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Silk fibroin has the merits of biocompatibility, biodegradability, ease of processing, and

feasibility of modification, which present it as a promising drug delivery material. This

review focuses on the structures of silk fibroin, the controlled transformation of secondary

structures, and the formation mechanism of silk fibroin-based nanoparticles (SFNPs).

We also discuss the intrinsic multi-responsive, surface functionalization, and transgenic

modification of SFNPs for drug delivery.
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INTRODUCTION

Drug delivery is required to deliver appropriate amounts of therapeutic agents to the diseased sites
to improve the therapeutic effect of drugs and reduce their adverse effects (Tian et al., 2014; Jain,
2020). To achieve these goals, various nanoscale drug delivery systems, including mesoporous silica
nanoparticles (NPs), liposomes, and polymeric NPs, have been developed in recent years (Chen H.
et al., 2018; Patra et al., 2018). Among them, polymeric NPs have attracted increasing attention due
to their numerous advantageous features such as good biocompatibility, desirable biodegradability,
and ease of functionalization (Sundar et al., 2010; Merkle, 2015).

In contrast to traditional polymeric NPs, polymeric drug carriers that respond to the external
stimuli (e.g., pH, ROS, GSH, enzyme, temperature, and light) by changing their physicochemical
properties can maintain the stability of the loaded drugs, prolong the blood circulation time of
drugs, realize on-demand drug release in the targeted cells, and reduce the systemic side toxicities
(Cheng et al., 2014; Guragain et al., 2015; Fu et al., 2018; Gao et al., 2019). However, many of
these stimuli-responsive polymers are synthesized through the integration of multiple functional
chemical groups via complex chemical reactions, which involve large amounts of organic solvents
and harsh reaction environments, eventually resulting in potential toxicity and high expense
(Lei et al., 2017; Bordat et al., 2019; Deng et al., 2020). In recent years, a number of natural
polymers, including chitosan, alginate, gelatin, and silk fibroin, have been developed as drug
delivery materials. Among them, silk fibroin is an FDA-approved polymer that can be processed
into nanoscale particles in the mild environment (Lammel et al., 2011; Kundu et al., 2014; George
et al., 2019). For instance, ionic liquid-silk fibroin solutions were prepared and used to fabricate
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SFNPs under ultrasounds (Lozano-Pérez et al., 2014). The
silk fibroin-based NPs (SFNPs) not only have the merits of
excellent biocompatibility and desirable biodegradability, but
also show the features of multi-responsive (Maitz et al., 2017;
Wongpinyochit et al., 2018; Gou et al., 2019b). In addition, they
can efficiently load small-molecule drugs, proteins, and nucleic
acids through surface adsorption, physical encapsulation, and
chemical coupling, which are able to prevent drug degradation,
optimize the drug pharmacokinetics, and increase the cellular
uptake amounts of drugs (Zhao et al., 2015).

In this review, we summarize the controlled transformation
of the secondary structures, the multiple stimuli-responsive
capacities, and the surface/multifunctional modification of
SFNPs for drug delivery.

STRUCTURE OF SILK FIBROIN

Primary Structure of Silk Fibroin
Silk fibroin consists of 18 kinds of amino acids, in which Gly is the
most abundant amino acid accounting for 43% of all amino acids,
followed by Ala (29%) and Ser (12%) (Qi et al., 2017). Silk fibroin
is composed of three basic subunits, a heavy chain (H-chain),
a light chain (L-chain), and a P25 gene-encoded glycoprotein,
whose ratio is 6:6:1. In particular, the H-chain (∼350 kDa) has 12
hydrophobic blocks and 11 hydrophilic blocks, which is the main
contributor of β-sheet structures in SFNPs. These hydrophobic
β-sheet blocks are constituted of the repeat sequence GAGAGS
and are formed on the basis of intramolecular and intermolecular
hydrogen bonds (mainly between Gly and Ala), van der Waals
force, and hydrophobic interaction, which confer SFNPs with
stable 3-dimensional structures (Nguyen et al., 2019; Montalbán
et al., 2020; Pham and Tiyaboonchai, 2020). In the context of
the L-chain (26 kDa), its primary structure has no amino acid
repeat sequence, and it conjugates with the H-chain through a
disulfide bond. The main function of the L-chain is to assist with
the secretion of the H-chain from the silk gland of silkworm. In
addition, the bio-function of P25 glycoprotein (30 kDa) is similar
to that of the L-chain.

Secondary Structure of Silk Fibroin
Silk fibroin has two main types of crystal structures, namely Silk
I and Silk II. Silk I is a transition state, which contains random
coils, α-helical structures, and other amorphous structures. Silk
II is composed of antiparallel β-sheet crystal structures, which
make silk fibroin insoluble in aqueous solutions (Cebe et al.,
2017). In nature, Silk I exists in the silk gland, while Silk II exists
in the form of spun silk fiber. Thus, the investigation of the silk
spinning mechanism can uncover the influencing factors in the
structure transformation process of silk fibroin (Li et al., 2015;
Pham et al., 2018b). This information can then be utilized for
understanding the formation mechanism of SFNPs.

The formation of SFNPs is based on the structure
transformation from Silk I (random coil and α-helical structure)
to Silk II (highly ordered β-sheet). Silk fibroin molecules form
loose amorphous structures in aqueous solution due to their
intrinsic electrostatic repulsion (Zhang et al., 2006). Meanwhile,
water tends to couple with these silk fibroin molecules and form

a layer of hydration film. Upon the external treatment, β-sheet
structures are formed, resulting in the self-assembly of molecular
chains and the formation of SFNPs (Mottaghitalab et al., 2015;
Zhao et al., 2015).

The self-assembly method has been commonly used to
produce SFNPs. It is known that self-assembly, a thermodynamic
process, is determined by molecular aggregation, which can be
modulated by external environmental factors (Lu et al., 2012;
Bai et al., 2013). Under certain external stimulation such as
metal ion, low temperature, organic solvent, and ultrasound,
the soluble, and irregular Silk I can be transformed into non-
soluble Silk II (Hu et al., 2011; Terada et al., 2016). On the other
hand, under high concentration of neutral salt and other certain
conditions (e.g., acid, ROS, enzyme, and hyperthermia), the β-
sheet structures of Silk II undergo a conformational reversion
to amorphous structures of Silk I (Wongpinyochit et al., 2018).
Therefore, the transformation between the crystal structures
of silk fibroin is a complex and multi-factorial regulated
process, which is fundamental to the multi-responsive property
of SFNPs.

MULTI-STIMULI-RESPONSIVE OF SFNPS

Nanotherapeutics with multi-responsive can achieve spatial
and temporal release of drugs in diseased tissues (Qu et al.,
2018). Kaplan group was the first to report that SFNPs showed
an obvious pH-dependent drug release property. The release
rate of doxorubicin (DOX) from SFNPs was significantly
increased in the buffer (pH 4.5) in comparison with that in
the buffers with the pH values of 7.4 and 6.0. They speculated
that the loss of the negative net charges in the buffer (pH 4.5)
weakened the electrostatic interaction between silk fibroin
molecules and DOX, resulting in the accelerated release of
DOX from NPs (Seib et al., 2013). In addition, Totten et al.,.
studied the DOX release behaviors of PEGylated SFNPs in
the acidic buffers with or without lysosomal enzymes. They
found that the DOX release rate was significantly increased in
the simulated lysosomal fluid (lysosomal enzyme and acidic
environment), providing direct evidence of the accelerated
release of DOX in the lysosome of tumor cells (Totten
et al., 2017). Very recently, our group not only confirmed
the pH responsive of SFNPs, but also discovered that they
had obvious ROS/GSH/hyperthermia-responsive properties,
as shown in Figure 1. We further discovered a potential
mechanism for their pH/ROS/GSH/hyperthermia-responsive
properties. Protons, H2O2 molecules, and hyperthermia
could gradually destroy the hydrogen bonds in β-sheet
structures, and GSH could reduce the internal disulfide
bonds into sulfhydryl groups. The treatments with the
protons, H2O2 molecules, hyperthermia, and GSH loosen
the compact structures of SFNPs leading to the acceleration
of drug release from these NPs (Gou et al., 2019a, 2020).
These results collectively reveal that SFNPs have obvious
pH/ROS/GSH/hyperthermia/lysosomal enzyme-responsive
properties, which can facilitate the specific drug release in the
targeted cells via microenvironmental stimuli.
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FIGURE 1 | Schematic illustration of multi-responsive properties of SFNPs.

MODIFICATION OF SFNPS

Many chemically active groups such as amino groups, carboxyl
groups, and sulfhydryl groups, are present in the backbone of
silk fibroin, and these groups are able to be used for chemical
modifications, which can endow SFNPs with some advanced
functions (e.g., charge reversal, controlled drug release, and
targeting property) (Wenk et al., 2011; Chen J. et al., 2018; Pandey
et al., 2020).

For instance, to improve the tumor-targeting property, Sun
et al. prepared DOX-loaded SFNPs and further functionalized
their surface with folic acid (FA) through the chemical reaction
between the amino groups of silk fibroin and the carboxyl
groups of FA molecules. The obtained FA-DOX-NPs could be
specifically internalized by FA receptor-overexpressed tumor
cells and release the loaded DOX in a controlled manner.
They further found that the surface functionalization of FA
significantly improved the chemotherapeutic effect and reduced
the potential adverse effects of DOX (Sun et al., 2018). Recently,
Pham et al. fabricated a new type of SFNPs by using a
reactive carbodiimide (EDC) or polyethyleneimine (PEI). It was
found that the hydrodynamic particle sizes of all the developed
cross-linked NPs were similar to the traditional SFNPs and
their zeta potentials were controllably altered from a negative
charge to positive. In addition, the crystallinity of these NPs
increased with increasing the amount of EDC or decreasing the
PEI content, which can improve drug encapsulation efficiency
(Pham et al., 2018a).

Transgenic technology is another promising strategy to
produce the modified silk fibroin by inserting or replacing
genes in the silkworm genome to generate novel silk fibroin
derivatives (Shi et al., 2014; Helfricht et al., 2016). This strategy
has attracted increasing attention in recent years, as it can
fundamentally alter the primary structure of silk fibroin. Xia
et al. adjusted the proportion of elastin in silk fibroin using
genetic engineering technology and obtained silk-elastin like
proteins (SELPs), which could form NPs via self-assembly. The
first step was the spontaneous formation of micelles with silk
blocks as the core structures, which was driven by hydrogen
bonds among silk blocks; the second step was driven by the

hydrophobic interactions among elastin blocks, leading to the
orderly association of SELP molecules. During the assembly
processes, drugs could be encapsulated in the SELP matrix to
form NPs (Xia et al., 2011).

CONCLUSIONS

Silk fibroin has become an attractive natural polymer for drug
delivery due to its versatile merits such as good biocompatibility,
modulated biodegradability, large scale production, easy
modification, and self-assembling property. Many approaches
can be applied to further the application of silk fibroin as a
drug delivery material such as optimization of its primary
structures, modification with functional chemical groups,
adjusting the self-assembling processes, and controlling the
interaction between silk fibroin and the loaded agents. It is also
critical to endow them with a diseased site-targeting capacity
via the conjugation of targeting ligands. Furthermore, the
alteration of the contents of hydrophobic β-sheet structures
and disulfide bonds is important to improve the responsive
capacities of these silk fibroin-based NPs (SFNPs) to acidity,
ROS, and GSH, which can facilitate the on-demand release
of the loaded drugs from the NPs. Collectively, these
SFNPs can be exploited as a promising nanocarrier for
drug delivery.
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