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Abstract

Via Ca2+-imaging in freely behaving mice that repeatedly explored a familiar environment, we 

tracked thousands of CA1 pyramidal cells' place fields over weeks. Place coding was dynamic, for 

each day the ensemble representation of this environment involved a unique subset of cells. Yet, 

cells within the ∼15–25% overlap between any two of these subsets retained the same place 

fields, which sufficed to preserve an accurate spatial representation across weeks.

CA1 place cells are considered crucial for spatial memory, but data is limited regarding 

whether their representations of space evolve over time scales of weeks or more1. Some 

theories suggest place cells should retain stable place fields for long-term retention of 

familiar environments1. Alternatively, dynamic aspects of place coding may facilitate 

distinct memory traces of different events occurring in the same environment2.

Due to technical limitations, it has been only partially explored if CA1 representations of 

familiar environments are stable or evolve over time. Electrical recordings from many tens 

of cells are feasible3, but it is challenging to record from the same cells longer than a few 

days. Data on place fields' stability has largely been from small numbers of cells recorded 

over at most a week4-10. These studies have demonstrated cells with stable place fields, but 

the data have been too sparse to assess how coding evolves at the ensemble level.

To study long-term coding dynamics, we combined (Fig. 1a): a viral vector (AAV2/5-

CamKIIα-GCaMP3) to express the Ca2+-indicator GCaMP311 in pyramidal cells; a chronic 

mouse preparation for time-lapse imaging of CA1 over weeks12; and a miniaturized (<2 g) 

microscope for Ca2+-imaging in hundreds of cells in freely behaving mice13. We thereby 

tracked somatic Ca2+ dynamics of 515–1040 pyramidal cells in individual mice as they 

repeatedly visited a familiar track over 45 days.
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We first verified CA1 neurons' place coding attributes as mice explored various arenas. The 

data revealed up to 740 cells (range: 73–740 cells; n = 13 mice) undergoing Ca2+ excitation 

in single fields of view (Fig. 1b–d; Supplementary Fig. 1; and Movie 1). Ca2+ dynamics 

generally displayed quiescent periods interrupted by prominent transients. This concurs with 

in vitro studies showing GCaMP3 reports spike bursts well but for solitary spikes has weak 

signals easily masked by background fluorescence or noise11. We used established 

computational means14 to extract individual cells and their dynamics from each session's 

Ca2+-imaging data, without regard to mouse behavior (Online Methods).

As expected of place cells, during active exploration many pyramidal cells exhibited Ca2+-

excitation when the mouse occupied a specific portion of its arena (Fig. 1d). When we 

placed mice in two different arenas at the same location in the room but with distinct shape, 

color and orientation cues, a subset of cells exhibited re-mapping2, showing spatially distinct 

patterns of Ca2+-excitation in the two arenas. Consistent with prior work, some cells had 

place fields in only one arena. Thus, one can optically detect CA1 place cell activity in 

freely behaving mice, in accord with a Ca2+-imaging study in mice exploring a virtual 

reality15.

To study place cells over weeks, we trained mice to run back and forth on a linear track; 

Ca2+-imaging occurred on ten sessions over 45 days (Fig. 2a). As in prior studies in linear 

environments16, many cells had clear place-coding properties that usually depended strongly 

on the mouse's running direction (Fig. 2b–d). Overall, ∼90% of cells had at least one Ca2+ 

transient during running.

For detailed analyses we focused on a subset of mice (n = 4) and used a conservative 

definition of place field by requiring statistically significant mutual information between a 

cell's Ca2+ excitation events and the mouse's location17. With this definition, ∼20% of cells 

had place fields for left, right, or both running directions (Fig. 2c–e). The set of place fields 

fully covered the track, with the ends represented more densely than the interior (Fig. 2f,g). 

The mean place field size was ∼27% of the 84-cm track, within the range published for 

mice15,16,18,19. For each place field we detected Ca2+ activity in 17 ± 14% of running passes 

(n = 1656 place fields, mean ± s.d.; range: 2-87%). Across days 5–35 the percentages of 

cells on each day with place fields for right (12 ± 1%; mean ± s.e.m) or left (12 ± 1%) 

motion did not vary (Kruskal-Wallis ANOVA; P = 0.77 and 0.88 for right and left, 

respectively; n = 7 sessions; n = 4 mice) (Fig. 2e). Nor were there changes in the 

distributions of place fields' locations or sizes (Fig. 2g,h) (Kolmogorov-Smirnov test; 

P=0.06–0.99 for locations and 0.02–0.99 for sizes, both compared to a significance 

threshold of 2.4·10-3 that includes the Dunn-Sidák correction for the 21 pairwise 

comparisons). Notably, we saw no discernible changes to cells' morphologies nor substantial 

changes in mean Ca2+-transient amplitudes or baseline fluorescence within or across 

sessions (Supplementary Fig. 2). Thus, photobleaching was negligible, and neither GCaMP3 

expression nor illumination had perceptibly deleterious effects on cell health.

To register repeated observations of individual cells, we first examined the precision of 

image registration (Supplementary Fig. 3). Bootstrap analyses showed errors in aligning 

cells' locations across sessions were <1 μm. This precision more than sufficed, as even the 
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closest cells had ≥6 μm between centroids. Over the full study each mouse yielded 515–

1040 cells (n = 4 mice), more than the maximum (740) seen in one session but consistent 

with anatomical data.

A majority of cells was active in one or two sessions (57 ± 1%; mean ± s.d.; n = 2960 cells; 

n = 4 mice). 2.8 ± 0.3% were active in all 10 sessions (Fig. 3a,b). Yet, each session had the 

same percentage (31 ± 1%) of active cells out of the full tally (Kruskal-Wallis ANOVA; P = 

0.46) (Fig. 3b inset). Cells came in and out of this active subset day-by-day, but the overlap 

in active subsets from any two days was only moderately time-dependent, declining from 

∼60% for sessions 5 days apart to ∼40% for 30 days apart (Fig. 3c).

Comparisons between any two sessions revealed ∼15–25% overlap in the subsets of cells 

with statistically significant place fields, declining from ∼25% for sessions 5 days apart to 

∼15% for 30 days (Fig. 3c). Notably, when individual cells did show place fields in more 

than one session, the place fields' locations were generally identical (Fig. 3d). This is a 

compelling, independent validation of our image registration protocol. Though cells came in 

and out of the place-coding ensemble, place fields' invariant locations plus the slowly 

declining overlap in place-coding ensembles led to spatial representations that retained a 

clear resemblance while decaying over time (Fig. 3e–g).

We next sought factors that influenced cells' recurrences in the place-coding ensemble. If 

cell physiological or coding parameters were key influences, Ca2+-activity or place-coding 

parameters might correlate with recurrence probabilities. But if network dynamics were 

more important, the data might reveal no relationships between cells' characteristics and 

recurrence probabilities. Notably, the numbers of sessions in which cells had Ca2+ activity 

or statistically significant place fields were uncorrelated with their rates and amplitudes of 

Ca2+ activation (Supplementary Fig. 4). Cells with high place-coding stability in single 

sessions had virtually the same recurrence odds as other cells (Supplementary Fig. 5). 

Neither inclusion of Ca2+ transient amplitudes in the computations of place fields nor 

variations in how we extracted cells from the raw data altered these findings (Supplementary 

Figs. 6, 7). Overall, we failed to find parameters predictive of which cells recur in either the 

active or place-coding ensembles.

Given place fields' invariant locations, did the ∼15–25% overlap between different days' 

coding ensembles suffice to retain a stable spatial representation? To address this, we used 

Bayesian decoding techniques to study how well we could reconstruct the mouse's location 

from the Ca2+-imaging data (Supplementary Fig. 8 and Fig. 3h–j). We created a set of 

decoders of a common mathematical structure, trained each decoder on a portion of one 

day's data, and tested it on other data. When test and training data were from the same day, 

estimates of mouse location were excellent (median error nearly always <7 cm) and highly 

significant compared to shuffled test data (P<10-160; Kolmogorov-Smirnov test). We then 

asked how well a decoder trained on data from one day would perform on data from other 

days. In comparisons between decoders using the same number of cells, performance 

declined only modestly with the interval between training and testing and remained very 

significant for 30-day intervals (P=10-27; Kolmogorov-Smirnov test). Thus, the ∼15% 
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commonality in place-coding subsets across 30 days sufficed to deduce the mouse's 

trajectory using a decoder trained on data of 30 days prior.

Though GCaMP3 does not faithfully report single spikes11, our approach can sense isolated 

spike bursts. To evade analyses of place coding by using only solitary spikes, cells would 

have to avoid burst spiking across entire sessions while still encoding spatial information. 

We do not exclude this possibility but consider it unlikely, especially given the key place 

coding role ascribed to bursts20 and lack of correlation here between cellular Ca2+ activity 

and involvement in place coding. Improved Ca2+ sensors should reveal a greater portion of 

spiking activity and could amend our findings with GCaMP3. Our general approach will 

allow long-term tracking of large neural ensembles in multiple brain areas beyond CA1.

Overall, our data indicate retention of spatial information in CA1 combines stable place field 

locations with ∼15–25% odds an individual cell will recur in the ensemble place code. Prior 

long-term recordings had stressed place field stability and usually focused on tens or fewer 

cells, far less than the ∼3500 we studied. In vivo imaging allows reliable tracking of CA1 

cells over months12, here revealing the fluctuating membership of place coding ensembles. 

This supports prior reports of individually stable place fields but shows CA1 coding has 

day-to-day dynamism at the cellular level while preserving spatial information in the ∼15–

25% overlap between coding ensembles from any two days. Conversely, each episode in a 

familiar arena has a unique signature via the ∼75–85% of cells that do not overlap when 

comparing coding ensembles from any two sessions (Fig. 3c). Note that our data show the 

existence of these non-overlapping signatures but do not imply any functional significance. 

One possibility is that coding turnover is a long-term form of the spike-rate re-mapping seen 

over shorter intervals2 and might help distinguish traces of distinct events occurring in the 

same environment.

Online Methods

Viral vector

University of North Carolina Vector Core packaged AAV2/5 vectors (∼2·1012 particles/mL) 

expressing GCaMP3 via the CaMKIIα promoter21. We used immuno-staining of virally 

infected CA1 tissue to verify GCaMP3 and CaMKII co-expression in the same cells.

Mice

Stanford APLAC approved all procedures. Male C57/BL6 mice (aged 8–12 weeks at start, 

housed 2–3 per cage with a running wheel) underwent two procedures under isoflurane 

(1.5–2%). We first injected AAV2/5-CaMKIIα-GCaMP311,15 (250 nL) into CA1 (–1.9 mm 

from Bregma, 1.4 mm mediolateral, –1.65 mm dorsoventral). A week after viral 

transduction we implanted a glass guide tube just dorsal to CA1, as described12.

Ca2+-imaging

We used the integrated microscope as described for imaging CA113, with minor adaptations 

for time-lapse studies12,22. The first session (∼4 weeks after second surgery) began by 

installing the microendoscope into the guide tube of isoflurane-anesthetized mice, guided by 
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two-photon imaging of CA1 through the microendoscope12,22,23. The microendoscope was a 

gradient refractive index lens (GRINtech GmbH, 0.44 pitch length, 0.47 NA) and relayed 

light from CA1 to a focal plane outside the mouse. After verifying GCaMP3 expression, we 

fixed the microendoscope in the tube using UV-curing adhesive (Norland, NOA 81).

We lowered the integrated microscope towards the microendoscope until we saw GCaMP3 

fluorescence using the microscope's LED light source (0.05–0.2 mW). After finding a 

suitable imaging site, we attached to the cranium the microscope's base plate using dental 

acrylic and Cerebond. This plate stayed with the mouse even when the microscope was 

detached. We generally darkened the acrylic with carbon powder (Sigma, 484164).

Mice displayed vigorous activity ∼1–2 min after release from anesthesia. We chose 

isoflurane for its rapid clearance from tissue but nevertheless waited 20–30 min before 

imaging. Illumination (<0.4 mW) lasted ∼3 min per imaging trial. Each session on the track 

involved 4–7 trials, over which the mouse usually ran >100 roundtrip passes. During ∼3 

min between trials the mouse rested in a holding chamber. After all trials we waited another 

10–15 min, then briefly (∼5 min) re-anesthetized the mouse to detach the microscope. A 

typical session yielded <25 min of video (19.9 Hz; 480 × 480 pixels covering ∼0.34 mm2 of 

CA1).

In following sessions we re-attached the microscope to its base while the mouse was 

isoflurane-anesthetized (∼5 min), then waited 20–30 min before imaging. We verified the 

field of view matched prior sessions or made slight focal adjustments13. Subsequent steps 

were as above.

Behavioral analysis

During Ca2+-imaging the mouse explored: a square 46 × 46 × 15 cm3 arena (acrylic); a 

circular arena (21-cm-radius; red plastic); or an 84 × 4.5 × 4.5 cm3 elevated linear track 

(aluminum). For three days prior to Ca2+-imaging on this track we trained water-scheduled 

mice to run back and forth for water rewards at the ends. An overhead camera (Prosilica, 

EC640) recorded this behavior, using infrared LEDs (Lorex, VQ2120) and dim room lights 

for illumination.

We analyzed videos using MATLAB (Mathworks) and set all pixels to zero or one if their 

intensities were, respectively, above or below 10% of the median intensity. This demarcated 

the mouse due to its dark fur. We determined the mouse's position as the centroid of each 

binary image and calculated its velocity after smoothing the position data (0.5 s sliding 

average).

Basic processing of Ca2+-imaging videos

Analysis used ImageJ (NIH) and MATLAB routines. Since the microscope's sensor had a 

Bayer color filter13, we zeroed all pixels in the red and blue channels and de-mosaiced 

GCaMP3 signals in the green pixels by Bayer interpolation using the MATLAB function 

demosaic(). Image rows were readout successively; to correct for the slightly variable 

number of LED pulses illuminating each row we normalized each demosaiced pixel by the 

mean intensity in its row. The illumination exhibited mild spatial non-uniformity, so we also 
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normalized each pixel by the ratio of the mean intensity along its column to that of a 

reference column. We coarse-grained images to 240 × 240 pixels each the mean of four 

pixels at the finer density.

We used rigid image registration to correct lateral displacements of the brain. We created an 

image stack, F2(t), as the difference between the original stack, F(t), and a smoothed version 

of F(t) (20-pixel-radius smoothing filter). Within F2(t) we selected a high-contrast sub-

region to provide a fiducial marker. To mutually register all frames of F2(t) we used an 

ImageJ plug-in based on the TurboReg algorithm24. For each registered frame of F2(t) we 

applied the same coordinate transformation to F(t), yielding the registered stack F′(t).

Identification of neurons

As typical for Ca2+-imaging, we re-expressed registered images as relative changes in 

fluorescence, ΔF′(t)/F′0 = (F′(t) – F′0)/F′0, where F′0 is the mean image obtained by 

averaging the entire movie. We identified spatial filters corresponding to individual cells 

using an established cell sorting algorithm that applies principal and independent component 

analyses13,14,25. Cells' spatial filters were based on Ca2+ activity (temporally down-sampled 

4×) over the entire session, not just when the mouse was running. For each filter we zeroed 

all pixels with values <50% of that filter's maximum intensity.

Detection of Ca2+-transients

We used each cell's thresholded spatial filter to extract its Ca2+ activity from the ΔF′(t)/F′0 

stack. We removed baseline fluctuations (ascribed to Ca2+ activity outside the focal plane or 

in neuropil) by subtracting the median trace (200 time bins sliding window) and applied a 5-

frame (∼250 ms) sliding average. We identified Ca2+-transients by searching each trace for 

local maxima that had: (1) Peak amplitude more than two standard deviations (2σ) from the 

trace's baseline; (2) ≥10 frames (∼0.5 s) when the mean intensity surrounding the peak was 

>2σ; (3) Separation of >6 frames (∼300 ms) from adjacent Ca2+-transients. We set a Ca2+-

transient's occurrence to the temporal midpoint in the rise to peak fluorescence from the 

most recent trough, approximating a time midway within the corresponding spike burst. To 

correlate Ca2+ activity to mouse behavior, we offset Ca2+-transient occurrences by ∼250 ms 

due to GCaMP3's known delayed response11.

On ∼7% of all detected Ca2+-transients, fluorescence increases occupied more pixels than a 

single spatial filter. To mitigate effects of this spillover we took a conservative approach, 

allowing only one cell among a group of neighbors to register a Ca2+-transient within a 

∼250 ms window. We defined neighbors as cells whose spatial filters had non-zero pixels 

within 30 μm of each other. If multiple Ca2+-transients arose within ∼250 ms among 

neighboring cells, we retained only the transient with the greatest peak ΔF′(t)/F′0 value.

Registration of cells across sessions

We mapped all cells from each session by assembling their thresholded spatial filters onto a 

single image. Picking one day's map for reference (usually day 15), we aligned the others to 

this via a scaled image alignment using TurboReg24 (Supplementary Fig. 3a). This corrected 
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slight translations, rotations, or focus-dependent magnification changes between sessions 

and yielded each cell's location in the reference coordinate system.

Next, we visually identified candidate cells across sessions that might be the same neuron 

seen on multiple occasions. We applied two observations: our registration procedures had 

sub-micron precision (Supplementary Fig. 3b–e); the distance between centroids of 

neighboring somata was always >6 μm (Supplementary Fig. 3f). We thus considered a 

candidate set of cells to be the same neuron if all pair-wise separations were ≤6 μm. If any of 

the pair-wise separations exceeded 6 μm we split the set into two or more.

Place fields

To analyze place fields we identified ‘movement periods’ when the mouse ran continuously 

>0.5 cm/s. Additionally, in open field arenas the speed had to exceed 1 cm/s at some point 

during the movement; on the track it had to transiently exceed 9.2 cm/s. These criteria 

rejected small movements such as grooming, rearing, or head-turning.

On the linear track we considered 3.5-cm spatial bins and excluded the last 7 cm at each end 

where water rewards were given. In open field arenas, bins were 4 cm2. We divided the 

number of Ca2+ transients in each bin by the mouse's total occupancy time there, applied a 

Gaussian smoothing filter (linear track: σ = 8.75 cm; open field: σ = 3.5 cm), and 

normalized each place field by its maximum value. On the track we separately considered 

place fields for left and right running directions. The number of bins in which a place field 

had a value ≥50% of its maximum determined the place field's width. We tabulated each 

place field's position as its centroid.

Statistical analysis

For each place field (calculated for one running direction) we computed the mutual 

information26 between Ca2+-transients and the mouse's location (7-cm bins). We also 

performed 10,000 distinct shuffles of the Ca2+-transient times and calculated the mutual 

information for each shuffle. This yielded the P-value of the true mutual information relative 

to the shuffles. P ≤ 0.05 indicated a significant place field for that running direction.

To generate the null hypothesis for place fields' displacements between a pair of days, we 

used the place fields' measured locations but shuffled cells' identities on each of the days. 

We calculated the distribution of all displacements, averaged over 1000 distinct pairs of 

shuffles. Fig. 3e shows the mean null hypothesis curve found by averaging over all pairs of 

days.

Decoding

We used Bayesian methods27,28 to estimate mouse location based on cells' Ca2+-transients. 

Details are in Supplementary Fig. 8.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Ca2+-imaging in hundreds of place cells in freely behaving mice
(a) A tiny microscope equipped with a microendoscope images pyramidal cells expressing 

GCaMP3 via control of a CaMKIIα promoter. The microscope's base plate is fixed to the 

skull, for repeated imaging of the same cells.

(b) 705 cells (red somata) identified by Ca2+-imaging in a behaving mouse (Movie 1), atop a 

mean fluorescence image (green) of CA1. Blood vessels appear as shadows.

(c) Relative fluorescence changes (ΔF/F) for 15 of the cells in b.

(d) Spatial distributions of the mouse's location during Ca2+ excitation, for 6 example cells 

in a mouse that explored two distinct arenas. Upper panels, blue lines show the mouse's 

trajectory; red dots mark the mouse's position during Ca2+ events. Lower panels, Gaussian-

smoothed (σ = 3.5 cm) density maps of Ca2+ events, normalized by the mouse's occupancy 

time per unit area and the cell's maximum response in the two arenas. Scale bars: 100 μm in 

b; 10 s (horizontal) and 5% ΔF/F (vertical) in c; 20 cm in d.

Ziv et al. Page 10

Nat Neurosci. Author manuscript; available in PMC 2013 September 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Basic aspects of CA1 place codes are stable over weeks
(a) Mice trained to run back and forth on a linear track (days in black). During Ca2+-

imaging sessions (red), the mice performed the same behavior.

(b) The mouse's trajectory (blue lines) and its locations during cellular Ca2+ excitation (red 

dots) illustrate place cell activity.

(c, d) Gaussian-smoothed (σ = 8.75 cm) maps of Ca2+ activity on the track, shown for the 

subsets of cells on Day 15 with statistically significant place fields during left, c, or right, d, 

motion. 85–93% of cells had a place field for one direction only; dark blue marks the lack of 

a place field for the other direction. Cells from four mice are pooled, ordered by place fields' 

centroid locations. Ca2+ maps are normalized by each cell's maximum activity during left, c, 

and right, d, motion.

(e) The fraction of cells with statistically significant place fields, expressed as a percentage 

of cells found in each session (mean ± s.e.m.; 807–1000 total cells per day; n = 4 mice), was 

constant over the study for each motion direction (colored bars) and in total (inset).

(f) The ensemble of all place fields found in each session covered the entire track. Place 

fields are shown as smoothed maps of Ca2+ excitation as in c and d, ordered by centroid 

location on each day and pooled across four mice and both movement directions.

(g) Spatial distributions of place fields' centroid locations were constant over 1 mo. Place 

fields' centroids were tallied in 3.5-cm bins (mean ± s.e.m; n = 4 mice; 178–268 cells per 

day). Color key is the same as for h and indicates the day of imaging.
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(h) Cumulative distributions of place fields' widths did not evolve (mean ± s.e.m). Place 

fields had a median (± 33% confidence interval) width of 24 ± 3.5 cm.

Scale bars: 10 cm in b; 84 cm in f.
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Figure 3. Place fields are spatially invariant and temporally stochastic while preserving a stable 
representation at the ensemble level
(a) 826 cells showed Ca2+ activity in one mouse over 45 days. Number of sessions in which 

each cell was active is shown via the color scheme in b.

(b) Histogram of number of sessions in which each of 2960 cells from 4 mice was active. 

Error bars show s.d. from counting statistics. Inset: A constant fraction of all cells detected 

over 10 sessions was active each day. Colored data are from individual mice. Mean ± s.e.m 

is in black.

(c) If a cell had Ca2+ activity in one session, the odds (blue data; mean ± s.e.m) it also had 

Ca2+ activity in a subsequent session declined with the elapsed time interval. If a cell had a 

statistically significant place field in one session, the odds (red data) it had a place field in a 

subsequent session also declined with time.

(d) If they reappeared, place fields generally did not shift their centroid locations. 

Distributions of centroid shifts (colored by days between sessions; mean ± s.e.m.) were 

indistinguishable (Kolmogorov-Smirnov test; P ≥ 0.17), sharply peaked at zero, and highly 

distinct from the null hypothesis place fields would randomly re-locate (P = 4·10-67; 

Kolmogorov-Smirnov test). Inset: Cumulative histograms of shift magnitudes. 74–83% were 

≤7 cm. Median shift (3.5 cm) was much less than the median place field width (24 cm).

(e–g) Place field maps for cells found on multiple days, ordered by place fields' centroid 

positions on day 5 (e), day 20 (f), or day 35 (g), reveal continuous evolution of the ensemble 

representation of space. Data pooled across 4 mice.

(h) Time-lapse decoders retain substantial accuracy over 30 days. Reconstructions of the 

mouse's trajectory (colored curves) and its actual position (black curves). Three paired 

reconstructions compare: Right, time-lapse decoders trained on data from day 5, using all 

cells with place fields on both days of each pair; Left, decoders trained on data from the 

same day as the test trial. Each pair uses an equal number of cells, optimally chosen in left to 

minimize errors.

(i) Median errors in estimating the mouse's position are ∼7–13 cm (black points; mean of 

the median errors ± s.e.m.), even for decoders trained on data from 30 days prior. Red points 

are for decoders trained on data from the same day as test data, using equal numbers of cells 

as black points and optimally chosen to minimize errors. Gray points are errors using 

shuffled traces of Ca2+ activity from the same day as training data (averaged over 10,000 

shuffles).

(j) Cumulative distributions of decoding error magnitudes (mean ± s.e.m.). Black curve: 

Test and training data from same day. Colored curves: Test data 5-30 days apart from that 

used for training. Gray curve: Decoders tested on shuffled data.
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Scale bars: 100 μm in a; 84 cm in e–g; 2 s (horizontal) and 10 cm (vertical) in h.
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