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Null models have become a crucial tool for understanding structure within

incidence matrices across multiple biological contexts. For example, they

have been widely used for the study of ecological and biogeographic ques-

tions, testing hypotheses regarding patterns of community assembly, species

co-occurrence and biodiversity. However, to our knowledge we remain

without a general and flexible approach to study the mechanisms explaining

such structures. Here, we provide a method for generating ‘correlation-

informed’ null models, which combine the classic concept of null models

and tools from community ecology, like joint statistical modelling. Gener-

ally, this model allows us to assess whether the information encoded

within any given correlation matrix is predictive for explaining structural

patterns observed within an incidence matrix. To demonstrate its utility,

we apply our approach to two different case studies that represent examples

of common scenarios encountered in community ecology. First, we use a

phylogenetically informed null model to detect a strong evolutionary finger-

print within empirically observed food webs, reflecting key differences in the

impact of shared evolutionary history when shaping the interactions of pre-

dators or prey. Second, we use multiple informed null models to identify

which factors determine structural patterns of species assemblages, focusing

in on the study of nestedness and the influence of site size, isolation, species

range and species richness. In addition to offering a versatile way to study

the mechanisms shaping the structure of any incidence matrix, including

those describing ecological communities, our approach can also be adapted

further to test even more sophisticated hypotheses.
1. Introduction
Null models are an integral part of modern ecology and biogeography and pro-

vide a crucial statistical tool to test hypotheses regarding phenomena such as

community assembly [1–5]. The underlying idea behind the use of any null

model is that comparisons of real data to randomly generated data can provide

insights into how biological data are structured, as well as the potential mech-

anisms explaining such structure. Following this idea, a structural pattern

found in an observed biological system is only regarded as statistically mean-

ingful if it is not reproducible by a random model and is therefore unlikely to

be found purely by chance.

In the case of ecological networks or species assemblages, null models are

often based around sampling and shuffling species’ interactions or presence/

absence data [6], respectively. Therefore, the specific null hypothesis that is

being tested with such a null model is entirely defined by the underlying ran-

domization strategy [2,7,8]. As such, standard practice is for the randomization

strategy of any null model to be generated in a way that includes some biological

information while intentionally excluding other information. The differences
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observed between the empirical data and the data generated

by the null model are then assumed to be a direct consequence

of the omission of such information.

This approach, however, has not been without some con-

troversy, since the choice of an inadequate null model may

lead to artefactual conclusions [3,9]. For example, using null

models to identify the mechanisms underlying the structure

of biological data can be ambiguous, because there is not

always a single way of introducing specific information into

a model; therefore, these hypothesized mechanisms can

only be supported by some evidence rather than a definitive

proof. Perhaps more importantly, the randomization strategy

may neglect some factors that could be responsible for a par-

ticular structural pattern. At times, this omission is due to

insufficient prior evidence to support the idea that some

unforeseen factor is potentially an important driver. At

others, it arises due to the apparent difficulty with which to

include such information into the randomization strategy.

For example, null models employed to community-scale

data in ecology often ignore the fact that species are part of

a hierarchically structured phylogeny [10], and thus, the

idea that observed structural regularities may potentially be

explained most parsimoniously as the outcome of a complex

evolutionary process [11,12].

This present work is an attempt to overcome the afore-

mentioned difficulties by combining the classic concept of a

null model and the ideas underlying joint modelling in com-

munity ecology. Joint models are a set of statistical tools for

integrating environmental predictors and species interactions

into a common framework [13]. These tools have been very

helpful for understanding species richness and co-occurrence

in ecological communities [14,15], and we use them here to

expand beyond the traditional null model approach. In par-

ticular, we present a correlation-informed null model that

flexibly incorporates biologically relevant information as an

ingredient for the null hypotheses as opposed to post-hoc

tests of the influence of those factors on the structure of bio-

logical data or on null model comparisons [16,17]. For

example, given a particular ecological community, a corre-

lation-informed null model generates a random community

that is informed by any given correlation matrix. This new

approach therefore provides a methodological framework to

assess the importance of any measurable species trait (e.g.

phylogenetic relatedness, body size or species’ tolerance to

environmental conditions), habitat properties (e.g. ecosystem

type, geographical distance or altitude) or combinations of

these, on the structural patterns observed within such

community data.

In order to demonstrate the versatility and power of the

method presented here, we revisit examples from the litera-

ture that are emblematic of common problems encountered

across community ecology. First, we apply the method to

test whether or not a null model accounting for species’

shared evolutionary history can reproduce the structural

properties observed in empirical food webs. To do so, we

use a phylogenetically informed null model, which allows

us to evaluate whether or not the structure of empirical and

simulated food webs appears non-random when accounting

for potential conservation of interactions. Second, we analyse

the factors that influence the structure of species assemblages,

focusing in particular on the effect of non-independence

between sample sites. Using different correlation-informed

null models, we unmask the factors of one of the most used
patterns in island biogeography studies. Though we have

chosen to frame the methodology in an ecological context,

note that the correlation-informed null model can be general-

ized to study the structure of any system that can be

represented by association data and whose components can

be related by an underlying correlation structure.
2. Material and methods
2.1. The null-model approach
2.1.1. Uninformed null models
The structure of many systems is commonly described using an

incidence matrix. This incidence matrix A describes the relation-

ship between two given interacting sets fig and f jg, where every

element of the matrix Aij is set to 1 when a relationship between i
and j is present in the community, and 0 otherwise. For example,

in ecology, a species assemblage can be conveyed by a matrix

representing the presence/absence of different species across a

set of sites, whereas an ecological network can similarly be rep-

resented by a matrix characterizing the presence/absence of

interactions between two sets of species (e.g. predators and

prey, plants and pollinators, or hosts and parasites). For the

sake of simplicity, in the remainder of the methods, we will

call any element Aij ¼ 1 a ‘link’ i j even though in species

assemblages this would not be an interaction in the standard

ecological sense of the term.

With limited exceptions (e.g. [18] or [19]), the statistical sig-

nificance of any structural pattern in an incidence matrix is

conditioned to the chosen null hypothesis [8], which is generally

described by an ensemble of randomized matrices. The vast

majority of null models can follow either a probabilistic or a

fixed algorithm to generate such randomized matrices [20]. The

probabilistic approach samples the matrix elements based on

the total number of links of both row and column elements

[21,22], preserving approximates of their overall distributions.

The fixed strategy, on the other hand, randomizes the possible

links by either recursively swapping the existing ones (‘swap’

algorithm; [23]) or randomly creating them (‘fill’ algorithm;

[24]), in such a way that they exactly match constraints imposed

by row and column marginals [25].

The randomization strategy used here is based around the

swap algorithm [23]—also referred to as fixed-fixed null

model. That is, we use a Markov chain Monte Carlo switching

algorithm to iteratively select existing links and swap them, pro-

vided that these swaps agree with the imposed constraints

[26,27]. For instance, for the purpose of randomizing a matrix

A while preserving both the degree of row and column elements,

the algorithm would repeatedly select two existing links i j
and l m at random, and transform them into i m and

l j on the condition that they are not already present in the

community. Importantly, the standard form of this randomiz-

ation strategy swaps any pair of existing links with equal prior

probability. That is, in every iteration of the randomization pro-

cess, the selection criteria for the choice of the swapping links is

uninformed, implying that any two links are equally likely to be

shuffled as long as such shuffling agrees with the other imposed

structural constraints.

Note that the swap algorithm does not establish a minimum

number of iterations—also referred to as ‘swap trials’—needed in

order to obtain fully randomized incidence matrices; this will

depend on the size and structure of the incidence matrix being

randomized. Miklós & Podani [28] recommend ensuring that

the number of trials is such that the expected number of actual

swaps is twice the number of 1’s in the incidence matrix. For

the purpose of studying structural patterns in randomized

incidence matrices, however, we would suggest making sure
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that an increase in the number of swap trials does not lead to

any changes to the average representation of such structural

patterns.

2.1.2. Correlation-informed null models
In contrast to the uninformed null model, we introduce a manner

in which to ‘inform’ the swapping algorithm so that the prob-

ability of randomizing different links depends on underlying

biological information—i.e. information on additional constraints

or tendencies in the natural phenomena. To do so, we modify the

randomization process in order to account for the information

encoded within a specified correlation matrix. Specifically, we

calculate estimates of the probability to observe any given link

in an incidence matrix by means of a generalized linear mixed

model [29–32]. Given a row i from an incidence matrix A of

size n � m and a correlation matrix Vcol of size m � m relating

the corresponding m columns, the probability of observing a

link between row i and column j can be estimated by fitting

the observed links Aij to the following logistic regression:

logit (pij) ¼ ai þ bij, (2:1)

where ai is a constant intercept and bij is a Gaussian distributed

random effect with mean 0 accounting for the correlation matrix

(figure 1). The covariance matrix of bij is s2
i Vcol, which represents

an estimated scalar multiplied by the m � m correlation matrix.

Therefore, the estimation of the scalar si roughly reveals how

well the observed links can be predicted by the correlation

matrix Vcol [29]. As this regression is performed for every row i
of the incidence matrix A, the sample size over which the par-

ameters are inferred is exactly the number of column elements

m contained in each row. Note that this same estimation can be

performed for a correlation matrix Vrow that relates the n rows

by instead fitting the model to the transpose of the incidence

matrix.

The estimated probabilities pij provide then a way of weight-

ing the randomization process based on the correlation matrix.

That is, we can introduce a bias in the null model so that the

swap algorithm transforms two randomly selected links i j
and l m into i m and l j according to the joint probability

pim � plj, again provided that this change agrees with any other

potential constraints imposed on the model (figure 1). This bias

to the null model defines the correlation-informed null model.

Note that the estimation of the probabilities pij is done prior to

the randomization process; therefore, every step of the swap

algorithm is informed relative to the original incidence matrix.

Also, it is worth pointing out that the chosen joint probability

assumes independence of interactions, and more sophisticated

approaches could also be taken into consideration when

combining the estimated probabilities.

Importantly, the correlation matrix used to fit the incidence

matrix can (i) either provide valuable information to explain

the observed links or (ii) appear completely uninformative to

them. In the former case, the estimated probabilities will present

a heterogeneous pattern whereas in the latter case they will tend

to show a uniform distribution. Moreover, an informative corre-

lation matrix does not imply a more predictive null model since

the information provided might be irrelevant to explain the

particular pattern that is ultimately being tested.

2.1.3. Misinformed null models
Following the definition of the correlation-informed null model,

we can also define a misinformed null model, where the ran-

domization process is itself informed by randomized

correlation matrices. That is, given an incidence matrix A and

correlation matrix Vcol, we generate every random network A�

of a misinformed null model as follows: we first randomize

Vcol, symmetrically permuting the row and column identities;
we next estimate the probabilities pij using the randomized

matrix V*col; and we finally use pij to ‘inform’ the swapping algor-

ithm as described for the correlation-informed null model. A

misinformed null model is necessary because it serves as a con-

trol model for the correlation-informed counterpart. This is

because it allows us to test that a null model informed with

the ‘wrong’ correlation structure—which is a form of overfit-

ting—does not lead to artefactual conclusions. We expand on

this below in the section ‘Model testing’ and in the electronic

supplementary material, Methods.
2.1.4. Correlation structures
Given an incidence matrix An�m, the correlation matrix Vcol ¼

Vm�m (or Vrow ¼ Vn�n) defines the relationships between the m
column elements (or n row elements) of A. Every element

vij ¼ vji of this symmetric, positive semi-definite matrix charac-

terizes the similarity between two columns (or rows) i and j.
There are an infinite number of matrices that can be proposed

as a correlation structure Vm�m. For example, the most basic

one would be a matrix such that every element vij is equal to

1, representing the case in which there are no differences

across the m column elements. This basic case is important

because such a correlation structure is not informative to the

swap algorithm, and it produces a null model that behaves

exactly as its uninformed counterpart. Alternatively, the m
column elements could instead belong to different groups,

and one could use these groups to define a correlation structure

Vm�m such that vij ¼ 1 if i and j belong to the same group, and 0

otherwise. This correlation structure would then inform the null

model so that the randomization process is biased following

such grouping.

Similar to the groups, one can generate a suitable correlation

structure given any set of continuous values (or ‘traits’) that

describe the m columns. Such a correlation structure can then

take multiple forms, from a direct measure of similarity of

these set of traits to other more sophisticated forms such as expo-

nential or Gaussian structures. For instance, we could generate

an exponential correlation structure Vm�m for a given set of

column traits fxmg using

Vcol ¼ (1�N) exp � D
max D

� �
, (2:2)

where D characterizes the distance matrix across all traits such

that dij is the Euclidean distance between any two column

traits xi and xj, and N is a matrix such that every element in

the diagonal nii ¼ 0 and any other element nij ¼ h. The factor h

characterizes the ‘nugget effect’ for this correlation matrix,

which is used as a way to avoid perfectly correlated off-diagonal

elements. The computation of many well-known correlation

structures can be done using functions within the R package

nlme [33]; note, however, that the appropriateness of each will

depend on the precise question being studied.
2.1.5. Quantifying over- and underrepresentation
To test whether or not any structural pattern observed in an

empirical incidence matrix is significantly non-random com-

pared to the data generated by a null model, we use the

pattern’s z-score. To understand this comparison, let us define

the measure of an arbitrary structural pattern k ¼ k(A) of an

adjacency matrix A. This property could characterize simple

aspects of the adjacency matrix such as the total number of

links or other more complex metrics of the way in which the

links are distributed within the matrix. Following this, such a

structural pattern could also be measured in an ensemble of ran-

domized matrices fA*g generated by a given null model,

defining a null distribution of measures {k�}. The pattern’s
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z-score can then be defined as

z ¼ k � h{k�}i
s{k�}

, (2:3)

where h{k�}i is the average measure of the structural pattern in

the random ensemble and s{k�} is the corresponding standard

deviation. A positive z indicates that the observed pattern is

overrepresented in the empirical matrix, and significantly so

for values greater than 1.96. Likewise, a negative z indicates

that the pattern is underrepresented, and the threshold for

significance is 2 1.96.
2.2. Applications to ecological data
2.2.1. Food webs and network motifs
The first emblematic example that we revisit from the literature is

the study of the evolutionary history behind food-web structure.

In particular, we studied how well species’ evolutionary relation-

ships can explain observed patterns of interaction in food webs.

To do so, we analysed 10 empirical food webs from small

streams of the Taieri River in New Zealand comprising fish,

macroinvertebrates and algae [34]. They are taxonomically

highly resolved food webs—taxonomically or trophically related

species were always considered independently—and range in

size from 78 to 113 species. These food webs are from habitats

that present many similarities (i.e. all sites were from grassland

catchments and included at least one pool and one riffle) but

still differ in fundamental ways (including but not limited to

different size, altitude, stream depth and land-use).

For each of the 10 food webs, we focused on the analysis of

the so-called food-web motifs—connected sub-graphs represent-

ing the different patterns of interactions between a subset of

species [35]. The frequency of appearance of each of these sub-

graphs within a network defines a structural property that has

proven to be a very powerful network metric to understand

food-web structure [36]. When compared to a null hypothesis,

this network metric has been shown to be very non-random,
presenting consistent patterns of over- and under-representation

[35,37–40]. We specifically focused on the study of the frequency

of appearance of three-species food-web motifs, which have

already been shown to be non-randomly represented in the data-

set used here [35]. To do so, we used the tools provided by the

Python module ‘pymfinder’ [36].

2.2.2. Species assemblages and nestedness
As a second example, we analysed different factors that have

been shown to influence the structure of species assemblages.

Specifically, we explored how well possible spatial autocorrela-

tions or area similarity between sample sites as well as island

species richness and species range similarity can explain the

structural patterns observed in these communities. To do so,

we used the floristic database published by Marx et al. [41],

which reports the distribution of 366 species of vascular plants

across 80 islands from the San Juan archipelago [42]. The data

were compiled between 2005 and 2010 and restricted to the smal-

ler islands of the archipelago (less than 25 ha). This database also

provides information on the size and geographical centroid of

the islands.

In this case, we focused on the study of nestedness [43], a

common measure of assemblage structure. A species-sites assem-

blage is said to be nested when sites with fewer species contain a

subset of the species present in more abundant sites. Although

there are multiple algorithms that define a measure for nested-

ness [44], we used the nestedness calculator NODF [45], which

returns a value close to 100 when the community is highly

nested and close to 0 otherwise.

2.2.3. Model testing
To validate the models before analysing the empirical data, we

benchmark tested them using artificially generated structured

and random data. We decided to use two tests that mimicked

the two empirical datasets chosen to introduce the method. In

particular, we first generated artificial food webs and species

assemblages and informative correlation matrices for their
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components (electronic supplementary material, Methods).

Then, we studied the motif representation and nested patterns

found in the food webs and species assemblages, respectively,

comparing the performance of the uninformed, correlation-

informed, and misinformed null models (electronic supplemen-

tary material, Results). As expected, we found the uninformed

and misinformed null models to showcase very similar

performance—showing similar patterns of over- and under-

representation—while the correlation-informed null model was

instead able to shed light on the structure of the generated data

(electronic supplementary material, figure S3). This is important

because it implies that correlation structures encoding infor-

mation regarding the process in which the data are generated

are informative to the null model, but other unrelated correlation

structures do not affect the model’s performance. Finally, we per-

formed the same tests using random data, where all the models

showed the same over- and underrepresentation of the structural

patterns (electronic supplementary material, figure S3).
indicates the transfer of energy from prey to predators. The boxes contain
the z-scores for each motif according to the different null models. The
boxes group all food webs, extending from the lower to upper quartile
values of the data, with a line at the median. The colour of the boxes indi-
cates the null model used: an uninformed null model (uninformed), a
misinformed null model (misinformed), a null model accounting for the phy-
logenetic relationships in preys’ consumers ( prey’s consumers) and a null
model accounting for the phylogenetic relationships in predators’ diets ( pre-
dator’s diet). The dashed red line indicates the thresholds for significance
z � 21.96 and z � 1.96. (Online version in colour.)
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3. Results
3.1. Application to food webs
For each of the 10 empirical food webs, we first analysed the

three-species motif representation using the uninformed

null model. We generated data with this model by using

fixed-fixed algorithm, shuffling species’ interactions while

conserving each species’ number of prey and predators, and

the distribution of single, double and cannibal links [27,35].

The reason for these constraints is that this type of ran-

domization preserves the total numbers of prey and

predators of all species and the two-species motif structures;

therefore, it ensures that the over- or underrepresentation of

a motif of size three is not due to the over- or underrepresen-

tation of a particular sub-pattern [27,37,46]. We found that

three different motif structures were significantly overrepre-

sented in all 10 networks (figure 2): the motifs describing a

simple food chain, exploitation competition, and apparent

competition. We likewise found that the motifs representing

omnivory and a three-species trophic loop were consistently

underrepresented in every food web.

We then performed the same analysis using the phylo-

genetically informed null model. To do so, we first

estimated phylogenies for the different species forming the

10 food webs under study (electronic supplementary

material, Methods) and generated the corresponding phylo-

genetic covariance matrices using the function ‘vcv’ from

the R package APE [47]. Then, we weighted the randomiz-

ation strategy used in the uninformed case to account for

the information encoded within the estimated phylogenies.

To achieve this, we calculated the interaction probabilities

of the food webs through equation (2.1), considering the phy-

logenetic covariance matrices as correlation matrices. These

probabilities can be estimated following two different per-

spectives: the predator’s diet and the prey’s consumers.

Given any interaction i j, the former describes the prob-

ability of the predator i consuming j given the phylogenetic

relationships between the prey species, whereas the latter rep-

resents the probability of the prey j being consumed by

i given the phylogenetic relationships between the predator

species.

With these two phylogenetically informed null models,

we found the same pattern of over- and underrepresentation

as that observed when using the uninformed null model
(figure 2). In this case, however, the phylogeny appears to

be particularly informative for determining food-web struc-

ture since data generated by the null model is much better

at reproducing the empirical motif representation. Moreover,

the results present key differences between the null model

accounting for the phylogenetic relationships of predators’

diets and the one accounting for the phylogenetic relation-

ships of preys’ consumers. Specifically, the motif profile is

best preserved when we considered the predator’s diet per-

spective but is significantly less informative when the

prey’s consumers perspective is adopted (figure 2). Impor-

tantly, the observed differences between the two informed

null models were true even when controlling for the degree

of overlap between the empirical food webs and their ran-

domized counterparts (electronic supplementary material,

Methods and Results). That is, such differences were not

due to the number of shared links between the empirical

and random structures but instead arose from the intrinsic

properties of the adopted null hypotheses (electronic

supplementary material, Results).
3.2. Application to species assemblages
For the species assemblage data, we first analysed the nested-

ness pattern using the uninformed null model. We again

followed the fixed-fixed algorithm, which is one of the

most widely used approaches in biogeographic studies

whereby the incidence matrix is randomized fixing both the

number of species per site and the relative frequency of

appearance of each species [28,48–50]. We observed that

this species assemblage is more nested than expected by

chance, presenting a significantly high z-score (figure 3).

Then, we used different informed null models to quantify

the influence of the island isolation, island area, island

species richness, and species range on the structure of this
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community. To do so, we first computed separate correlation

structures for each of these factors. In particular, we assumed

an exponential correlation by means of equation (2.2), which

is a widely used approach to account for spatial autocorrela-

tion in biogeographic studies [51]. For these particular

examples, we used a nugget effect h ¼ 0.01 to generate the

correlation structure. Following this, we weighted the unin-

formed randomization process to account for the different

correlation matrices using equation (2.1), as described in the

Methods section.

The isolation-informed and area-informed null models,

on one hand, showed the species assemblage to be signifi-

cantly nested, presenting the same overall conclusion as the

uninformed null model. That is, spatial autocorrelation and

size similarity between islands in this database is not a sig-

nificant predictor of the observed nested pattern (figure 3).

On the other hand, the results obtained using the richness-

informed and range-informed null models showed that

while the difference in the relative frequency of appearance

of each species is not a significant predictor of the observed

nested pattern, the difference in the number of species per

site is (figure 3). That is, the random matrices generated by

the null model informed using the species range appeared

significantly less nested than the empirical matrix; however,

the random matrices generated by the null model informed

using the island species richness appeared as nested as the

empirical matrix (figure 3). In all cases, the results were

also compared to the ones produced by misinformed null

models, finding no apparent differences with the uninformed

counterpart for this pattern.
4. Discussion
An extensive literature has been published about null models

in ecology and biogeography [1,5,9], including models

accounting for within-species spatial patterns [52,53].

Inspired by this work, we present here a general and flexible
approach to study the mechanisms explaining the structure of

biological communities. In particular, we combine the classic

concept of a null model and the ideas underlying joint mod-

elling to define a correlation-informed null model. This

model allows us to assess how informative the information

encoded within any given correlation matrix is for explaining

the structural patterns observed within any incidence matrix.

Using this approach, we focused on the study of the biologi-

cal mechanisms shaping the structure of ecological networks

and species assemblages. Specifically, we found (i) a strong

phylogenetic component underlying food-web motifs and

(ii) a nested pattern in species assemblages that seems to be

predominantly explained by island species richness.

In the first application of the correlation-informed null

model, we studied the phylogenetic signal behind species’

interactions. This idea was based on the long-held assump-

tion and frequent observation that these interactions are

evolutionarily conserved [11,12,54]. In particular, we com-

pared uninformed, misinformed and phylogenetically

informed null models to study the motif representation of

empirical food webs. This comparison showed that the net-

work’s motif profile is largely preserved in data generated

by a null model accounting for the phylogenetic relationships

in predators’ diets. By contrast, we found that this model is

significantly less informative when the analogous prey’s con-

sumers perspective is adopted. First, this observation

showcases how biological mechanisms can be untangled

using our approach. In particular, it supports the idea of a

stronger phylogenetic signal in prey range for predators

than in predator range for prey [55] as well as a prey-selection

mechanism shaping the structure of food webs [35]. Impor-

tantly, although the effect of the phylogenetic information

reveals itself as crucial to explain who interacts with whom

in a food web, our results also highlight the fact that this is

clearly insufficient to fully predict motif representation in

prey–predator relationships.

In the second application of the correlation-informed null

model, we analysed the patterns observed in species distri-

butions across different habitats. We focused on the study of

nestedness, which is a common measure employed in biogeo-

graphic studies. Nestedness has been associated with habitat

variables such as area [16,56,57], isolation [16,58] or land qual-

ity [59]. Somewhat surprisingly, we found that neither

isolation nor area differences between islands appear to pro-

vide particularly relevant information to explain the nested

pattern observed in the distribution of vascular plants

across islands from the San Juan archipelago. One potential

explanation for this lack of predictive power could be the

fact that the biggest islands of the archipelago were excluded

from the analysis [41]. This notwithstanding, we found that

island species richness can instead explain the nested pattern.

This observation is important because it suggests that nested-

ness is perhaps little more than an artefact of island species

richness that becomes tautological when one controls for it.

Moreover, this observation is in contrast to the results found

when using the range-inform the null models, which show

that species range is instead a poor predictor of the nested

pattern observed in the species assemblage.

As a key step moving forward, it could be worth adapting

the strategies presented in this work to inform other models

from neutral theory of island biogeography, expanding the

framework to new randomization strategies. In addition,

the scenarios presented here provide only an introduction of
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the possible applications for any such correlation-informed

null model. For example, one could also focus on the structure

of ecological bipartite networks (e.g. plant–pollinator, host–

parasitoid, seed-dispersal, etc.) and the drivers determining

observed non-random patterns (e.g. modularity, uniqueness,

centrality, etc.). We could evaluate whether or not there is a

dominant trait from a particular group shaping the inter-

actions of those networks—e.g. nectar depths of plants or

proboscis length of pollinators in plant-pollinator networks

[60] and seed or beak size in seed-dispersal networks [61].

Alternatively, we could examine the structural differences

observed between different network types and assess which

are the factors explaining such differences—e.g. comparing

pollination and herbivory network architectures accounting

for the evolutionary relationships of their constituents [62].

Here, we have sought to showcase some of the basic appli-

cations of the correlation-informed null model, but there are

many other questions that could be addressed using the

same approach. For instance, the examples presented here

have only considered the effect of a single correlation matrix;

however, one could take into account higher-order corre-

lations or simultaneously consider multiple correlation

matrices to inform the same null model. Indeed, we could con-

sider multiple random effects in equation (2.1) or combine the

probabilities generated using multiple correlation matrices

independently [29]. In an ecological context, this informed

null model could study species assemblages by combining

different habitat properties (e.g. soil characteristics, vegetation

type, etc.) with multiple species traits (e.g. body size, phyloge-

netic relationships, etc.) into a generalized island

biogeography study. Consequently, our correlation-informed

null model offers a versatile way to study the mechanisms

shaping the structure within biological data that can easily
be adapted further to test even more sophisticated hypotheses.

Perhaps more importantly, there are multiple systems and

structural patterns outside the ecological realm for which a

correlation-informed null model could be useful. Indeed, our

model only requires a system whose structure can be rep-

resented as an incidence matrix. Therefore, similar analyses

could be performed for systems such as protein–protein

interaction networks, neuronal networks or transcriptional

regulation networks, among many others.
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