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A one-dimensional quantum walk 
with multiple-rotation on the coin
Peng Xue, Rong Zhang, Hao Qin, Xiang Zhan, Zhihao Bian & Jian Li

We introduce and analyze a one-dimensional quantum walk with two time-independent rotations 
on the coin. We study the influence on the property of quantum walk due to the second rotation on 
the coin. Based on the asymptotic solution in the long time limit, a ballistic behaviour of this walk is 
observed. This quantum walk retains the quadratic growth of the variance if the combined operator 
of the coin rotations is unitary. That confirms no localization exhibits in this walk. This result can be 
extended to the walk with multiple time-independent rotations on the coin.

Quantum walks (QWs) are valuable in diverse areas of science, such as quantum algorithms1–6, quantum computing7–9,  
transport in biological systems10,11 and quantum simulations of physical system and important phenomena such 
as Anderson localization12–19, Bloch oscillation20–23 and non-trivial topological structure24–26.

We study one possible route to the localization effect for the QW on the line: the use of multiple-rotation on 
the coin in order to change interference pattern between paths27. We find exact analytical expressions for the 
time-dependence of the first two moments x t

 and x t
2 , show the behaviour of QWs with two time-independent 

rotations on the coin and present that a ballistic behaviour instead of localization is observed. This result can be 
extended to the walk with multiple time-independent rotations on the coin.

Results
The unitary operator for single-step of this QW with two time-independent rotations on the coin is

θ φ φ θ( , ) = ( ) ( ). ( )U TR R 1n n1 2

The two rotations on the coin shown in Fig. 1a
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where σ σ σ σ= ( , , )x y z
T is the vector of Pauli matrices. The rotations are followed by a conditional position shift 

operator

= ⊗ + ⊗ , ( )†T S S 30 1 

where  = 0 00  and  = 1 11  are two orthogonal projectors on the Hilbert space of the coin spanned by 
= ( , ) , = ( , ){ 0 1 0 1 0 1 }T T , = +S x x 1  and = −†S x x 1  are applied on the walker’s position. One can 

identify the eigenvectors k  of S and †S ,
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with eigenvalues

= , = . ( )− †S k e k S k e k 5ik ik

Here a discrete-time QW is considered as a stroboscopic realization of static effective Hamiltonian, defined 
via the single-step evolution operator
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θ φ( , ) = , ( )θ φ δ− ( , )U e 6iH teff

where δt is the time it takes to carry out one step and we set δ =t 1 in the followings. The evolution operator for N 
steps is given by θ φ( , ) = θ φ− ( , )U eN iN Heff . For the general rotations in Eq. (2), the effective Hamiltonian can be 
written as

∫θ φ
π
ω σ( , ) = ( ) ( ) ⋅ ⊗ , ( )π

π

−
H k k n k k kd

2 [ ] 7eff

where the quasi-energy (Fig. 1b)

( )
ω φ θ φ θ

φ θ φ θ θ θ

( ) = ± − ( + + )

+ + + − , ( )

k k n n n n n n

k n n n n n n

arccos{cos [cos cos sin sin ]

sin [ cos sin sin cos sin sin ]} 8

x x y y z z

z z y x x y

1 2 1 2 1 2

2 1 1 2 1 2

and the unit vector ( ) = ( ), ( ), ( )n k n k n k n k[ ]x y z
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The inverse Fourier transformation is ∫= π

π

π−
−x e kk ikxd

2
. The initial state of the walker +  coin system can be 

written as ψ = ⊗ Φ00 0 , where the original position state of the walker is ∫= π

π

π−
k0 kd

2
. In the k basis, the 

evolution operator θ φ( , )U  becomes

θ φ θ φ( , ) ⊗ Φ = ⊗ ( , ) Φ , ( )U k k U 10k0 0
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is a ×2 2 unitary matrix with the matrix elements

Figure 1.  (a) Bloch sphere representation of the rotations on the coin. (b) Band structure in the first Brillouin 
zone for rotation parameters θ π≤ ≤0 2  and φ =2 0 in red lines or φ π= /2 2 in blue lines. The second rotation 
along x axis allows to close the quasi-energy gap for π= ± /k 2.
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At time t (the time t is proportional to the step number N), the walker +  coin state evolves to

∫ψ θ φ ψ
π
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The probability for the walker to reach a position x at time t is
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where ρ = Φ Φ0 0 0 , the group velocity of the walker ω= ∂ ( )/∂v k kk . To determine if there is localization effect, 
we care more about the position variance and the dependence of the variance on time. Thus we restrict our inter-
est to the moments of the distribution
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With the formula of the delta function π δ∑ / = ( − ′)− ( − ′)x e i k k2x
m ix k k m m , the expression of the mth 

moment is rewritten as
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Similar to a Hadamard coined walk28, one can find the eigenvectors |Φ 〉kj  of θ φ( , )Uk  and corresponding eigen-
values ω± ( )e i k . We can expand the initial coin state Φ = ∑ |Φ 〉= , cj kj kj0 1 2 . With θ φ σ θ φ( , ) = − ( , )U i U

k k z k
d
d

29, 
we only keep the diagonal non-oscillatory terms and obtain
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For non-degenerate unitary matrix θ φ( , )Uk , except for the diagonal non-oscillatory terms, most of the terms 
are oscillatory, which average to zero in the long-time limit29.

Similarly, the second moment is obtained
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From Eqs. (8) and (11), we can see the spectrum ω± ( )e i k  of θ φ( , )Uk  is non-degenerate. Even for degenerate 
θ φ( , )Uk  one can modify Eqs. (17) and (18) to include appropriate cross terms, which does not change the 

dependence of the position variance on time.
Generically, in the long-time limit, for a unitary coin the first moment of the QW undergoes a linear drift and 

the variance grows quadratically with time. There is a special case—the σx coined QW, i.e., φ θ σ( ) ( ) =R Rn n x1 2
, in 

which the eigenstates of Uk are Φ = (− + )/−e 0 1 2k
ik

1  and Φ = ( + )/e 0 1 2k
ik

2 , resulting in 
σ〈Φ | |Φ 〉 = 0kj z kj  (for = , )j 1 2 . Thus the variance of the σx coined QW does not depend on time.
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In the two rotations case, the combination operation of two rotations on the coin φ θ( ) ( )R Rn n1 2
 shown in Eq. 

(11) is unitary. Thus for arbitrary choices of parameters θ and φ the position variance of the QW with two 
time-independent rotations on the coin grows quadratically and the behaviour of the QW is ballistic. Therefore, 
a second coin rotation does not change the behaviour of QW from a ballistic spread to localization.

The asymptotic analysis of the behaviour of this QW with two time-independent coin rotations can be 
extended to more general QW with more time-independent rotations on the coin. Once the combined operator 
of the multiple-rotation on the coin is unitary, the position variance grows quadratically with time and this QW 
shows ballistic behaviour. No localization effect occurs.

This walk is homogeneous in either spatial or temporal space. The coin rotations do not cause inhomogeneity 
in this walk which usually leads to interesting localization effect.

Discussion
In summary, we study the QW with two time-independent rotations on the coin through the analytical solutions 
for the time dependence of the position variance. The asymptotic result can be extended to the walk with multiple 
time-independent rotations on the coin. As long as the combination of the multi-rotations is unitary, the variance 
grows quadratically with time and the QW shows ballistic behaviour. No localization effect is observed in this 
QW. Although the fact that two topics—QWs and localization effect meet, is fascinating and opens the door to 
rich theoretical and experimental investigation of quantum phenomena. Thus not only the investigation on sim-
ulating localization with QWs but also the study on the limitations on localization in quantum walk are important 
and worthy of attention. Our research exactly gives insight into limitations on localization.
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