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Abstract: High-fidelity structural analysis using numerical techniques, such as finite element method
(FEM), has become an essential step in design of laminated composite structures. Despite its high
accuracy, the computational intensiveness of FEM is its serious drawback. Once trained properly,
the metamodels developed with even a small training set of FEM data can be employed to replace
the original FEM model. In this paper, an attempt is put forward to investigate the utility of radial
basis function (RBF) metamodels in the predictive modelling of laminated composites. The effec-
tiveness of various RBF basis functions is assessed. The role of problem dimensionality on the RBF
metamodels is studied while considering a low-dimensional (2-variable) and a high-dimensional
(16-variable) problem. The effect of uniformity of training sample points on the performance of
RBF metamodels is also explored while considering three different sampling methods, i.e., random
sampling, Latin hypercube sampling and Hammersley sampling. It is observed that relying only
on the performance metrics, such as cross-validation error that essentially reuses training samples
to assess the performance of the metamodels, may lead to ill-informed decisions. The performance
of metamodels should also be assessed based on independent test data. It is further revealed that
uniformity in training samples would lead towards better trained metamodels.

Keywords: laminated composites; data-driven model; predictive modeling; metamodel; sampling

1. Introduction

Composites are one the most widely used materials of the 21st century. Laminated
composite structures have become an inevitable component of modern structural, ma-
rine and aerospace applications. Accurate estimation of the static and dynamic performance
of such structures is an important task. With modern computing facilities and a plethora
of highly accurate numerical strategies and mathematical theories, composite structures
are now being extensively analyzed in silico. Despite the high accuracy of numerical ap-
proaches, such as the finite element method (FEM), their time-intensiveness often hinders
their widespread applications, especially when multiple re-runs are required (e.g., for
different sets of ply angles or global optimization tasks). In this regard, metamodels can
provide a remarkable saving in computational effort and cost. However, the metamodel
by virtue of being an approximate model of the actual one (e.g., FEM, computational fluid
dynamics), would lead to some loss in accuracy. The accuracy of a metamodel usually
depends on various factors, like type, size and complexity of the problem, training data
characteristics, the algorithm used, etc.

Several researchers have already adopted various metamodeling algorithms ranging
from polynomial regression (PR) [1,2] to genetic programming (GP) [3] to the artificial
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neural network (ANN) for estimation of static and dynamic behaviors of laminated com-
posite structures. Applications of the metamodels in laminated structures have also varied
from prediction [4,5] to uncertainty quantification [6,7] to single-objective [8,9] and multi-
objective optimization [10,11]. Kalita et al. [1] performed a comprehensive study on poly-
nomial regression (PR) metamodels for dynamic analysis of laminated plates. Based on the
experiments with classical design of experiments, it was concluded that D-optimal designs
would be more suitable as compared to Box–Behnken design and central composite design
plans. Further, it was observed that lack of exclusive tests on dedicated test data could lead
to ignorance and mistrust on PR metamodels, although many of them had shown excellent
prediction on training data but failed miserably on test data. Kalita et al. [3] also carried out
a multi-scale optimization of laminated structures using GP metamodels and noticed that
GP metamodels could be deployed to efficiently and inexpensively switch between micro
to macroscale and vice versa. It was also postulated that as much as 99% of the optimization
algorithm running time could be saved by replacing an FE model with a metamodel in a
metaheuristic-based global optimization problem of laminated composites. Ganguli [2]
developed a mathematical programming methodology based on PR metamodels to design
optimal helicopter rotor blades. Dey et al. [12] carried out optimization of composite shells
considering the effect of uncertainty. Jafari et al. [13] maximized the fundamental frequency
of skew composite plates using a PR metamodel. Heinonen and Pajunen [9] solved a
weight minimization problem for stiffened plates using PR and Kriging metamodels. It was
concluded that Kriging metamodels would be more advantageous than PR metamodels in
single-objective optimization using sequential quadratic programming technique. Todoroki
et al. also employed similar PR metamodels coupled with a genetic algorithm to maximize
the buckling load of simple composite plates [14], blade-stiffened composite plates [15] and
composite shells [16]. It can be revealed from the existing literature that PR metamodels
have widely been applied for laminate modelling problems, perhaps due to their easiness
of use. However, PR metamodels do not interpolate the sample points and are dependent
on the metamodel form selected a priori. Thus, for accurate modeling of laminates where
ply angles are considered as the design variables, PR metamodels may not be suitable as
the design domain is large (±90◦).

Compared to PR metamodels, radial basis function (RBF) metamodels have been less
frequently applied for predictive modelling of laminated composites. Rouhi et al. [17] used
an RBF metamodel for buckling load optimization of a composite cylinder with variable
stiffness. Kaveh et al. [18] solved a similar problem of buckling load optimization to design
variable stiffness composite cylinders by conjugating RBF metamodels and Water Strider
Algorithm. Nguyen et al. [19] carried out a multi-scale optimization study to reduce the
weight of perforated composite structures. They compared the performance of RBF, back-
propagation neural network (BPNN) and least square support vector regression (LS-SVM)
metamodels by integrating them with an optimizer and reported BPNN to be most efficient.
Kalnins et al. [20] compared the performance of RBF, multivariate adaptive regression
splines (MARS) and PR for optimization of post-buckling characteristics of damaged
composite stiffened structures. Lanzi and Giavotto [21] compared the performance of RBF,
ANN and Kriging metamodels in a multi-objective optimization scenario of post-buckling
load maximization and weight minimization of composite stiffened panels.

Zhao et al. [22] developed a structural reliability analysis method by incorporating
RBF, genetic algorithm and Monte Carlo simulation. They constructed the RBF metamodel
from Latin hypercube sampled data. Joy et al. [23] used an ensemble of PR, Kriging and RBF
metamodels for the inverse problem of detecting the delamination location by studying
the change in natural frequencies. Raturi et al. [24] used an RBF metamodel for stochastic
analysis of laminated shells considering the first-ply failure. Similar studies on stochastic
assessment of buckling of sandwich panels by incorporating the material and geometric
uncertainties in RBF metamodels were carried out by Kumar et al. [25,26]. Dey et al. [27]
also contrasted the performance of PR, Kriging, high dimensional model representation,
polynomial chaos expansion, ANN, moving least square, support vector regression, MARS,
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RBF and polynomial neural network metamodels in surrogate modelling of laminated
structures. However, it should be noted that in most stochastic modelling studies, the
range of design variables is generally very small.

As pointed out by Amouzgar and Stromberg [28], the performance of RBF metamodels
had been compared in the past with several other algorithms and their efficacy in predictive
modelling of engineering problems had been well established. However, no comprehensive
analysis has been carried out on the utility of RBFs in large domain problems. Moreover,
the effect of training data uniformity on RBFs has not been studied so far. Thus, in this
paper, a comprehensive analysis of RBF metamodels is carried out to ascertain the utility
of various basis functions in metamodeling of large domain problems, like laminated
structures modelled with respect to ply angles.

The rest of this paper is structured as follows: The objectives of this paper along
with the test problems considered are stated in Section 2. Various methods used for
sampling, data generation, metamodeling and its evaluation are presented in Section 3.
The results of the two test problems are separately discussed in detail in Section 4. Finally,
conclusions based on this comprehensive analysis are drawn in Section 5.

2. Objectives and Problem Description

The prime objective of this paper is to comprehensively investigate the viability of
RBF metamodels as a reliable surrogate for high-fidelity analysis of laminated composite
structures. The second objective is to assess the effect of training data sampling technique
on the overall predictive performance of the RBF metamodel. In this regard, three dif-
ferent data sampling techniques, i.e., random sampling (RS), Latin hypercube sampling
(LHS) and Hammersley sampling (HS) are considered here. In Figure 1, a comparison
of typical sample sets generated by RS, LHS and HS for a typical 2-variable problem is
exhibited. It can be noted from this figure that HS has the maximum uniformity in data
generation, while RS has the least uniformity in the considered 2-dimensional design
space. Since, different performance metrics (like R2, leave-one-out cross-validation, n-fold
cross-validation, mean squared error etc.) have often been proposed by the past researchers
for quantification of accuracy of the metamodels, it would be an interesting exercise to
investigate the influences of uniformity of the training data on the behaviour of different
performance metrics. The third objective is thus set to explore the effects of dimensionality
and complexity of the problem on the RBF metamodel’s predictive power. In this direction,
two different problems, i.e., a low-dimensional (LD) problem (2 design variables) and a
high-dimensional (HD) problem (16 design variables) are considered. For each problem,
three different responses (first frequency (λ1), second frequency (λ2) and third frequency
(λ3) of laminated composite plates) of varying complexity are taken into account.
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2.1. Problem 1: Low-Dimensional (LD) Problem

For the LD problem, a 4-ply symmetric square composite laminate is considered.
The ply angles are treated as the design variables with the entire range of possible ply
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angles (i.e., ±90◦) as the design space. However, only discrete values with 1◦ increment
within the ±90◦ range are considered for training and testing data. The thickness-to-side
ratio for the composite plate is taken as 0.005. The boundary condition of the composite
plate is assumed to be simply supported on all of its sides. In this paper, graphite-epoxy
composite laminates with the following material properties [29] are considered for analysis.

E1 = 138 GPa, E2 = 8.96 GPa, G12 = G13 = 7.1 GPa, G23 = 3.9 GPa, υ12 = 0.3, υ21 = 0.0195.
Using a finite element (FE) approach, the first three natural frequencies (λ1, λ2 and λ3)

of the composite plates are calculated in the non-dimensional form as λ = ωa2
√

ρh/D0,

where D0 = E2h3

12(1−υ12υ21)
. Here, ω, a, ρ and h represent frequency, side width, density and

thickness of the laminate. These three natural frequencies are treated here as the responses.
The detailed formulation of the FEM used in this paper can be available in [30–32]. The FE
formulation adopts a 9-node isoparametric element and is based on first-order shear
deformation theory (FSDT).

2.2. Problem 2: High-Dimensional (HD) Problem

In the case of the HD problem, a 32-ply symmetric square composite laminate is
considered. Thus, the total number of design variables is 16. The thickness-to-side ratio is
taken as 0.04. All the other boundary and geometric conditions are the same as those of the
LD problem.

3. Methodology
3.1. Sampling Schemes

The application of any metamodeling technique starts with setting up a training
dataset. The utility of a metamodel as an accurate and effective predictive tool thus largely
depends on how well it has been trained using the given dataset. Hence, the training
dataset must adequately represent the underlying features of the design space. Therefore,
it makes sense to constitute a training dataset drawn from the design space without any
bias. In this paper, three different sampling strategies i.e., RS, LHS and HS are adopted
to constitute the training dataset. Sample size also plays an important role in influencing
the metamodeling process. Several studies have been conducted in the past to ascertain
the best possible sample size. In this paper, the recommendations of Jin et al. [33] are
considered to determine the sample size (n), which can be expressed as a function of the
number of input variables (p) and a scaling parameter (l) [34].

For LD problem:
n = 3l (p + 1)(p + 2) (1)

For HD problem:
n = l (p + 1)(p + 2)

Considering l = 2, the sample sizes (n) for LD and HD problems are considered as 72
and 612 respectively.

3.1.1. Random Sampling

The RS is one of the most commonly employed sampling strategies because it can
generate new sample points without taking into consideration the previously generated
sample points. Moreover, the total number of sample points to be generated needs not be
specified beforehand. In this paper, n sample points are randomly generated between the
upper and lower bounds of p input variables.

3.1.2. Latin Hypercube Sampling

The LHS, originally introduced by McKay et al. [35], is a statistical technique to
generate near-random sample points. A Latin hypercube is analogous to a Latin square in
p-dimensional space. A Latin square may be defined as an n × n array that is filled up with
n different parameter values such that each parameter value occurs only once in each row
and in each column. Thus, a Latin hypercube for n samples in p dimensions is a matrix
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with n rows and p columns. In LHS, if the variables are continuous, the number of levels for
the variables becomes equal to the total number of samples, thereby each level occurring
only once in each dimension. However, in the case of discrete variables, the occurrence of
each value is equally possible.

3.1.3. Hammersley Sequence Sampling

The HS [36] is a pseudo-random, low-discrepancy sequence based on the represen-
tation of a decimal number in the inverse radix format. The radix values are chosen as
the first (p − 1) prime numbers. The Hammersley sequence generates a highly uniform
sample of n data points in p-dimensional space. In HS, uniformity in the sample space is
maintained in all p dimensions, which is not possible to achieve in RS or LHS. However,
in HS, it is not necessary that each variable level must occur only once. Some values may
occur multiple times while some may be skipped.

3.2. Finite Element Method

FEM is a numerical approach for solving various types of engineering problems [30,37,38].
To solve a given problem, it discretizes the problem domain into small parts called elements.
Each element is connected with its neighboring elements through nodes.

In this paper, the composite laminates are discretized using a 9-node isoparametric
plate bending element. It has been well-established that the choice of plate bending theory
has a significant influence on the accuracy of the derived results. Thus, in this paper,
FSDT is considered to study the effects of rotary inertia and transverse shear deformation.
Due to the paucity of space, the FEM formulation employed in this paper is not explained,
but can be found in the previous research works by Kalita et al. [30–32]. The detailed FEM
formulation is also included in the companion data descriptor to this paper.

Based on past research works on the same finite element formulation [30–32], it is
revealed that an 18 × 18 mesh discretization of the composite plate using 9-node isopara-
metric elements is sufficiently accurate for the considered problems. To demonstrate the
accuracy of the current FEM formulation, a validation example is included in Figure A1,
Appendix A. It has been exhibited that the application of FSDT can yield results with more
than 98% accuracy of the exact solutions and higher-order shear deformation theory-based
results. Thus, all the training and testing data employed in this paper are generated based
on the aforementioned FE formulation.

3.3. Radial Basis Function

The RBFs are commonly used as metamodels in many engineering applications. When
provided with a training dataset, it can approximate the underlying model by mapping
the outputs as functions of the input variables. It was first applied by Hardy [39] in
geophysical research to develop metamodels for topographical contours of geographical
data. Since then, it has been applied to diverse problems from almost all domains of
engineering [40–42].

Any general metamodel may be stated as a global approximation function f̃ (x) de-
veloped from a set of given data points xi ∈ <m (i = 1, 2, .., n) and their corresponding
response function f (x) value. Interpolation of metamodels would generally yield accurate
response surfaces while satisfying the following condition:

f̃ (x) = f (xk), k = 1, 2, ..., n (2)

Equation (2) indicates that the function f and the approximating function f̃ are equal
at all the prescribed n data points.

An RBF is a function φ whose values are real numbers and depend on the distance
from the origin, such that φ(x) = φ(||x||). The value of RBF may also depend on distance
from the center c, such that:

φ(x, c) = φ(||x− c||) (3)
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where || || is any lp norm. In this paper, l2 norm is considered.
The generalized metamodel can be expressed as a linear combination of the basis

functions across all the data points:

f̃ (x) =
n

∑
i=1

wiφ (||x− xi||) (4)

where f̃ (x) can be represented as the sum of n radial basis functions, each associated
with a different center xi. Values of the coefficient (wi) can be calculated by enforcing the
constraints given in Equation (4), to form a linear system of equations:

n

∑
i=1

wiφ(||xk − xi||) = f (xk), k = 1, . . . , n (5)

Equation (5) can also be expressed in form of matrix as follows:

[A]{w} = {F} (6)

where
Aik = φ(||xk − xi||), i = 1, . . . , n; k = 1, . . . , n (7)

{w} = [w1w2 . . . wn]
T (8)

{F} = [ f (x1) f (x2) . . . f (xn)]
T (9)

The above system of equations can be solved to obtain a unique vector {w}. This would
to an RBF metamodel, as stated in Equation (5), which interpolates all the training data points.
Various functional forms of basis function can be adopted to simulate the RBF metamodel.

Linear:
φi(r) = r (10)

Cubic:
φi(r) = r3 (11)

Gaussian:
φi(r) = e−(εr)2

(12)

where ε is shape parameter.
Multi-quadratic (MQ):

φi(r) =
√

1 + (εr)2 (13)

Inverse multi-quadratic (IMQ):

φi(r) =
1√

1 + (εr)2
(14)

Thin plate spline (TPS):
φi(r) = r2 ln(r) (15)

In this paper, two different ε values (1 and 2) for Gaussian, MQ and IMQ are tried.
Hereafter, Gaussian, MQ and IMQ RBFs with ε = 2, are referred to as Gauss-2, MQ-2 and
IMQ-2, respectively.

4. Results and Discussion
4.1. Low-Dimensional Problem

The RBF metamodels are now trained using nine different basis functions (linear,
cubic, Gaussian, MQ, IMQ, TPS, Gauss-2, MQ-2 and IMQ-2) on three different training
datasets (RS, LHS and HS). During the training phase, the 10-fold cross-validation error is
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estimated while randomly dividing the training dataset into 10 subsets. Figure 2 depicts
the best values of 30 trials of 10-fold cross-validation error of various RBF metamodels in
the LD problem. It can be revealed that in general, the 10-fold cross-validation error is the
least for RBF metamodels trained on the RS dataset and the maximum for the HS dataset.
Further, for first frequency and second frequency estimations, MQ-RBF performs the best,
while the performance of linear-RBF is the worst. However, in the case of third frequency
estimation, MQ-2-RBF performs the best, whereas Gauss-RBF exhibits the maximum
10-fold cross-validation error.
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To further understand the behavior of the 10-fold cross-validation error in relation
to uniformity of the training dataset, 30 independent training datasets, each for RS, LHS
and HS, are generated and the 10-fold cross-validation errors are subsequently recorded.
Figure 3 exhibits the box plots of the 10-fold cross-validation errors of 30 trials in the
LD problem. In general, the RBF metamodels trained on the HS dataset show the least
variation. It can be further noted that the overall variability of the 10-fold cross-validation
error is the highest for RS. As a whole, MQ-RBF and IMQ-RBF metamodels show the least
variability, while Gauss-RBF metamodels have the maximum variability.
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The performance of the metamodels is also validated using the leave-one-out cross-
validation approach. Because of the similar nature of the leave-one-out cross-validation
approach to the 10-fold cross-validation approach, the performance characteristics of
various metamodels in Figure 4 are noticed to be similar to those in Figure 2.
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Thus, it becomes unveiled from the study of the performance of RBF metamodels that
cross-validation approaches (like 10-fold and leave-one-out metrics) essentially reusing
training data to assess the model accuracy would in general, show better performance
when trained on randomly drawn (RS) datasets. This is because of the inherent mechanism
of the cross-validation approaches, which randomly select and segregate some portion
of the training data to later act as a validation subset. However, in sampling techniques,
like LHS and HS, the overall training dataset is so selected that it is (as much as possible)
uniformly spread over the entire design space to be modeled. Therefore, withholding
some data (for calculation of cross-validation errors) from these training datasets would
have detrimental effects on the training and subsequently on the performance of the
metamodel. Thus, any typical sample point of the HS dataset has more influence on the
overall predictive capability of the metamodel as compared to a typical sample point of
the RS dataset. This is why it can be noticed that as the uniformity of the training dataset
increases, the performance of metamodels on cross-validation approaches drops.

To further assess the performance of RBF metamodels, a 20-sample point random
sampling test dataset is generated using FEM formulation. The performance of all the
metamodels is validated based on this test dataset using root mean squared error (RMSE)
and mean absolute percentage error (MAPE) as the metrics, as portrayed in Figures 5 and 6
respectively. It can be noticed from Figure 5, for all the RBF metamodels, the value RMSE is
the least for HS data in the case of first and second frequency estimations. However, in the
case of third frequency estimation, in general, the RSME value of all the RBF metamodels
trained on RS data is the least. It is also interesting to note that similar to the 10-fold
cross-validation error plot (Figure 2c) and leave-one-out cross-validation plot (Figure 4c),
the values of RMSE (Figure 5c) and MAPE (Figure 6c) of Gaussian-RBF metamodels are
unusually high for third frequency estimation.
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Further, the performance of the RBF metamodels is assessed based on the entire
population of the 2-variable LD problem. For this, 32,761 sample points are generated
considering the LD problem of 4-ply symmetric laminate design with discrete angles
of 1◦. The performance of the RBF metamodels with respect to mean absolute error
(MAE) and mean squared error (MSE) values for the entire population is depicted in
Figures 7 and 8 respectively. From Figures 7a and 8a, it can be observed that the HS trained
RBF metamodels comprehensively outperform the LHS and RS trained RBFs for first
frequency estimation.

Among different basis functions, MQ and IMQ show the most promising results
for first frequency estimation. For second frequency estimation (Figures 7b and 8b), the
linear-RBF metamodel trained on the LHS dataset has the least error. In case of third
frequency estimation (Figures 7c and 8c), linear-RBF metamodel trained on the HS dataset
records the lowest deviation from the true values. The performance of the metamodels
with respect to different error metrics is presented in Appendix B through Tables A1–A3.
The 2D contour plots depicting the prediction performance of various RBFs trained with
different datasets for first frequency estimation are shown in Figure A2 along with the
corresponding FEM solutions. It is clear that in general, the HS trained RBFs have better
encapsulated the intricacies in the design space. The 2D contours of HS-trained MQ and
IMQ RBFs are observed to be almost identical to the FEM solutions.
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4.2. High-Dimensional Problem

The HD problem, as indicated earlier, is a 16-design variable problem, where the
variables are the ply angles of 16 laminas of the composite plate with each having a
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design bound of ±90◦. Figure 9 depicts the 10-fold cross-validation error for different
RBF metamodels trained on various datasets. It can be observed that the 10-fold cross-
validation error is the minimum for the RS dataset and maximum for the HS dataset. Thus,
as expected, higher uniformity in the spread of sample points in a training dataset imparts
each sample point with more influence on the training goal as compared to a typical sample
point from a less uniform dataset. However, it is interesting to note that the variability
of 10-fold cross-validation errors on 30 independent trials (Figure 10) is the lowest for
the HS dataset and highest for the RS dataset. Thus, when compared for all solutions,
the worst solution may also belong to the RS dataset. The negligible variability of 10-fold
cross-validation errors for HS datasets makes them more attractive for such HD problems
since any typical HS training solution is more reliable and thereby would not require a large
number of independent trials (e.g., 30 trials used in this paper) to ascertain the accuracy of
the solutions. In real-world situations, a smaller number of trials directly corresponds to
less computational cost and quick model deployment time.

The leave-one-out cross-validation error of the RBF metamodels in the HD problem is
presented in Figure 11. For first frequency RBF metamodels, the lowest leave-one-out cross-
validation error is noticed for the LHS dataset, whereas, for second and third frequency
modelling, the leave-one-out cross-validation error is the lowest for the RS dataset. The MQ
(LHS), IMQ (RS) and IMQ-2 (RS) are the best performing RBF metamodels based on the
leave-one-out cross-validation error for the HD problem of first, second and third frequency
modelling respectively.
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An independent test dataset of 50 random samples is again generated and the accu-
racy of the RBF metamodels is assessed based on RMSE and MAPE values, as shown in
Figures 12 and 13 respectively. Cubic (HS) emerges out as the best RBF metamodel for first
frequency modelling. Based on the 10-fold cross-validation error and leave-one-out cross-
validation error as shown in Figures 9 and 11, respectively, cubic (HS) RBF is the worst
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metamodel for modelling of all the frequencies in the considered HD problem. However,
it should be noted that in absolute terms of the cross-validation error, cubic (HS) RBF is
only 19.5%, 28% and 31.5% worst as compared to the best metamodel for first, second and
third frequencies. Contrary to this, the worst metamodel in absolute terms of MAPE on
testing dataset is 212% (Gauss-2 (LHS)), 193% (Gauss-2 (LHS)) and 203% (cubic (LHS))
worst as compared to the best metamodel for first (cubic (HS)), second (MQ (HS)) and third
(IMQ (HS)) frequencies. Further, from Figures 12 and 13, it can be noticed that irrespective
of the basis function adopted, RBF metamodels trained on HS datasets are significantly
better than the metamodels trained on LHS and RS datasets.

In case of the LD problem, it is unveiled that MQ basis functions perform well in all
the examples, while for the HD problem, it is difficult to choose the best RBF metamodel.
Therefore, a multi-criteria decision-making approach in the form of TOPSIS is employed
here to evaluate and rank various RBF metamodels for all the examples. The rankings of
the metamodels using TOPSIS are presented in Table A4.
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5. Conclusions

In this paper, a comprehensive analysis is carried out on the utility of RBF metamodels
in the predictive modelling of laminated composites while considering nine different basis
functions. The effect of problem dimension is analyzed using two different problems, i.e., an
LD problem of 2 design variables and an HD problem of 16 design variables. The ply angles
of each lamina with a design bound of ±90◦ are treated as the design variables. Further,
the role of uniformity of the training data on the predictive ability of RBF metamodels is
also studied in detail while considering three different sampling strategies, i.e., RS, LHS
and HS. Based on the extensive investigations on the FEM generated high-fidelity data,
the following conclusions can be drawn:

(a) The RBF metamodels trained on RS datasets have the best 10-fold cross-validation
error and leave-one-out cross-validation error. However, this excellent prediction
on training data does not necessarily correspond to excellent prediction (in terms of
MAPE and RMSE) on independent test data. In fact, in all the three responses of LD
problem, the worst MAPE and RMSE values are recorded for RBFs trained on the
RS dataset.

(b) The RBF metamodels trained on HS datasets have the best prediction with respect
to MAPE and RMSE on independent test data. However, for all the three responses
of both LD and HD problems, HS-data-trained RBFs show the worst 10-fold cross-
validation error and leave-one-out cross-validation error. Nevertheless, in case of
the LD problem, for the best (in terms of MAPE and RMSE) HS-data-trained RBF
metamodels, the 10-fold cross-validation error is 47% (first frequency), 138% (second
frequency) and 95% (third frequency) worst as compared to the overall best RBF
metamodels. In case of the HD problem, these deviations are much lower, i.e., 19%
(first frequency), 15% (second frequency) and 11% (third frequency). Thus, despite
using metrics, like 10-fold cross-validation error and leave-one-out cross-validation
error, performance measurement of metamodels on independent test data should
be encouraged.

(c) In general, irrespective of the sampling strategy and basis function, all RBF metamod-
els show better performance on the HD problem as compared to the corresponding
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metamodels for the LD problem. It should be noted that in terms of design variables,
the HD problem is 8 times more complex than the LD problem, whereas the training
datasets used have a ratio of 8.5:1 for HD and LD problems. Thus, the size of the
training dataset has more influence on the metamodel’s predictive performance as
compared to the number of variables.

(d) Using TOPSIS, it can be observed that in general, MQ basis functions perform well
for LD problem, whereas, for HD-problem, linear and MQ basis functions perform
with high reliability.

Thus, it can be concluded that RBF metamodels can be employed to accurately estimate
the frequency parameters of laminated composite structures. Further, for large-dimensional
complex problems, low discrepancy sampling methods, like Hammersley is likely to be
more effective in developing global metamodels. The scope of this paper may include
studying the effect of size of the training datasets as well as to apply other metamodel-
ing approaches, like Kriging, support vector regression etc. for predictive modeling of
laminated composite structures.
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Appendix A. Validation of the FEM Formulation

To demonstrate the accuracy of the FEM formulation used in the current paper, an ex-
ample from literature is solved and compared with published results by various researchers.
An all sides simply supported symmetric four layered cross-ply laminated composite
square plate is considered. The material properties are E1

E2
= 40, E3

E2
= 1, G12

E2
= G13

E2
= 0.6 ,

G23
E2

= 0.5 and ϑ12 = ϑ13 = ϑ23 = 0.25. The thickness-to-length ratios (h/a) are varied
between 0.5 to 0.001. The current FEM results are compared with those of Wu et al. [43],
Matsunaga [44], Mindlin [45], Sayyad and Ghugal [46]. While the current work uses FSDT,
Wu et al. [43] used a local higher order shear deformation theory (HSDT), Matsunaga [44]
used a global HSDT, Mindlin [45] pioneered the FSDT and Sayyad and Ghugal [46] used a
trigonometric shear deformation theory (TSDT). Theoretically, HSDTs and TSDT are more
accurate than the FSDT. However, in context of this study the current results are seen to be
at par with the HSDTs and TSDT. This is because the considered plates in the example are
thin or moderately thin plates, on which the effect of transverse shear strain is negligible.
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Appendix B. Predictive Performance of the RBF Metamodels

Table A1. Comparison of all metamodels based on various metrics for first frequency.

Metamodel
LD Problem HD Problem

L10O CV 1 LOOCV 2 MAE MAPE MSE L10O CV LOOCV MAE MAPE MSE

Linear (LHS) 0.4230 0.3996 0.4201 0.9253 0.4310 1.3667 1.3542 3 2.7372 6.2076 10.0952
Cubic (LHS) 0.2050 0.1997 0.2988 0.6584 0.2251 1.5018 1.4881 1.5735 3.5190 5.8822
Gauss (LHS) 0.1669 0.1830 0.1231 0.2742 0.0252 1.4303 1.4303 4.1653 9.4792 22.0251
MQ (LHS) 0.1646 0.1256 0.1739 0.3847 0.0647 1.3886 1.3705 2.5087 5.6825 8.8845
IMQ (LHS) 0.1527 0.1308 0.2188 0.4833 0.1045 1.3754 1.3630 3.6361 8.2695 16.8776
TPS (LHS) 0.2921 0.2488 0.3628 0.7991 0.3278 1.4256 1.4016 2.0118 4.5406 6.8539
Gauss-2 (LHS) 0.2469 0.2234 0.2144 0.4752 0.0848 1.4304 1.4304 4.1655 9.4794 22.0243
MQ-2 (LHS) 0.2205 0.1784 0.2783 0.6133 0.1909 1.3562 1.3602 2.6208 5.9402 9.4500
IMQ-2 (LHS) 0.2858 0.2483 0.3220 0.7104 0.2343 1.3953 1.3899 3.8974 8.8659 19.2459
Linear (HS) 0.5337 0.5264 0.2478 0.5454 0.1575 1.4274 1.4272 1.5109 3.4106 5.4063
Cubic (HS) 0.2455 0.2470 0.1286 0.2837 0.0357 1.6169 1.6264 1.3604 3.0373 4.4954
Gauss (HS) 0.2513 0.2619 0.0967 0.2146 0.0261 1.4704 1.4706 2.7284 6.1930 12.0072
MQ (HS) 0.1644 0.1552 0.0338 0.0748 0.0029 1.4535 1.4562 1.3976 3.1444 4.9146
IMQ (HS) 0.1921 0.1775 0.0616 0.1358 0.0094 1.4221 1.4262 1.7868 4.0455 6.7669
TPS (HS) 0.3453 0.3271 0.1868 0.4119 0.0789 1.4970 1.4997 1.3861 3.1114 4.6152
Gauss-2 (HS) 0.3176 0.3113 0.0966 0.2133 0.0196 1.4721 1.4721 3.4685 7.8823 16.9645
MQ-2 (HS) 0.2487 0.2355 0.1157 0.2552 0.0295 1.4241 1.4386 1.4404 3.2457 5.1219
IMQ-2 (HS) 0.3640 0.3468 0.1484 0.3274 0.0478 1.4473 1.4469 2.3586 5.3527 9.0770
Linear (RS) 0.3947 0.3380 0.4685 1.0320 0.5203 1.3672 1.3736 2.9342 6.6511 11.0335
Cubic (RS) 0.1809 0.1720 0.4091 0.9032 0.4979 1.5272 1.5237 1.8202 4.0734 5.9839
Gauss (RS) 0.1291 0.1102 0.1005 0.2232 0.0168 1.4132 1.4132 4.1115 9.3557 21.4504
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Table A1. Cont.

Metamodel
LD Problem HD Problem

L10O CV 1 LOOCV 2 MAE MAPE MSE L10O CV LOOCV MAE MAPE MSE

MQ (RS) 0.1120 0.0865 0.3262 0.7212 0.3351 1.3976 1.4015 2.7707 6.2682 9.8799
IMQ (RS) 0.1245 0.1156 0.3207 0.7084 0.3051 1.3718 1.3652 3.6583 8.3158 16.9313
TPS (RS) 0.2187 0.2203 0.4209 0.9268 0.4807 1.4848 1.4335 2.3665 5.3376 7.7091
Gauss-2 (RS) 0.2463 0.2325 0.2214 0.4889 0.1167 1.4132 1.4132 4.1114 9.3555 21.4514
MQ-2 (RS) 0.1531 0.1568 0.3540 0.7813 0.3638 1.3880 1.3887 2.8525 6.4599 10.4330
IMQ-2 (RS) 0.2253 0.2040 0.3258 0.7181 0.2761 1.3900 1.3831 3.8646 8.7897 18.9036

1 10-fold cross validation error, 2 Leave one out cross validation error, 3 Bold face indicates best value column-wise.

Table A2. Comparison of all metamodels based on various metrics for second frequency.

Metamodel
LD Problem HD Problem

L10O CV LOOCV MAE MAPE MSE L10O CV LOOCV MAE MAPE MSE

Linear (LHS) 2.4798 2.4290 1.6727 2.0130 6.7348 5.7387 5.7572 23.1989 32.3538 691.9223
Cubic (LHS) 1.5656 1.1782 1.0318 1.2958 2.3316 6.5919 6.4240 12.8804 17.2615 243.1132
Gauss (LHS) 1.2103 1.1837 1.8135 2.2702 3898 5.7234 5.7233 30.4541 42.5952 1202.6393
MQ (LHS) 1.0065 0.6612 0.4568 0.5686 0.2936 5.9608 5.8960 21.4918 29.9017 590.7010
IMQ (LHS) 0.9518 0.7734 0.6413 0.8045 0.6841 5.6802 5.6711 27.7195 38.8525 1006.2652
TPS (LHS) 1.6116 1.5472 1.2711 1.5495 4.0019 6.1969 6.0759 17.9242 24.6904 411.5608
Gauss-2 (LHS) 1.5109 1.4530 0.7466 0.9779 1.7330 5.7239 5.7239 30.4567 42.5989 1202.8600
MQ-2 (LHS) 1.2158 1.0548 0.8331 1.0279 1.7965 5.8464 5.8157 22.3485 31.1340 640.3793
IMQ-2 (LHS) 1.5388 1.4738 1.0932 1.3653 2.8164 5.6904 5.6790 29.0572 40.6952 1101.3604
Linear (HS) 3.1686 3.1799 1.0593 1.2912 2.4418 6.2596 6.2791 12.2203 16.3708 270.1005
Cubic (HS) 1.7698 1.8154 0.8917 1.1526 1.8309 7.0733 7.0739 12.4824 16.4916 243.5307
Gauss (HS) 1.7095 2.9085 0.3440 0.4432 0.2594 6.3550 6.3566 18.7299 25.3252 552.5873
MQ (HS) 1.4067 1.3765 0.4381 0.5602 0.4624 6.3493 6.4100 10.9620 14.5482 237.6996
IMQ (HS) 1.2609 1.2194 0.5584 0.7144 0.7371 6.2169 6.2224 13.1118 17.5664 313.6982
TPS (HS) 1.9730 1.9347 1.0212 1.3030 2.3211 6.6053 6.5867 11.6785 15.5172 243.9042
Gauss-2 (HS) 2.4066 2.3104 0.3956 0.4845 0.5706 6.3696 6.3696 24.5857 33.8412 859.1787
MQ-2 (HS) 1.4986 1.4456 0.7525 0.9632 1.3083 6.2661 6.3321 11.3002 15.0440 249.1558
IMQ-2 (HS) 2.2214 2.1980 0.6456 0.8079 1.0117 6.2652 6.2675 17.2876 23.4843 452.8401
Linear (RS) 2.4286 2.3346 2.2050 2.6185 12.9425 5.6040 5.6002 25.6846 35.8118 845.2555
Cubic (RS) 1.1874 1.0802 1.7935 2.1677 8.6909 6.3547 6.3643 19.3016 26.5988 468.7819
Gauss (RS) 0.8751 0.7927 0.9232 1.1250 2.5222 5.7013 5.7013 30.1709 42.2127 1182.6153
MQ (RS) 0.7173 0.5487 0.8503 1.0024 3.5183 5.7319 5.7249 24.8646 34.6374 790.1790
IMQ (RS) 0.7523 0.6464 1.1646 1.3907 5.6984 5.5327 5.5092 28.4928 39.8291 1051.2330
TPS (RS) 1.4883 1.3626 2.1791 2.6399 11.3841 5.9504 5.9193 22.7879 31.6445 658.0262
Gauss-2 (RS) 1.5656 1.2460 1.2379 1.5113 5.7580 5.7018 5.7018 30.1719 42.2150 1182.8340
MQ-2 (RS) 1.0100 0.8575 1.5162 1.8034 8.5495 5.7739 5.6515 25.2775 35.2279 817.4594
IMQ-2 (RS) 1.5527 1.4264 1.6484 1.9778 9.3007 5.5730 5.5584 29.2269 40.8789 1108.6229

Table A3. Comparison of all metamodels based on various metrics for third frequency.

Metamodel
LD Problem HD Problem

L10O CV LOOCV MAE MAPE MSE L10O CV LOOCV MAE MAPE MSE

Linear (LHS) 4.4359 4.3846 1.8338 1.4141 5.4576 3.9984 4.0324 10.5484 9.1509 162.5176
Cubic (LHS) 3.8595 3.5830 1.6243 1.2218 4.5104 4.5029 4.5363 12.5952 10.9869 248.5740
Gauss (LHS) 15.098 15.524 15.132 11.9124 328.71 3.9279 3.9279 9.8104 8.4642 132.2075
MQ (LHS) 5.1684 5.0520 2.0034 1.5251 6.4269 4.1635 4.1168 10.8483 9.4278 176.0082
IMQ (LHS) 4.5200 4.2339 1.7250 1.2837 5.2536 3.9417 3.9364 10.0116 8.6562 141.2009
TPS (LHS) 4.1874 4.0146 1.4996 1.1313 3.8723 4.2397 4.2453 11.6407 10.1345 206.4641
Gauss-2 (LHS) 4.3990 3.9991 1.6313 1.2787 4.5993 3.9280 3.9280 9.8088 8.4627 132.1455
MQ-2 (LHS) 3.9172 3.6769 1.7275 1.2960 4.9123 4.1093 4.0687 10.7004 9.2909 169.1815
IMQ-2 (LHS) 4.1892 3.8021 1.7909 1.3845 4.8665 3.9141 3.9273 9.9243 8.5706 136.4878
Linear (HS) 6.1278 6.0542 1.5412 1.1644 4.7204 4.3780 4.4194 4.5329 3.7792 55.2910
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Table A3. Cont.

Metamodel
LD Problem HD Problem

L10O CV LOOCV MAE MAPE MSE L10O CV LOOCV MAE MAPE MSE

Cubic (HS) 5.3936 5.5210 2.0704 1.6000 6.9511 4.9966 5.0183 5.6291 4.6959 82.7652
Gauss (HS) 15.269 20.293 7.1762 5.6193 115.2787 4.1733 4.1727 5.3265 4.4659 48.9555
MQ (HS) 5.2290 5.6424 3.0226 2.3622 18.0381 4.4855 4.5286 4.6683 3.8869 62.8607
IMQ (HS) 4.8501 5.0505 2.4151 1.8799 10.6604 4.2210 4.2333 4.3438 3.6220 51.1284
TPS (HS) 5.4072 5.5296 1.6889 1.2851 4.6118 4.6630 4.6910 4.9165 4.0963 67.2636
Gauss-2 (HS) 4.7843 5.2010 1.7273 1.3218 4.5502 4.1880 4.1880 7.6788 6.5332 84.7080
MQ-2 (HS) 4.9174 5.0753 2.0255 1.5656 6.6438 4.4495 4.4672 4.4864 3.7317 58.5835
IMQ-2 (HS) 5.2947 5.3882 1.7069 1.3019 4.4239 4.1954 4.2004 5.4790 4.6158 54.0921
Linear (RS) 4.0657 3.4502 2.1022 1.7004 6.4889 4.0126 3.9669 10.3277 8.9190 148.5799
Cubic (RS) 3.2289 2.7843 1.7475 1.3601 4.0009 4.6060 4.5358 11.2713 9.7666 187.0106
Gauss (RS) 6.9129 5.8174 23.052 17.9454 1861.08 3.8045 3.8045 9.8617 8.5103 133.5786
MQ (RS) 3.4044 3.0009 2.1841 1.6952 6.5737 3.9907 4.0656 10.4481 9.0285 154.6638
IMQ (RS) 3.2568 2.8318 2.0606 1.6001 5.5758 3.8090 3.8185 10.0666 8.6880 139.9123
TPS (RS) 3.5139 2.7862 1.3141 1.0169 2.6578 4.3219 4.2296 10.7681 9.3128 165.8049
Gauss-2 (RS) 3.3497 3.2682 2.2501 1.7746 7.2793 3.8048 3.8048 9.8591 8.5082 133.5162
MQ-2 (RS) 3.1444 3.0117 1.6420 1.2693 3.7105 4.0568 4.0108 10.3911 8.9765 151.6385
IMQ-2 (RS) 3.3308 2.7371 1.5944 1.2601 4.0925 3.8119 3.8043 9.9933 8.6236 137.0649

Table A4. Ranking of various RBF metamodels using TOPSIS.

RBF Metamodel

LD Problem HD Problem

First,
Frequency

Second,
Frequency

Third,
Frequency

First,
Frequency

Second,
Frequency

Third,
Frequency

CCi 4 Rank CCi Rank CCi Rank CCi Rank CCi Rank CCi Rank

Linear (LHS) 0.2003 27 0.3678 25 0.9568 15 0.5947 14 0.4680 15 0.3786 21
Cubic (LHS) 0.5723 16 0.7213 10 0.9767 6 0.8977 5 0.8652 6 0.0773 27
Gauss (LHS) 0.8362 4 0.4981 22 0.5098 26 0.0894 26 0.1522 26 0.4933 11
MQ (LHS) 0.7969 5 0.9427 1 0.9377 18 0.6659 12 0.5521 12 0.3240 24
IMQ (LHS) 0.7366 9 0.8965 2 0.9590 14 0.2664 20 0.2347 20 0.4607 17
TPS (LHS) 0.4229 22 0.6138 18 0.9677 10 0.8091 9 0.7169 8 0.2080 26
Gauss-2 (LHS) 0.6855 11 0.7678 9 0.9640 13 0.0894 27 0.1522 27 0.4935 10
MQ-2 (LHS) 0.6090 15 0.8039 5 0.9736 7 0.6320 13 0.5103 13 0.3510 22
IMQ-2 (LHS) 0.5010 20 0.6826 14 0.9675 11 0.1668 23 0.1836 23 0.4774 14
Linear (HS) 0.4072 24 0.5020 21 0.9160 23 0.9356 3 0.8952 3 0.9018 3
Cubic (HS) 0.7601 8 0.6963 11 0.9283 22 0.8796 6 0.8186 7 0.7611 8
Gauss (HS) 0.7697 7 0.6826 13 0.6257 25 0.5406 17 0.6330 11 0.9053 2
MQ (HS) 0.9157 1 0.8397 4 0.9147 24 0.9472 2 0.8978 2 0.8758 6
IMQ (HS) 0.8761 3 0.8527 3 0.9358 19 0.8543 7 0.8731 4 0.9317 1
TPS (HS) 0.6188 14 0.6449 17 0.9311 21 0.9306 4 0.8711 5 0.8430 7
Gauss-2 (HS) 0.7104 10 0.6854 12 0.9426 16 0.2753 19 0.3376 19 0.7094 9
MQ-2 (HS) 0.7756 6 0.7771 8 0.9400 17 0.9497 1 0.9044 1 0.8907 5
IMQ-2 (HS) 0.6362 13 0.6813 15 0.9342 20 0.6861 11 0.7155 9 0.8907 4
Linear (RS) 0.2128 26 0.1610 27 0.9660 12 0.5355 18 0.3474 18 0.4263 18
Cubic (RS) 0.4117 23 0.4563 23 0.9867 4 0.8479 8 0.6516 10 0.2562 25
Gauss (RS) 0.9059 2 0.7960 6 0.2621 27 0.1017 25 0.1573 24 0.4915 13
MQ (RS) 0.5617 18 0.7940 7 0.9729 8 0.5923 15 0.3853 16 0.4037 20
IMQ (RS) 0.5678 17 0.6676 16 0.9774 5 0.2622 21 0.2194 21 0.4664 16
TPS (RS) 0.3774 25 0.3318 26 0.9924 1 0.7157 10 0.4899 14 0.3496 23
Gauss-2 (RS) 0.6627 12 0.5901 19 0.9693 9 0.1017 24 0.1572 25 0.4918 12
MQ-2 (RS) 0.5004 21 0.5186 20 0.9889 3 0.5643 16 0.3642 17 0.4138 19
IMQ-2 (RS) 0.5180 19 0.4188 24 0.9903 2 0.1805 22 0.1906 22 0.4769 15

4 Closeness coefficient of ith metamodel.
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Figure A2. 2D contour plots for first frequency of the LD problem generated by various RBF metamodels. 
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