states are equally occupied.

Wide-field TIRF movies acquired in this way were analyzed with SPARTAN [5], including

corrections for donor to acceptor crosstalk, gamma, and acceptor direct excitation [89,90].

Fluorescence quantum yield and anisotropy measurements

Absolute fluorescence quantum yield of LD555 labeled LIVBPSS was measured in a FluoTime

300 spectrometer using integrating sphere accessories (PicoQuant GmbH, Berlin) and a 300

W xenon excitation lamp. The absorbance of the sample at the excitation wavelength was

adjusted to 0.02 in a Shimadzu UV-2600 spectrometer to minimize re-absorption of emitted

photons. For the absolute quantum yield measurements, the sample was photoexcited at 517

nm and the photons were detected from 512 to 700 nm.

Steady-state fluorescence anisotropy of LD555-LIVBPSS was also recorded in FluoTime 300

spectrometer using 300 W xenon lamp as an excitation source. The sample was photoexcited

at 517 nm and the anisotropy was recorded in the emission range 550–650 nm. All the mea-

surements were carried out in a buffer containing 30 mM Tris (pH 7) and 150 mM NaCl at

room temperature using standard 1 cm path length quartz cuvettes (Starna Cells, Inc.). The

data were analyzed in EasyTau software (PicoQuant GmbH, Berlin).

Supporting information

S1 Fig. Multibasin Gaussian Potential used to define contacts for the native state. Repre-

sentation of the potential (Vij) for each native state, with regards to the distance between an

atom contact pair, defined by Eq 3. This example of a contact pair has a minimum Vij at 5 Å
and at 10 Å, corresponding to the atom distances in the first and second native state. The
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barrier between the minima can be defined with σ1 and σ2 and the basin depth defined by A in

Eq 2.

(TIF)

S2 Fig. The distances of LIV-BP domains and conjugated fluorophores. The distance

between the Cα of Ser12 and Ala 237 (Rdomain) and the distance between the center of mass of

the fluorophores (Rdye) as measured during a structure-based simulation (1x106 time steps

binned for 0.25 ms sampling). Interconversion between the Leu-bound and apo states can be

observed in both the Rdye and Rdomain reaction coordinates as Rdomain transitions from a 29.5

(closed) to a 33 Å (open) state and Rdye transitions from a 56 (closed) to 69 (open) Å state dur-

ing a single simulation.

(TIF)

S3 Fig. Fluorophore transition dipole moments. Emission and absorption dipoles of central

chromophore structures of self-healing fluorophores, respectively, at B3LYP/6-311G(d,p) level

of theory. The core of the LD555 and LD655 fluorophores used in the present study is identical

to Cy3 and Cy5, respectively, and thus serve as a reasonable proxy for these calculations.

(TIF)

S4 Fig. Simulated smFRET in the absence of dye-linker interactions. At 3, 1, and 0.25 ms

sampling in the absence of dye-dye interactions structure-based simulations overestimate the

FRET efficiency for both the closed and open state.

(TIF)

S5 Fig. Population level comparison of simulated FRET efficiencies. (a) Contour plots of

FRET efficiencies calculated from MD simulations in the presence of dye-linker interactions.

(b) Contour plots of FRET efficiencies calculated from MD simulations in the absence of dye-

linker interactions.

(TIF)

S6 Fig. Identification of an optimal reaction coordinate describing LIV-BP conformational

change. The distance between each Cα in domain 1 was measured to each Cα in domain 2 of

LIV-BP for both the apo and Leu-bound states. The difference in the distances between the

apo and Leu-bound states were then plotted on the heat map as Δ distances. This matrix

reveals the amino acid pair whose distance changes the most during conformational change of

LIV-BP. The Cys 67 and Cys 181 amino acid pair that was used to conjugate fluorophores to

LIV-BP are highlighted as the FRET Pair.

(TIF)

S7 Fig. Connecting the free energy of LIV-BP domain movements with the rate of confor-

mational change. (a) The means square displacement of the reaction coordinate Rdomain of

LIV-BPSS measured from 1 μs explicit solvent simulations, correlated with lag time. (b) Free

energy function (eq S2) used to connect the free energy landscape to the rate of LIV-BPSS con-

formational change through changing barrier height. (c) The correlation of the rate and pre-

factor (Ca) in relation to barrier height for LIV-BPSS conformational change using the lower

(red) and upper (black) estimate of diffusion of 0.3 μm2s-1 and 7.8 μm2s-1.

(TIF)

S8 Fig. Correlation of the fluorophore and fluorophore conjugation sites to describe inter-

domain dynamics of LIV-BP. (a) Boltzmann-weighted free energy landscape with reaction

coordinates of inter-domain distance (Rcα; left axis) and inter-dye distance (Rdye; bottom axis)

from 100 x 500 million-time steps structure-based simulations (50 billion-time steps). The
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vertical axis (scale bar at right) represents the fraction of simulation time, calculated as a rela-

tive free energy (see Methods). The centers of the energy basins refer to the apo and Leu-

bound structures, highlighted with black circles. The Pearson correlation coefficient for the

two reaction coordinates is 0.8 indicating a correlation between the estimated distances

between the LIV-BP domains and conjugated fluorophores. The barrier between the Leu-

bound and apo states (black circles) is ~ 2–3 kcal/mol. (b-c) RCα with respect to Rdye for

explicit solvent simulations of LIV-BP in the (b) open and (c) closed states. Free energy land-

scapes of explicit solvent simulations are from three, 1 μs simulations, as such the separate

peaks of the open and closed configurations are from different trajectories. (d) A zoom in on

the Leu-bound free-energy landscape (panel c).

(TIF)

S9 Fig. Flexibility and closure of LIV-BP domains in the absence of ligand. LIV-BP in the

apo state at 0 and 1 μs to display the spontaneous closure of domain 1 (pink) and domain 2

(blue). Fluorophores are conjugated to the protein and are represented as sticks. At 0 μs simu-

lation there are few intramolecular contacts between the fluorophores and their linkers, at 1μs

the number of intramolecular contacts has increased, compacting the fluorophores.

(TIF)

S10 Fig. Root-mean-square deviation (RMSD) of LIV-BP in explicit solvent simulations.

One microsecond simulations of LIV-BP in the (A) apo (green), (B) Leu-bound (red), (C) Ile-

bound (blue), (D) Val-bound (red). Simulations were performed in triplicate. All simulations

adopted an RMSD of< 6 Å.

(TIF)

S11 Fig. Root-mean-square fluctuation (RMSF) of LIV-BP explicit solvent simulations.

RMSF of a 1 μs simulations of LIV-BP in the apo (green), Leu-bound (red), Ile-bound (blue),

and Val-bound (pink) states.

(TIF)

S12 Fig. Temperature determination for structure-based simulations. (A) RMSF of struc-

ture-based simulations at temperatures ranging from 0.02 to 0.5 reduced units. The RMSF of

explicit solvent simulations of the apo and Leu-bound state are highlighted as black and grey,

respectively. Similar RMSF trends are observed between the explicit solvent and structure-

based simulations. (B) Average RMSF of the structure-based simulations with respect to

RMSF. There is a linear relationship (y = 3.987x+0.6072, R2 = 0.9587) between the temperature

of the structure-based simulations and RMSF. The average RMSF of explicit solvent simula-

tions of the Apo and Leu-bound states are highlighted. From the linear fit a temperature of 0.3

reduced units, which is exactly between the Leu and Apo explicit solvent simulations, was cho-

sen to use for the structure-based simulations.

(TIF)

S13 Fig. Leu-bound state specific contacts impact on conformational changes. Leu-bound

state specific contacts were reweighted 0.2–0.46 to identify weight to facilitate LIV-BP confor-

mational changes.

(TIF)

S1 Table. Calculate κ2 values from structure based-simulations and explicit solvent simula-

tions. κ2 for structure-based simulations was calculated from 100, 500-million time step simu-

lations. κ2 for explicit solvent simulations was calculated from 3, 1 μs simulations. The

reported error is the standard deviation between simulation replicates.

(DOCX)
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S2 Table. Parameters calculated from explicit solvent simulations to correlate free energy

barriers and rates.

(DOCX)

S1 Text. Structure-based simulation parameterization.

(DOCX)

S2 Text. Connecting free energy landscapes and LIV-BPSS conformational change rate.

(DOCX)
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88. Lata S, Reichel A, Brock A, Tampé R, Piehler J. High-affinity adaptors for switchable recognition of histi-

dine-tagged proteins. J Am Chem Soc. 2005; 127(29):10205–15. https://doi.org/10.1021/ja050690c

PMID: 16028931

89. Hellenkamp B, Schmid S, Doroshenko O, Opanasyuk O, Kühnemuth R, Adariani SR, et al. Precision
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