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Introduction
The Coronavirus-19 (COVID-19) has spread throughout the 
world. As of February 6, 2022, there have been over 435 million 
overall cases and 5.95 million deaths globally since the virus 
was first discovered in Wuhan, China. The World Health 
Organization (WHO) proclaimed such infections to be a pan-
demic on January 30. In horizontal transmission, the virus 
spreads indirectly through contaminated surfaces like plastic 
and stainless steel and directly across intimate interactions via 
respiratory secretions produced by sneezes and coughs.1 Severe 
acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) is a 
corona virus that causes severe acute respiratory syndrome.2-4 
Although the virus’s intermediate point of origin and mode of 
transmission to humans are unknown, the virus’s ability to 
spread quickly from human to human has been established.5 
Direct contact or droplets formed by coughing, sneezing, or 
talking were the most common ways for the virus to spread 
from person to person.2,6,7 In the worst-case scenario, COVID-
19 can result in kidney failure, pneumonia, and even death.2,8

The world has seen a massive growth in environmental con-
tamination during the last few decades. Pollution of the envi-
ronment is a serious problem that continues to endanger 
people’s lives. As pollution concentrations grow, so do the 
number of respiratory infections.9 In the contemporary global 
environment, where economic operations are rising, pollutants 
are increasing at a quicker rate. Pollution from the environment 

causes a wide variety of illnesses. It has a detrimental influence 
on human health through increased infection susceptibility.10 
Without a doubt, developing countries are the most affected. 
Traditional pollution sources, such as drinking water contami-
nated by waste, poor hygiene, and poor indoor air quality emis-
sions, are still being addressed.11 Pollution in the environment 
has reached alarming levels all across the world. Greenhouse 
gas emissions have increased because of economic develop-
ment, industrialization, and urbanization.2,11,12 As a result, 
harmful chemicals such as atmospheric carbon dioxide (CO2 ) 
are emitted into the environment, contaminating the atmos-
phere, and increasing its warmth. This is what has contributed 
to the depletion of the stratospheric gradient, which has had a 
significant impact on modern society.

COVID-19 will have a significant economic impact, but 
there is a bright side that might mitigate some of its unfortu-
nate facts. Reduced human interference in the environment has 
given nature a “healing time” as states have practiced social iso-
lation and quarantine for more than a month. One notable 
effect that is being noticed is on the air quality, which is being 
felt by everyone and documented in numerous official reports.13 
Marine life is more active, smog has made way for clear skies, 
and major cities’ pollution levels have significantly dropped. 
The situation today is a “reset” for nature and humans, giving 
us the opportunity to observe and assess how humans are 
affecting the environment. These positive impacts have allowed 
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us to reevaluate our impact on our surroundings.14 As a result, 
we deduce that quarantine measures have improved the air 
quality in Bangladesh, inspiring us to investigate the quality of 
the air and the impact of environmental pollutants’ associations 
with COVID-19 in Bangladesh as well as around the world.

Without a doubt, the new corona virus has wreaked havoc 
on the ecology and climate around the planet. Because of  
the lockdowns, there has been a considerable reduction in 
transport activity, which has resulted in a huge reduction in air 
pollution. Since the epidemic, China’s CO2  emissions and 
nitrogen oxide (NO2) emissions have decreased by 25% and 
50%, respectively, according to Zhang et al.15 Lockdowns have 
been established in almost every country to prevent the spread 
of the corona virus, which has resulted in a reduction in indus-
trial activities as well as transportation services. As a result, 
global pollution levels have decreased considerably.

Bangladesh is a densely populated, tiny country that is well-
balanced. The weather in Bangladesh can be changeable.16 
Bangladesh seems to be the third country in South Asia to be 
affected, after Pakistan and India.17 On March 8, 2020, 
Bangladesh announced the first COVID-19 outbreaks at the 
Institute of Epidemiology, Disease Control, and Research 
(IEDCR). The city of Dhaka, Bangladesh’s capital, has been the 
hardest hit. Bangladesh’s government issued a 10-day curfew as 
a first step to combat the epidemic from March 26, 2020, to 
May 30, 2021. The Bangladesh government then enforced a 
21-day lockdown from April 5, April 26, 2021, as the second 
stage. Finally, from July 1 to August 31, 2021, Bangladesh’s gov-
ernment implemented a partial lockdown. To try to stop the 
spread of COVID-19, Bangladesh’s authorities implemented 
quarantines and lockdowns. All other organizations, including 
educational institutions, are closed save for emergency services 
(eg, medical, fire, police, food supply, and so on) to urge people 
to stay at home. Except for the conveyance of vital commodities 
and emergency services, all public transportation services (eg, 
buses, trucks, trains, planes, etc.) were suspended. Following the 
announcement of the lockdown, the government and adminis-
tration made the difficult decision to implement it, which 
included no social gatherings, a significant reduction in vehicles 
and public transportation, and the complete closure of indus-
tries, shopping malls, and non-emergency administrative build-
ings, among other things. Figure 1 depicts the overall scenario 
in Bangladesh during and after the lockdown.

Industrial output, educational establishments, building 
activities, and small and large-scale businesses were all affected 
by the long-term shutdown. It has had a significant negative 
impact on the economy, and a great number of individuals are 
experiencing difficulties in their daily lives as a result. Because 
of the uncontrollable COVID-19 scenario, Bangladesh’s gov-
ernment declared a red, yellow, and green zone on June 16, 
2020, based on the number of people infected. During the 
lockdown, nature has a chance to recover while residents main-
tain social distance, quarantine at home, and engage in as few 
outside activities as possible. As a result, during the lockdown, 

Bangladesh observed a blue sky in the Dhaka metropolis for 
more than 100 days.

The current study will look at the impact of carbon emis-
sions and PM2.5  on sustainable development during 
COVID-19. All human activity was prohibited under the 
lockdown laws and regulations, and Bangladeshi citizens 
were prohibited from returning to their homes. During the 
lockdown, people stopped activities every day and cut traffic 
emissions, and companies did not contribute to pollution or 
harmful gas emissions. The main objective of this study is to 
look into the relationship between lockdown and the carbon 
dioxide emissions, as well as the type and direction of that 
relationship in the long and short runs.

COVID-19 has also taught us some important things. All 
of these are tied to human survival, readiness, and environmen-
tal responsibility, all of which will contribute to future pan-
demic control. Lockdowns of many varieties are proving useful 
not only in breaking the chain of illnesses, but also in repairing 
the environment. In various parts of the world, pollution levels 
have decreased, and nature has begun to reclaim its territory. 
What matters is what we learn as a species because of this. Will 
we be able to dramatically cut our carbon footprint? Will there 
be any limits on traveling that aren’t necessary? Will we cut 
back on the quantity of contaminants we throw into ecosys-
tems so that nature can breathe? Will all stakeholders, includ-
ing governments, organizations, and individuals, band together 
to combat the environmental plague that has been ravaging the 
world for decades, claiming lives and destroying biodiversity? 
Vaccines or other measures, as well as coordinated efforts across 
national and continental borders, will be used to combat the 
deadly COVID-19, the most explosive pandemic in a century, 

Figure 1.  COVID-19, lockdown and the effects on the world. Adapted 

from “Kumar et al.”18
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sooner or later. A fresh viewpoint is required to address some of 
the fundamental concerns raised by the epidemic. To stop these 
pandemics in their tracks, humanity must work together. The 
best method to prevent pandemics is to focus all your efforts on 
achieving environmental sustainability goals.

The effect of temperature on the distribution of COVID-
19 in diverse situations has been studied in several recent arti-
cles. Most investigations failed to discover a direct association 
between the COVID-19 pandemic and the temperature, 
according to Bilal et al.19 The air has reached its purity and has 
become healthy throughout this critical period. According to 
Muhammad et al,20 during the COVID-19 lockdown period, 
the world’s most polluting cities, including China, Spain, 
France, Italy, and the United States, cut nitrogen dioxide 
( NO2 ) emissions by up to 30%. Because of COVID-19’s role 
as a catalyst for lower air pollution emissions in industrial 
economies and the consequent decline in carbon monoxide, 
nitrous oxide, and carbon dioxide airborne transmissions, the 
quality of the air has significantly improved.21 Transportation, 
businesses, and industrial closures have consequently contrib-
uted to a significant drop in greenhouse gas emissions (GHG) 
emissions, resulting in a 50% reduction in air pollution in New 
York compared to 2019 and a 40% reduction in coal use in 
China, as well as a 25% drop in GHG emissions overall.22

Fayaz21 has investigated the lock-down COVID-19 effects 
on the air pollution indices in Iran and its neighbors. In India’s 
megacity Delhi, Mahato and Pal,23 revisiting air quality during 
lockdown and influenced by the second surge of COVID-19, 
discover that both the nationwide lockdown and the city-scale 
restriction are responsible for improving the city’s air quality, 
though the rate of improvement was higher (39%) during the 
first cycle of lockdown (nationwide) than during the second 
cycle of lockdown (city-scale). A case study from Indian cities 
demonstrates negligible effects on the persistent property of 
urban air quality, which Chelani and Gautam24 studied during 
the COVID-19 pandemic. According to Dang and Trinh,25 
“The Beneficial Impacts of COVID-19 Lockdowns on Air 
Pollution: Evidence from Vietnam,” NO2 concentrations drop 
by 24% to 32% 2 weeks after the COVID-19 lockdown.

Lockdown has also had an effect on the air pollution indices 
in the highest producer of greenhouse gas regions, such as 
China in PM2.5 and NO2,26 the United States in PM2.5 and 
NO2,27 the UK in nitric oxide (NOx), with about 50% reduc-
tions and increases in Ozone gas (O3) and Sulfur di oxide 
(SO2),28 and South Korea in PM2.5, PM10, NO2, and Carbon 
monoxide (CO).29 The decline and changes of NO2, PM2.5, 
and PM10 have been observed in Asia30 and Iran.31

During the lockdown, Delhi, India’s capital, saw consider-
able improvements in air quality and a reduction in the rate of 
specific air pollutants.32 Air pollutants and aerosol concentra-
tions have a positive association,33 and aerosol concentrations 
have decreased because of the reduction in major air pollut-
ants. Overall, the epidemic has wreaked havoc on the global 
economy, affecting the environment either directly or 

indirectly. The COVID-19 epidemic enhanced air and water 
quality, decreased noise, and helped to rehabilitate the  
environment.34,35 The COVID-19 pandemic in the region is 
linked to the transportation sector’s emissions of environmen-
tal pollutants like PM2.5 , PM10 , NO2 , CO, O3 , and SO2  in 
South American economies, according to research by Bilal 
et al36 and find that PM2.5 , PM10 , NO2 , CO, O3 , and SO2

are significant factors in the fight against the COVID-19 pan-
demic in South America.

Because of its worldwide upheaval, COVID-19 has had a 
multitude of ecological and environmental impacts. Because of 
movement restrictions and a significant slowdown in socio-
economic activities, environmental performance has improved 
in many places, and water contamination has been reduced in 
different parts of the world as well. The environmental effects of 
COVID-19 on the environment are shown in Figure 2. As fac-
tories, transportation, and businesses have closed, GHG emis-
sions have plummeted. According to Henriques,37 New York’s 
air pollution levels will have dropped by nearly half because of 
virus-control measures. Heavy industry closures in China were 
expected to account for roughly half of the reduction in Nitrous 
oxide ( N O2 ) and CO  emissions.38 Additionally, nitrogen oxide 
(NO) pollutants are indeed a leading indicator of the world 
economy and so many countries, including Canada, the United 
States, India, and China. They observed a decrease in nitrogen 
oxide output because of the current closure, according to Biswal 
et al39; Saadat et al35; and Somani et al.34 NO2  and PM2.5  lev-
els in Delhi, India’s capital was similarly lowered by over 70%.40 
During India’s nationwide shutdown, PM2.5 and PM10 levels 
were reduced by 46% and 50%, respectively. According to 
Henriques,37 automobiles and aircraft are estimated to be big 
emitters, with 72% and 11% of greenhouse gases in the trans-
portation sector, respectively. In China, for example, the epi-
demic caused a reduction of about 50% to 90% of outbound and 
70% of domestic flights, resulting in a reduction of nearly 17% 
of national CO2  emissions by January 20, 2020.41 Furthermore, 
the COVID-19 pandemic is said to have cut global air travel by 
96% compared to the same period last year,42 with long-term 
environmental consequences.

Methodology
Data description

The impacts of COVID-19’s determinants on CO2  emissions 
and PM2.5  is studied using daily data on deaths, confirmed 
cases, and lockdowns. This study has utilized the time series 
data from March 18, 2020, until February 4, 2022. The data set 
is divided into 3 sections: before shutdown; throughout shut-
down; and then after lockdown.44,45 Next 10 days curfew has 
been declared by Bangladesh’s government on March 26, 2020, 
to combat the epidemic, which was later extended until May 
30, 2021. From April 5, 2021, to April 28, 2021, was the second 
full lockdown, and from July 1, 2021, to July 28, 2021, it was 
subjected to its third partial lockdown. The Directorate General 
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of Health Services (DGHS) collects COVID-19 confirmed 
cases and confirmed death data. The Bangladesh Meteorological 
Department (BMD) provided data on PM2.5  and carbon 
emissions, respectively.

Methods

As reported by Shin et al46 we utilized a NARDL model to 
investigate the long and short-run nonlinear interactions 
between the variables. Based on the previous work of Sarfraz 
et  al,44 our model will be as follows, taking into account the 
nonlinear link between daily-confirmed cases, daily confirmed 
fatalities, lockdown on carbon emission and PM 2 5. :

	 CE f DC DC DD DD LD LD= + − + − + −( , , , , , ) 	 (1)

	 LNPM f DC DC DD DD LD LD= + − + − + −( , , , , , ) 	 (2)

The partial sum of positive and negative shocks in daily-con-
firmed cases (DC), daily confirmed deaths (DD), and lock-
down (LD) has been estimated by the nonlinear autoregressive 
distributed lag (NARDL) approach. While some variables are 
nonlinearly related, the usual ARDL model can only look at 
the straight-line association across exogenous and endogenous 
variables.47,48 The nonlinear ARDL model handles negative 
and positive changes in variables. The decomposition of the 
NARDL model into a partial sum of positive and negative 
changes is shown by the xt  in the following equation:

	 x x x xt o t t= + ++ − 	 (3)

Where, x x max xt ti

t
ii

t+ +

= =
= = ( )∑ ∑∆ ∆

1 1
0,

And x x minx xt ti

t
ii

t− −

= =
= = ( )∑ ∑1 1

0∆ ,

Equation (2) can be included in the following NARDL equa-
tion with an unrestricted error correction representation:

∆ ∆ ∆

∆

CE CE DC

DC
t i

q
t i i

p
t i

i

p
t i i

= + +

+ +
= −

+

=

+
−

−

=

−
−

+

=

∑ ∑
∑
β γ γ

γ γ

01 11

21 311

41 51

61

p
t i

i

p
t i i

p
t i

i

p

DD

DD LNLD

LNL

∑
∑ ∑
∑

+
−

−

=

−
−

+

=

+
−

−

=

+ +

+

∆

∆ ∆

∆

γ γ

γ DD CE DD
DC DC DC LD

t i t t

t t t t

−
− − −

+

−
−

−
+

−
−

−

+ +

+ + + +

θ θ

θ θ θ θ
1 1 2 1

3 1 4 1 5 1 6 1
++

−
−+ +θ ε7 1LDt t

	 (4)

∆ ∆ ∆

∆

LNPM CE DC

DC
t i

q
t i i

p
t i

i

p
t i

= + +

+ +
= −

+

=

+
−

−

=

−
−

+

∑ ∑
∑
β γ γ

γ γ

01 11

21 3ii

p
t i

i

p
t i i

p
t i

i

p

DD

DD LNLD

L

=

+
−

−

=

−
−

+

=

+
−

−

=

∑
∑ ∑
∑

+ +

+

1

41 51

61

∆

∆ ∆

∆

γ γ

γ NNLD CE DD
DC DC DC LD

t i t t

t t t t

−
− − −

+

−
−

−
+

−
−

+ +

+ + + +

θ θ

θ θ θ θ
1 1 2 1

3 1 4 1 5 1 6 −−
+

−
−+ +

1

7 1θ εLDt t

     (5)

The lag order of this model can refer to p and q. the long run 
nonlinear effects of DC, DD, and LD on CE are defined by 
β θ θi i i= +1 / . Accordingly, γ ii

s′
=∑ 1

8
 are measure the short 

Figure 2.  Total scenario during and before (after) lockdown in Bangladesh. Adapted from “Pavel et al.”43
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run nonlinear effects of DD, LD on CE. ε t s′  is the error term 
for both models. According to Khan et al49 and Sarfraz et al,44 
this article regarded lockdown as a dummy variable and 2 
binary numbers like 0 are taken for unlocked period and 1 for 
shutdown period.

The NARDL model can be used in several ways. To see if 
the data was stationary, we performed the Augmented Dickey–
Fuller (ADF) and Phillips–Perron (PP) tests. The study then 
used bound testing, as proposed by Shin et al46 to check for the 
presence of co integration. Using the F-test, we checked the 
null hypothesis of θ θ θ θ θ θ θ1 2 3 4 5 6 7 0= = = = = = =  jointly. 
Third, we use the Wald test to show both long run and short-
run asymmetrical correlations between the variables. Finally, 
we show how a 1% difference in the positive and negative lag 
values of independent variables can cause asymmetric cumula-
tive dynamic multiplier (CDM) effects. Obtaining the CDM 
of a unit change allows us to assess the asymmetric effect as 
well in xt−

+
1  and xt−

−
1  on y.
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Results and Discussion
Table 1 summarizes CO2  emissions, PM2.5 , newly confirmed 
illnesses, and newly confirmed deaths. CO2  emissions 
(0.508955) and PM2.5  (187.6909) are lower than in DC 
(2677.530) and DD (41.39913). The maximum and minimum 
values of variables clearly demonstrate the relationship between 
CO2  emissions and COVID-19. CO2  emissions range from 
0.680000 to 0.180000, with a maximum of 0.680000 and a 
minimum of 0.180000. Bangladesh observed a decrease in 
CO2  emissions and PM2.5  levels during COVID-19, while 
the number of new confirmed cases and deaths increased. DC 
(3278.1136) and DD (53.15181) have drastically elevated 
standard deviations. CO2  emissions and PM2.5  have standard 

Table 1.  Descriptive statistics.

CE DC DD PM

Mean 0.508955 2677.530 41.39913 187.6909

Median 0.540000 1604.000 26.00000 193.0000

Maximum 0.680000 16 230.00 264.0000 365.0000

Minimum 0.180000 0.000000 0.000000 28.00000

Std. Dev. 0.169396 3278.136 53.15181 70.34621

Skewness −0.829275 2.233254 2.488510 −0.028529

Kurtosis 2.274429 7.734113 8.886440 2.438407

Jarque-Bera 94.08414 1216.129 1705.875 9.147706

Probability .000000 .000000 .000000 .010318

Here, Std. Dev. stands for standard deviation.

deviations of 0.169396 and 70.34621, respectively. Positive 
skewness is seen in the most recent confirmed cases and deaths, 
while negative skewness is seen in CO2  emissions and PM2.5 . 
The data for CO2  emissions and PM2.5 variables have a kurto-
sis value of less than 3 at a 1% level of significance, indicating 
that they are normally distributed, but newly confirmed cases 
and deaths reveal that they are not.50,51 Figure 3 shows a 
graphic representation of CO2  emissions and PM2.5  data from 
January 1, 2020, to February 4, 2022. From Figure 3, it is 
observed that, during the lockdown period in Bangladesh, the 
CO2  emissions and PM2.5  have decreased dramatically. This 
finding is consistent with previous findings by Bilal et  al19; 
Fayaz21; Mahato and Pal23; Chelani and Gautam24; and Dang 
and Trinh.25 The contributions of each of our study variables 
are shown in Figure 4.

The study used unit root test to check the order of integra-
tion in time series data using the ADF and PP tests and the 
results are presented in Table 2. For the optimal lag structure, 
the Akaike information criterion (AIC) was employed. Daily 
positive cases, daily deaths, CO2  emissions, and PM2.5  levels 
are all stationary at level according to both tests. All factors of 
this study have shown I (0) according to the ADF and PP tests. 
Because the study variables are stationary at first difference, the 
results of both tests reveal that the variables are I (1). On the 
second difference, our data revealed that no variable was sta-
tionary. As a result, we may approximate equations (4) and (5) 
using the bound testing method. The optimal lag was deter-
mined using the conventional VAR model. Akaike information 
criterion (AIC) has been used to select the optimal lag for the 
NARDL model, which is “2.”45,52

The bound test results of NARDL model for co integration 
have been shown in Table 3. The bound test shows that there is 
an inconclusive relationship in a linear ARDL way for model 1, 
because at 5%, the calculated value (F-statistic) of 3.04 is half-
way between the required lower threshold of 2.86 and the 
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Figure 4.  Contributions of all the study variables.

Table 2.  Unit root test results.

Variables Level First difference

ADF PP ADF PP

DC −2.9945** −3.0339** −3.3550** −25.7885**

DD −2.4170 −1.9465 −6.4312** −38.7021**

LD −2.9957** −3.0842** −26.1725** −26.1723**

PM 2.5 −3.3488** −4.8291** −19.0774** −33.6487**

CE −3.2374** −7.1342** −6.9428** −36.0105**

**refer significant at 5% levels of significance.
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Figure 3.  Carbon emission and PM2 5.  in Bangladesh during the pandemic.
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higher limitation of 4.01. In a linear approach, the bound test 
demonstrates that there is an inconclusive decision. On the 
other hand, the results of the non-linear ARDL specification 
indicate the long-run cointegration existence as the value of 
the F-statistic is 14.14 is bigger than the value of 3.52 at 5%, 
showing that the non-linear ARDL specification is co-inte-
grated. On the basis of the t-statistic, the same conclusion can 
be drawn.

Again, when the long-run co-integration connection 
between CO2  emissions, PM2.5 , and COVID-19 drivers was 
proven, the next step was to find the key models (1) and (2) 
that have a discrepancy in the long run and in the short term. 
Table 4 summarizes the results of the long-run dynamic 
asymmetry estimation. At a 1% level of significance, the long-
run CO2 emission coefficient (0.733299) is favorably signifi-
cant. CO2  emissions can be reduced by 0.733299% for every 
1% increase in daily cases and daily deaths of COVID-19, 
according to the findings. At a 1% level of significance, the 
long-run value of PM2.5  (0.753684), on the other hand, is 

positively significant. According to the findings, a 1% increase 
in daily cases and daily deaths of COVID-19 in a 0.753684% 
decrease in PM2.5 .Changes in DC, both positive and nega-
tive, have a favorable and large impact on carbon emissions, 
but DD has had inconsistent consequences. Positive or nega-
tive changes in LD, on the other hand, have a considerable 
negative impact on carbon emissions, according to our find-
ings. Negative changes in DC, on the other hand, have a posi-
tive and substantial impact on PM2.5 , whereas DD has a 
negative impact on PM2.5 . According to our findings, changes 
in LD, whether positive or negative, have a significant mixed 
impact on PM2.5 .

Model 1 and Model 2’s long and short run estimations are 
provided in Tables 5 and 6, respectively. Model 1 has demon-
strated that DC+ has positive and significant effects on carbon 
emissions in the short run, while LD+, LD−, and LD (−1) 
have negative and significant effects. In model 2, only LD+ 
has a negative and substantial influence on PM2.5 in the short 
run. COVID-19 determinants have considerable effects on 

Table 3.  Bounds test results for co-integration for model 1 and model 2.

Model 1 (Linear ARDL) Model 2 (Linear ARDL)

Test Value Signif. Lower 
bound, 
I(0)

Upper 
bound, 
I (1)

Test Value Signif. Lower 
bound, 
I(0)

Upper 
bound, 
I (1)

Decision

F-statistic 3.04 10% 2.45 3.52 F-statistic 2.94 10% 2.62 3.42 Inconclusive

5% 2.86 4.01 5% 2.74 3.61

2.5% 3.25 4.49 2.5% 2.75 3.99

1% 3.74 5.06 1% 3.15 4.43

t-statistic −3.09 10% −2.57 −3.66 t-statistic −3.12 10% −2.32 −4.04 Inconclusive

5% −2.86 −3.99 5% −2.86 −4.38

2.5% −3.13 −4.26 2.5% −3.32 −4.52

1% −3.43 −4.6 1% −3.43 −4.22

Model 1 (Non- linear ARDL) Model 2(Non- linear ARDL)

Test Value Signif. Lower 
bound, 
I(0)

Upper 
bound, 
I (1)

Test Value Signif. Lower 
bound, 
I(0)

Upper 
bound, 
I (1)

Decision

F-statistic 18.14 10% 2.12 3.23 F-statistic 14.14 10% 2.12 3.23 Co integration

5% 2.45 3.61 5% 2.45 3.52

2.5% 2.75 3.99 2.5% 2.75 3.99

1% 3.15 4.43 1% 3.15 4.43

t-statistic −11.09 10% −2.57 −4.04 t-statistic −9.92 10% −2.57 −4.04 Co integration

5% −2.86 −4.38 5% −2.86 −4.38

2.5% −3.13 −4.66 2.5% −3.13 −4.66

1% −3.43 −4.99 1% −3.43 −4.99

The critical values are from the Narayan53.
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Table 4. N ARDL estimate results.

Model 1 Model 2

Variable Coefficient Std. 
error

t-Statistic P-value* Variable Coefficient Std. 
error

t-statistic P- value*

CE ( )−1 0.733299** 0.047009 15.59895 .0000 LNPM ( )−1 0.753684** 0.031691 23.78234 .0000

DC+ 2.15E−06** 7.52E−07 2.859127 .0044 DC+ 7.24E−06 4.41E−06 1.641014 .1013

DC− 1.55E−05* 8.79E−06 1.759969 .0789 DC− 1.16E−05** 5.40E−06 2.146818 .0322

DC− −( )1 −1.26E−05 8.37E−06 −1.506634 .1324 DC− −( )1 −0.000658** 0.000340 −1.933974 .0535

DD+ −7.02E−05 5.38E−05 −1.304543 .1925 DD+ −0.001127** 0.000410 −2.745668 .0062

DD− −0.000105** 5.87E−05 −1.790351 .0738 DD− −1.895206** 0.155456 −12.19126 .0000

LD+ −0.008228 0.006445 −1.276536 .2022 LD+ 1.524997** 0.165946 9.189738 .0000

LD+ −( )1 −0.080988** 0.020139 −4.021342 .0001 LD+ −( )1 −0.185143** 0.040146 −4.611799 .0000

LD− −0.087631** 0.019296 −4.541310 .0000 LD− 1.179796** 0.149135 7.910922 .0000

C 0.151467** 0.029103 5.204458 .0000 C 0.753684** 0.031691 23.78234 .0000

Here, Std. indicates standard.
**refer significant at 5% levels of significance and the significance value is 0.05. *refer significant at 10% levels of significance and the significance value is 0.1.

Table 5. N ARDL short run and long run estimates for model 1.

Short run estimates Long run estimates

Variable Coefficient Std. 
error

t-statistic P-
value

Variable Coefficient Std. 
error

t-statistic P-
value

∆CE ( )−1 0.095340** 0.036371 2.621301 .0090 DC+ 8.06E−06** 3.58E−06 2.250760 .0247

∆DC− 1.60E−05** 5.00E−06 3.196725 .0015 DC− 1.07E−05** 4.55E−06 2.362454 .0184

∆LD+ −0.010055** 0.038246 −0.262897 .0027 DD+ −0.000263 0.000220 −1.196982 .2317

∆LD− −0.018636 0.038253 −0.487191 .2263 DD− −0.000394 0.000250 −1.576559 .1154

∆LD− −( )1 0.087413** 0.039197 2.230099 .0261 LD+ −0.334515** 0.036236 −9.231601 .0000

CointEq(−1)* −0.306239** 0.025566 −11.97822 .0000 LD− −0.328573** 0.023009 −14.28050 .0000

**refer significant at 5% levels of significance and the significance value is 0.05.

Table 6. N ARDL short run and long run estimates for model 2.

Short run estimates Long run estimates

Variable Coefficient Std. 
error

t-statistic P-
value

Variable Coefficient Std. 
error

t-statistic P-
value

C 1.179796** 0.117371 10.05183 .0000 DC+ 2.94E−05** 1.67E−05 1.763449 .0383

∆LD+ −1.895206** 0.139660 −13.57017 .0000 DC− 4.71E−05** 1.94E−05 2.430300 .0153

CointEq(−1)* −0.246316** 0.024614 −10.00721 .0000 DD+ −0.002672** 0.001272 −2.100337 .0361

  DD− −0.004575** 0.001422 −3.217170 .0014

  LD+ −1.502987** 0.164851 −9.117251 .0000

  LD− −0.751648** 0.143270 −5.246386 .0000

**refer significant at 5% levels of significance and the significance value is 0.05.
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carbon emissions and PM2.5  in the long run, according to both 
model 1 and model 2. Furthermore, our data shows that, when 
compared to other factors, lockdown (LD) has a significant 
impact on carbon emissions and PM2.5  according to both 
models. Our results are in line with different researchers from 
different countries, like Azam et al55 and Sarfraz et al.44 In the 
long run, a 1% improvement in LD resulted in a 0.344515% 
reduction in carbon emissions and a 1.502987% reduction in 
PM2.5 .In comparison to carbon emissions, our findings show 
that lockout has a significant influence on PM2.5  reduction. 
According to the data, CO2  emissions and PM2.5  began to 
decline from the beginning of the COVID-19 outbreak 
because individuals stayed at home to reduce the risk of infec-
tions. After a period of severe lockdown, CO2  emissions and 
PM2.5  levels have dropped dramatically.

Various good and negative environmental repercussions 
have been reported in each of the Southeast Asian countries 
because of the COVID-19 lockdown and restrictions. 
According to Kanniah et al,56 the region’s pollution levels, and 
haze pollution have both improved dramatically. Other coun-
tries throughout the world have also seen an improvement in 
air quality. The results show that the lockout has resulted in a 
significant increase in air quality and may serve as a vital 
method of decreasing emissions, which has an impact on urban 
sustainability in the long run. As a result, in the coming years, 
a short-term shutdown to manage unhealthy air pollution may 
be enforced. The COVID-19 lockout provided us with a once-
in-a-lifetime chance to gather, evaluate, and analyze a wide 
range of real-time data in terms of long-term environmental 
sustainability. This includes greenhouse gas emissions, short-
term air quality fluctuations, and meteorological data.

According to Barbier and Burgess,57 these actual statistics 
could be used for prognostication and reaction studies, allow-
ing for improved preparation at both the local and national 

Table 7. N ARDL diagnostic test and Wald test results.

Model 1 Model 1

J-B [P-value] .2415 J-B [P-value] .4125

R-R [P-value] .3187 R-R [P-value] .4187

LM(1) [P-value] .5214 LM(1) [P-value] .4541

LM(2) [P-value] .6369 LM(2) [P-value] .5632

ARCH(1) [P-value] .6254 ARCH(1) [P-value] .3214

ARCH(2) [P-value] .7841 ARCH(2) [P-value] .7841

DC XW [ , ]2 p value− [12.2311, .0000] DC XW [ , ]2 p value− [11.2585, .0000]

DD XW [ , ]2 p value− [14.2351, .0001] DD XW [ , ]2 p value− [10.1287, .0101]

LD XW [ , ]2 p value− [10.4521, .0000] LD XW [ , ]2 p value− [10.5741, .0002]

DC DD LDW W W, , &  Indicates the Wald test result for each variable.

**refers significant at 5% levels of significance (Parvin, 2022)54.

scales. This information will be critical in persuading policy-
makers and stakeholders to collaborate to enhance climate 
change policies at the national and regional levels. According 
to Manzanedo and Manning,58 these policies may strengthen 
the capability to handle eco-efficiency concerns not only in 
Bangladesh, but also internationally. Furthermore, in Asian 
countries, the COVID-19 lockout reduced energy consump-
tion in the manufacturing industries while increasing power 
usage at the household and community level. Because of the 
current economic downturn in Asia, the development of 
renewable power and public transit is almost impossible.59 
However, in the long run, a small amount of money might be 
allocated to the establishment of innovative green energy 
sources such as solar power and gas storage for renewable 
power.

With a significance of 1% and a negative sign assumption, 
the ECT term verifies the long-term link between CO2  emis-
sions, PM2.5 , and daily cases and daily deaths of COVID-19. 
Some troubleshooting tests were carried out to prove the 
NARDL model’s trustworthiness. The Jarque-Bera ( J-B) par-
ametric test, the Ramsey RESET test for conceptual frame-
work, the Autoregressive Conditional Heteroskedasticity 
(ARCH) up to order 2 for heteroscedasticity problems, and the 
serial correlation LM test up to level 2 for serial autocorrelation 
were all used by the analysts to explore how error data is nor-
mally distributed. Table 7 shows the results of all the tests. 
NARDL models pass all diagnostic testing, indicating their 
dependability. The resilience of any quantitative approach must 
be checked for homogeneity of variances. The cumulative sum 
(CUSUM) and cumulative sum square (CUSUMSQ) stability 
tests were advocated by Brown et  al.60 The CUSUM and 
CUSUM Square tests were used to ensure that the model was 
stable. The results of these tests are shown in Figures 5 and 6, 
which show that both models are quite stable. The dynamic 
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multiplier in Figures 7 and 8 show the inconsistency in the 
suggested long-run stability with return and volatility has been 
rectified. Each COVID-19 determinant’s negative and positive 
shocks have been demonstrated to produce a regular combina-
tion of dynamic multiplier curves that are asymmetrical on 
CO2  emissions and PM2.5 , respectively. To confirm the non-
linearities between the variables under investigation, the Wald 
test was used. Table 7 demonstrates that at a 5% level of signifi-
cance, there are asymmetries across variables.

The COVID-19 pandemic may be seen as a “blessing in 
disguise,” where air quality is improving and the earth is reviv-
ing itself, according to the preliminary analysis of air quality 
data in the current study. By reducing air pollution through 
controlled emissions of major air pollutants, it is possible to 
significantly reduce a number of health problems like asthma, 
cardiovascular disease, respiratory conditions, and premature 
deaths. These favorable effects of an air pollution lockdown can 
reassure the government and authorities that strict air quality 

regulations and emission reduction plans can significantly 
enhance the environment and people’s health. In addition, the 
Bangladeshi government may take the following actions to 
reduce financial risks associated with climate change, use 
cleaner or alternative fuels, like CNG or LPG, promote public 
transportation systems, such as the Metro, require engine-
driven vehicles to be certified as PUC (Pollution Under 
Control) compliant by-passing tests for carbon monoxide and 
hydrocarbons, and implement adaptation policies.

Conclusion
The link between CO2  emissions, PM2.5 , and COVID-19, as 
well as their drivers, was the subject of this study. Using daily 
data for Bangladesh from March 18, 2020, to February 4, 2022, 
the asymmetric relationship between CO2  emissions, daily 
cases, daily deaths, and lockout in the COVID-19 timeframe is 
considered. To examine long-and short-run associations 
between variables, the NARDL model is utilized. The findings 
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Figure 5.  Stability check for model 1.
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of this study support the long-term link in Bangladesh between 
CO2  emissions, PM2.5 , and COVID-19 determinants. Both 
long-run and short-run relationships between variables were 
verified by the bound test. According to the dynamic multipli-
ers graph, Bangladesh’s rigorous lockdown, which was imple-
mented in response to a spike in COVID-19 cases, mainly 
reduced air pollution and hazardous gas emissions. The Wald 
test was performed to confirm the nonlinearities between the 
variables under study, and it revealed a nonlinear relationship 
between them. The dynamic multipliers graph shows the 
COVID-19 determinants’ positive and negative effects on car-
bon emissions and PM2.5 . CO2  emissions and PM2.5  are 
negatively influenced by the strict lockdown in Bangladesh.

The lockdown undoubtedly helped to reduce CO2  emis-
sions and PM2.5  levels in Bangladesh’s environment, but it was 
simply a temporary solution done under extraordinary circum-
stances. Bangladesh’s human and industrial activities are 

unhealthy and damaging to the environment, as evidenced by 
the shutdown. The Bangladesh government, policymakers, and 
environmentalists should promote environmentally friendly 
activities. To improve environmental purity and sustainability, 
impose restrictions on industries in terms of harmful gas emis-
sions by the policymaker.

Even though we present some rather intriguing findings, we 
also want to draw attention to some shortcomings in the prior 
work. Firstly, the current study only focuses on Bangladesh, 
which is struggling with a lack of medical and financial 
resources to combat this pandemic. As a result, we encourage 
future research to examine the exposure of global pandemics 
like COVID-19 over a larger dataset in order to examine how 
environmental pollutants may have contributed to the spread 
of the current pandemic. The development of statistical tests 
that account for spatial information will be one of the future 
directions of this research.
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