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A B S T R A C T   

The application of neural network model in engineering prediction is frequent. The BPE shell 
material was optimized, and the reliability of the new material was verified by modal simulation. 
The accuracy of finite element modeling was ensured by constrained mode experiments, and all 
variables were preprocessed by Latin hypercube sampling. The design parameters were deter-
mined by Monte Carlo simulation. Four different neural networks, including back propagation 
(BP), radial basis function (RBF), extreme learning machine (ELM) and wavelet neural network 
(WNN), are used to train and learn the dataset. The BPE weight reduction ratio was 14.3%, the 
stress was reduced by 18.6%, deformation displacement was reduced by 14.2%, and the first- 
order mode was increased by 29.1%.   

1. Introduction 

With the gradual reduction of the earth’s primary energy sources, the focus of research in many countries has changed to the 
storage of secondary energy (electricity and heat) [1]. The lightweight of the entire vehicle is one of the most feasible and economical 
solutions to reduce the environmental impact of the typical vehicle life cycle operation phase [2]. AkhilGarg et al. summarized an 
advanced modeling framework for multi-objective optimized design [3]. Liu Fen et al. presented a multi-objective topology optimi-
zation design method for traction battery housings [4]. Li Shui et al. used central composite design (CCD), artificial neural network 
(ANN) algorithms in order to optimize the mechanical design characteristics of the battery pack shell [5]. Xiong and others have 
developed an effective analysis method for weight reduction and crash resistance of the vehicle battery pack system through 
orthogonal test design [6,7]. Roland et al. assessed the performance of a mechanical battery pack structure on the basis of energy 
absorption and packaging efficiency, thus enabling optimization of the EV’s overall performance in addition to the actual crash 
performance [8]. For the lightweight of battery packs, structure, materials are a good way to optimize, in recent years, nanomaterials 
are widely used in industry [9–13], agriculture and medical treatment, is one of the key means to apply to lightweight in the future. In 
this paper, finite element analysis (FEA) method is used to establish an accurate finite element model. Because the traditional 
structural optimization research often only one-sided research and analysis calculation modeling and optimization but did not involve 
more accurate and efficient optimization design analysis method. In this paper, some improvements are made. 

* Corresponding author. 
E-mail addresses: liuna_sd@sdjzu.edu.cn (N. Liu), 531986117@qq.com (Y. Gao), 2410802557@qq.com (P. Liu).  

Contents lists available at ScienceDirect 

Heliyon 

journal homepage: www.cell.com/heliyon 

https://doi.org/10.1016/j.heliyon.2024.e26406 
Received 9 May 2023; Received in revised form 13 February 2024; Accepted 13 February 2024   

mailto:liuna_sd@sdjzu.edu.cn
mailto:2410802557@qq.com
mailto:2410802557@qq.com
www.sciencedirect.com/science/journal/24058440
https://www.cell.com/heliyon
https://doi.org/10.1016/j.heliyon.2024.e26406
https://doi.org/10.1016/j.heliyon.2024.e26406
https://doi.org/10.1016/j.heliyon.2024.e26406
http://creativecommons.org/licenses/by-nc-nd/4.0/


Heliyon 10 (2024) e26406

2

2. BPE finite element analysis 

2.1. BPE model simplified 

The data parameters of the BPE model studied in this paper come from a pure electric vehicle, and according to the physical 
material properties of the power pack components [14], the material of the upper cover is changed and upgraded in this paper. The 
BPE lid is made of sheet molding compound (SMC), which has high strength and high temperature resistance. The material density was 
reduced from 1800 kg/m3 to 1670 kg/m3, the Poisson’s ratio changed from 0.26 to 0.35 and modulus of elasticity changed from 8610 
MPa to 13 200 MPa. Elastic stiffness is as described in Equation (1) [15]. 

ω=
π

2L

̅̅̅̅
E
ρ

√

(1)  

In expressions, ω-first-order inherent frequency, ρ-the mass per unit length, L-length. 
If detailed modeling is carried out, it is easy to lead to excessive calculation and increase the calculation cost. However, if the weight 

of the battery module is replaced by a simple mass point, it will affect the force transmission accuracy between the models. Therefore, 

Nomenclature 

Variable Definition Unit 
ω first-order inherent frequency Hz 
ρ the mass per unit length Kg/m3 

L length mm 
E modulus of elasticity Dyne per square centimeter 
[M] mass matrix kg 
C damping N⋅s/m 
[K] stiffness matrix N/m 
{ẍ(t)} acceleration matrix m/s2 

{ẋ(t)} speed matrix m/s 
{x(t)} displacement matrix mm 
{f(t)} n-order array representing system excitation Hz 
t time variable s 
x the first layer input the number 
Z the first layer output the number 
i, j the neural network node 
Wi,j(1) the weight between the first nodes 1 
F(an

1) the output value after the activation function 
M the quality kg 
F frequency Hz  

Fig. 1. The BPE simplifies the equivalent model.  
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in this paper, the battery module is equivalent to a simple geometric entity with equivalent weight [16]. The physical object of the BPE 
and 3D modeling are shown in Fig. 1. Fig. 1a shows the appearance of the battery, Fig. 1b shows the internal structure of the battery, 
Fig. 1c shows the implified model for 3D modeling of the battery shell. 

2.2. Free modal experiments 

During the modal test, the method of multi-point excitation and single-point measurement is used. Sixteen test nodes were selected 
as excitation input points after establishing an approximate model in the dynamic test system according to the data of the real object 
and dividing the nodes at each place of length, width and height. Fig. 2 showed the Free modal experimental test rig. Fig. 2a showed the 
control and display system, 2 b showed the hammer of the test system, 2c showed the constraint form of the model, and 2 d showed 
overview of the testing instrument. 

Post-processing of experimental data: After completing the data acquisition, use the supporting data analysis software to analyze 
the modal parameters of the collected experimental data based on the frequency response function method, and calculate the fre-
quency response function of the vibration system using dynamic response data of structure obtained from external excitation by using 
eq. (2) [17]. 

Hij(ω)=
xi(ω)
fj(ω)

=
∑m

r=1

φriφrj

mr
[(

ω2
r -ω2

)
+ jωrc

] (2)  

In the equation: Hij- frequency response function, xi(ω) - response of the system, fj(ω)- modal parameters of the system, mr- modal 
mass, φri，φrj- vibration pattern at the excitation point at order r, m - total number of orders of the identified modal parameters, ω2 - 
eigenfrequency. 

2.3. Comparison of modal simulation and experimental test results 

Based on the principle of experimental simulation model error analysis, so the seventh to ninth order mode vibration and frequency 
are compared with the first to third order results in the experimental model results, as shown in Table 1. The comparison results show 
that there is a certain error between the finite element results and the experimental results, mainly due to the simplification of the 
three-dimensional model in the modeling process, resulting in a certain difference between the model and the actual physical pa-
rameters of the battery pack. However, the error between the two results is within ±3%, which verifies the correctness of the finite 
element model. 

2.4. Modal analysis theory 

According to dynamical system theory, the general equilibrium equation for dynamical systems is as follows in equation (3)-(4) 
[18]: 

[M]{ẍ(t)}+C{ẋ(t)}+ [K]{x(t)}= {f (t)} (3)  

[M]{ẍ(t)}+ [K]{x(t)}= 0 (4a) 

Medium: [M]- mass matrix; C- damping; [K]- stiffness matrix; {ẍ(t)}- acceleration matrix; {ẋ(t)}- speed matrix; {x(t)}- displacement 

Fig. 2. Free modal experimental test rig.  
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Table 1 
Comparison of simulation and experimental results. 

N. Liu et al.                                                                                                                                                                                                             



Heliyon 10 (2024) e26406

5

matrix; {f(t)}- n-order array representing system excitation; t-time variable. 

2.5. Power pack constraint modal analysis 

The vibrations and deformations of the BPE were extracted in the modal analysis interface using the modal superposition method of 
lanczos [19], laying the foundations for analytical calculations below. 

3. The construction and training process of the ANN model 

First, we need to select the characteristics of the input variables. we simulated the electric vehicle braking and turning under the 
condition of deformation finite element simulation model for the choice of the characteristics of the input variables, we will be under 
two different conditions will be BPE all size corresponding to the deformation and stress, as well as the deformation amount of modal 
deformation in modal analysis, a data set is made, and Monte Carlo simulation technology is used for probability sensitivity analysis to 
determine input feature vector and reduce later calculation steps. 

3.1. Monte Carlo simulation technique probability sensitivity analysis 

Multiple indexes are calculated using the Monte Carlo method [20,21], the dimensions of the battery box model are multiple 
uncertain model inputs {T1, T2 … }, and it is also assumed that these design variables all exist uniformly and independently within a 
hypercube, the battery box model can be regarded as a function F = f (T) of the vibration mode displacement and stress displacement 
under different working conditions, where T and F are the inputs and outputs of the mathematical model with selected design vari-
ables. The specific modeling process is as follows. 

When determining sensitivity of each component thickness to the frequency, matrix in above codes: 
F = [64.754; 78.794; 72.958; 84.991; 91.704]; Q = [64.754; 78.794; 72.888; 84.999; 81.801]; W = [64.754 64.754 64.754 64.754 

64.754 64.754 64.754; 78.794 78.794 78.794 78.794 78.794 78.794 78.794; 72.958 72.958 72.958 72.958 72.958 72.958 72.958; 
84.991 84.991 84.991 84.991 84.991 84.991 84.991; 91.675 91.726 81.812 91.704 91.705 91.705 91.696].  

Pseudo-code for modeling process 

Constructing the ontology matrix, there are three output targets in this paper, namely mass, frequency and stress displacement. 
Set the number of points to be selected for the initialization of the independent variable. 
Upper and lower bounds for independent variables. 
Performing a for loop. 
Split the matrix to generate matrix A, matrix B and matrix A*B. 

(continued on next page) 

Fig. 3. Sensitivity analysis.  
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(continued ) 

Pseudo-code for modeling process 

Extract the corresponding number of columns or rows of the above generated matrix according to the principles of the algorithm. 
Performing a for loop. 
Replace column i of matrix A with column i of matrix B. 
Corresponding output target matrix:F,Q,W; 
F = []’, Q = []’; W = []’; 
Assign row i of F, Q,W to Y(A),Y(B) and Y (AB) respectively; 
Use the formula [EX(i) = 1/(2*nPop)* EX(i)+(YA(j)-YAB (j,i))^2,ST(i) = EX(i)+(YA(j)-YAB (j,i))^2/VarY] to  

When determining sensitivity of each component thickness to deformation, matrix in the above code: 
F = [256.05; 111.38; 149.82; 69.716; 176.92]; Q = [256.05; 111.38; 77.388; 160.13; 131.52]; W = [256.05 256.05 256.05 256.05 

256.05 256.05 256.05; 111.38 111.38 111.38 111.38 111.38 111.38 111.38; 149.82 149.82 149.82 149.82 149.82 149.82 149.82; 
69.716 69.716 69.716 69.716 69.716 69.716 69.716; 132.96 175.56 176.92 176.92 176.91 176.92 176.92]; When determining the 
sensitivity of each component thickness to deformation, the matrix in the above code:F = [2.9575; 1.2542; 2.2258; 1.1881; 2.5691]; Q 
= [2.9575; 1.2542; 1.281; 2.2998; 1.8605]; W = [2.9575 2.9575 2.9575 2.9575 2.9575 2.9575 2.9575; 1.2542 1.2542 1.2542 1.2542 
1.2542 1.2542 1.2542; 2.2258 2.2258 2.2258 2.2258 2.2258 2.2258 2.2258; 1.1881 1.1881 1.1881 1.1881 1.1881 1.1881 1.1881; 
1.8869 2.5401 2.5692 2.5691 2.5691 2.5691 2.5691]. After the above calculation, the sensitivity values obtained in this paper are 
drawn into a table, as shown in Fig. 3. The sensitivity of each shift of the battery box to each design feature variable can be clearly and 
intuitively seen, so as to select the best input feature variable. 

Can be seen from Fig. 3, under different conditions, the influence of the BPE shell deformation characteristic variables for the 
thickness of the BPE shell cover, frame plate and the thickness of the plate after under BPE, BPE four lug the thickness of the upper, so 
this paper selected the seven features as the input of design variables characteristics. 

3.2. ANN model 

The ANN model is a computational model based on biological neural networks that mimic the way neurons in the human brain 
compute and process data. This robust and fault-tolerant model is able to solve tasks where intuition is the only option for humans 
[22]. Undertake above, this paper respectively in the following chose four different types of neural networks, including the back 
propagation (BP), radial basis function (RBF) neural network, extreme learning machines (ELM) neural network and wavelet neural 
network (WNN), to training and testing the model respectively, and the error, training time and so on were analyzed, finally in four 
different neural networks, The neural network with the best prediction effect is selected to predict and the optimal result is obtained. 

3.3. Construction of BP neural network models 

At present, the popular neural network model is BP neural network, which is a multi-layer feed forward neural network that uses a 
back propagation error algorithm for training, verification, and prediction. The number of nodes in the input layer of both ANN models 
in this paper is 4, and the number of nodes in the output layer is 1. Number of nodes in the hidden layer can be determined by the 
empirical formula shown in equation (4)-(8) [23]. 

nh =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ni + n0

√
+ m,m ∈ [1, 10] (4b)  

Zn
j =

∑(
w(1)

ji Xn-1i+w(1)
j0

)
(5)  

an
1 =

∑
w(2)

ij zn-1i + w(2)
i0 (6) 

Fig. 4. The structure of the neural network model.  
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a= f (WP +B) (7)  

yn
1 =F(an

1

)
(8) 

Eight hidden layer nodes are used in paper. These parameters are distributed to next layer, with data distribution computation rules 
as in eqs. (5)–(8). 

In the formula, x represents the first layer input, z represents the first layer output, i represents the neural network node, Wji
(1)

represents the weight between the first nodes, F(an
1) represents the output value after activation function, represents the weight de-

viation between w neurons. 
BP neural network combined with gradient descent algorithm calculation principle and design variables to build the corresponding 

neural network model as shown in Fig. 4. NN1(Neural network model 1) referred to the target results of the BPE first order frequency F. 
NN2(Neural network model 2) referred to the target results of the BPE weight M. The NN1 and NN2 mentioned in the following paper 
were explained the same as here. 

Then according to the ANN model of the design variables after random combination, the target results of the BPE first order 
frequency F and weight M, a total of 60 sets of sample data selected as Table 2. 

As existing structural lightweight designs focus on dimensional changes or material variations of components that affect the fatigue 
life of the BPE, the factors that make up the BPE housing are used as design variables [24]. The main factors affecting the weight and 
inherent frequency of the BPE were selected as design variables: the thickness of the upper and lower BPE shells, the thickness of the 
upper BPE shell and other dimensions, as shown in Fig. 5. 

Due to manufacturing conditions, the thickness of the upper guest body, which has a large influence on the BPE frequency, should 
be greater than 2 mm. In addition, a range of common dimensions for manufacturing BPE housings was combined (Table 2). A random 
combination of design variables was designed, then 60 sets of data were selected, and the corresponding combined structural masses 
and first order frequencies were calculated as shown in Figs. 6–9. 1–15 Group Output Variable Quality and Frequency Value were 
shown in Fig. 6 [15],-29 were shown in Figs. 7, 30–44 were shown in Figs. 8, 45–60 were shown in Fig. 9. 

Due to the large data fluctuations in this paper, in order to ensure the reliability and improve the training results and learning 
efficiency, the data is first reprocessed, namely, using the map minmax (.) function in MATLAB⋅, so that the data can fluctuate stable in 
the range of 0–1. 

After the ANN model has been trained on the sample data, the accuracy of the model needs to be tested in this paper. The neural 
network model is trained and processed according to the model structure, input model parameters and number of nodes designed in 
this paper, and the prediction structure is evaluated by continuously changing the size of the weights, and finally the accuracy of both 
training and prediction results are evaluated using mean absolute error, calculated as in eq. (9) [18]. 

eavg =
1
n
∑n

k=1

⃒
⃒Outputk-Outputr,k

⃒
⃒ (9)  

In the formula: e avg represents the average absolute error. N represents the number of data points. Output k represents the k th 
estimated output parameter. Output r, k represents the k th reference estimated output parameter. After the training parameters of the 
above models were set, the training process of the two neural network regression models is shown in Fig. 10., they both achieved ideal 
error convergence rate after initialization. 

The NN1 model was terminated after 24 iterations of the sample data, and the generalization of the ANN model shows that if the 
mean square error (MSE) does not fall but rises for 6 consecutive times during the training process, the network stops training, and it 
can be seen that the training is terminated when the gradient value is 14.6765 and no longer falls for 6 consecutive times, and the NN1 
model is terminated. For the NN2 model, after 22 iterations of the data, the gradient value was 2.9561 and the training was terminated 
when it stopped falling for 6 consecutive times, and the NN2 model terminated the iterative training. As seen from Fig. 10, the NN2 
model has fewer iterations, less usage, and a lower gradient at iteration termination. The regression performance pair of N1 and N2 is 
shown as shown in Fig. 11. From the results of the model training, Fig. 11 shows the degree of fit between the network output value and 
the actual value. The larger the r value, the better the network training. Therefore, from the comparison between NN1 and NN2, the 
training effect of NN2 is better than NN1, and the overall training effect of NN2 is better. 

The model is trained to have a higher fit accuracy, as shown in Table 3. 
The training result curves of the two neural network regression models are shown in Fig. 12. It can be intuitively seen from the two 

curves that the training set, the test set and the validation set all regress close to the optimal values, which means that the training 
effect is good as well as the representativeness of the data and the reliability of the model. 

According to the graph of the model training, the NN1 model was trained best to the 18th generation, and the NN2 model was 
trained best to the 16th generation. 

Table 2 
Designs the range of variable values.  

Name of the variable Thickness of bottom shell 
T1 (mm) 

Thickness of rear side plate 
T2 (mm) 

Cover thickness 
T3 (mm) 

Hanging ear (1–4)thickness 
L1~L4 (mm) 

Data 1–5 1–4 3–5 7–9  

N. Liu et al.                                                                                                                                                                                                             
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The histogram of the variance distribution of the two neural network regression models is shown in Fig. 13. The general direction of 
this error distribution result curve is in accordance with the Gaussian distribution rule, i.e. normal distribution [25], and it can be seen 
from the data that the errors are mainly concentrated around ±0.9, indicating the representativeness of the training data and the 
reliability of the model. From the results of model training, to test the training effect of the network, the better the training effect, NN1 
and NN2 are close to the normal distribution, and NN2 model error distribution than NN1, error distribution is more concentrated, and 

Fig. 5. Design variable corresponding position.  

Fig. 6. 1–15 group output variable quality and frequency value.  

Fig. 7. 15–29 group output variable quality and frequency value.  

Fig. 8. 30–44 group output variable quality and frequency value.  
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Fig. 9. 45–60 sets of output variable quality and frequency values.  

Fig. 10. Neural network model regression curve.  
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Fig. 11. Regression performance analysis curve.  

Table 3 
The results of the training fit of the nerve model sample data.  

Fit accuracy model Training (%). Verify (%). Test (%). Overall (%). 

NN1 93.606 96.810 94.168 92.338 
NN2 96.862 99.749 93.822 96.319  
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closer to the positive distribution, NN2 model error is concentrated and force close to zero error, with better training effect. From 
overall training results are available, the NN2 model training effect is slightly better than NN1 model, so choice of data group is 
reasonable. 

3.4. Construction of RBF neural network models 

The topology of radial basis neural network [26] is similar to BP, though with a three-layer forward network. Different from the BP 
neural network described above, the BP neural network is a global approximation for nonlinear mapping, using the sigmoid function as 
an activation function, while the radial-based neural network is a local approximation for nonlinear mapping, using the Gaussian 
function as a kernel function. The selection of the data set is not described above. After a series of training calculations, the training test 
results are shown in Fig. 14. 

As can be seen from the training results, by randomly dividing the test set, after multiple training, the best test set accuracy of NN1 
model is only 79.714%, the effect is poor, and the accuracy of NN2 model can reach 92.445%. 

Fig. 12. Regression performance analysis curve.  
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3.5. Construction of ELM neural network models 

The topology of the extreme learning machines network is different from that mentioned above, and features nodes hidden by 
random output. When adjusting the weights, without back propagation through a gradient such as the BP neural network, it only takes 
one step to train the output weight, that is, the weights are set through Moore Penrose generalized inverse [27]. Computational ac-
curacy varies across data groups and can be used in scenarios requiring immediate computation. The training results are shown in 
Fig. 15. 

From the training results, through random division of the test set, the best test set accuracy of the NN1 model is only 80.942%, and 
the effect is poor. The test error fluctuates between-20 and 10; the NN2 model can reach 99.987%, and the test error only fluctuates 
between − 0.1 and 0.2. 

3.6. Construction of WNN neural network models 

The topology of the wavelet neural network is roughly similar to the traditional neural network, but by changing the function at the 
hidden layer node to the wavelet basis function to transmit when the signal is transmitted from input to output, the error is back 
propagated, then adjust the weights and bias between the input layer and the hidden layer, as well as the weights and bias between the 

Fig. 13. The error distribution histogram.  
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implied layer and the output layer. When constructing the training sample, the paper is different from previous fixed inputs, the input 
data set is ran perm selected using the rand perm function, and the resulting training structure is shown in Fig. 16. 

From the training results, through the random division of the test set, the best test set accuracy of the NN1 model was only 74.187%, 
with a poor effect. The test error curve fluctuates greatly; the prediction accuracy of the NN2 model can only reach 80.48%, and test 
error also has a poor effect. 

3.7. Comparison of the results of the four neural networks 

By constructing the four different neural network models described above, and the inputs and outputs we need training, the test 
result pairs are shown in Table 4. 

We can see that although the extreme learning machines neural network trains fast, the NN1 model has never achieved satisfactory 
test results, and the radial basis network and WNN network have unsatisfactory test effect and large error. In conclusion, the BP neural 
network is selected as the most suitable test model and makes data prediction.  

4 Best Results Prediction 

In this paper, the seven factors affecting the thickness of the BPE are randomly combined in steps of 0.5 m using the ndgrid function 
in MATLAB. 

After the combination, 196 875 sets of predicted data were finally obtained. Using the above procedure, the ANN model was 
applied to the 196 875 sets of randomly combined data to predict the mass and first-order frequency. The selection criteria for the final 
optimization scheme are as follows. 

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min M =
∑n

i=1
Mi (n = 1, 2, 3,…, 8)

min F ≥ 70 Hz
Ti

min ≤ Ti ≤ Ti
max (i = 1, 2, 3)

Lj
min ≤ Lj ≤ Lj

max (j = 1, 2, 3, 4)

(10) 

Optimization scheme for group 2872 is finally selected from 196 875 sets of data, as shown in Table 5. 
In accordance with the above criteria for the selection of design variables and target quantities, the prediction results of each part 

Fig. 14. RBF: Comparison of test set prediction results.  
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were modeled and analyzed, and the comparative quality and first-order frequency results were calculated by finite element software 
analysis as shown in Table 6, the error between the optimization scheme and the simulation results were within ±4%, in line with the 
theoretical calculation requirements, i.e. Optimized prediction scheme has certain reliability. 

4. Static mechanics analysis of the optimized BPE structure 

As the impact of bumpy roads on the BPE is large, to ensure the reliability of the optimized solution, this paper selects the combined 
working conditions under bumpy roads and sharp turns for the static analysis of the BPE. The maximum forces under the driving 
conditions of the electric vehicle are solved and analyzed separately, with grid orthogonal mass ratio of 0.85. The g is the free fall 
acceleration, g = 9.8 m/s2. When the electric vehicle makes a sharp turn at 80 km/h on a bumpy road, there is lateral acceleration and 
vertical inertial acceleration of the BPE as a whole. The optimized stress and displacement distribution of the BPE structure under this 
condition is shown in Fig. 17 (the unit of stress in the figure is MPa and the unit of displacement is mm). 

As can be seen from Fig. 17a, the maximum stress in the original model BPE structure under sharp turning conditions on bumpy 
roads is 185.27 MPa, which is located at the left front side of the BPE bottom shell, which is less than the yield strength of dc01 material 
of 210 MPa. As can be seen from Fig. 17b, the most serious deformation area is 2.1789 mm on the left side of the lower shell, which 
meets the requirements of the material. As can be seen from the diagram, the first-order intrinsic frequency is 130.68 Hz and the 
maximum deformation is 13.767 mm, which occurs in the middle of the upper cover, achieving the purpose of optimization. The above 
neural network prediction results show that although reducing the wall thickness of each component can reduce the mass, it can easily 
lead to excessive stress or stress concentration. Therefore, in the following, the paper had added cross-shaped thin-walled re-
inforcements to target the stress weaknesses to improve the stiffness of the battery shell while reducing mass. The resulting stress 
results and stress displacements are shown in Fig. 18. 

From the FEA results, as can be seen from Fig. 18a, the stress magnitude of the optimized BPE model is 156.67 MPa. As can be seen 
from Fig. 18b, the stress displacement is 1.9016 mm under the same working conditions, which are both significantly lower than before 
the optimization, proving that the model is better optimized. Fig. 18c shows the 3D model of the battery shell used for analysis. 

Fig. 15. ELM: Comparison of test set prediction results.  
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5. Conclusion 

In this paper, the finite element constrained mode method is used to verify the accuracy of the constructed model and the 
application of boundary conditions by the error of experiment and simulation not exceeding ±3%, which lays a foundation for the 

Fig. 16. WNN: Comparison of test set prediction results.  

Table 4 
The resulting contrast.  

Neural network type BP RBF ELM WNN 

NN1 Test set accuracy (%) 94.168 46.324 12.983 50.621 
NN2 Test set accuracy (%) 93.822 67.894 83.337 90.91  

Table 5 
The neural model predicts optimal results.   

T1 
(mm) 

T2 
(mm) 

T3 
(mm) 

L1 
(mm) 

L2 
(mm) 

L3 (mm) L4 
(mm) 

M 
(kg) 

F 
(Hz) 

Best result 1 1 5 8 9 9 7.5 187.93 88.83  

Table 6 
Optimizes results validation.  

Output M(kg) F(Hz) 

Predict the result 187.9332 88.8359 
Simulation validation 190.84 91.826 
Error (%). − 1.54 − 3.2  
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optimization of the battery pack model later. 
In this paper, static analysis is used to verify the values of battery pack stress and strain under various complex working conditions, 

and the before and after optimization is compared to see the reliability of optimization. In this paper, the method of constructing the 
ANN model is adopted, and all variables are preprocessed by Latin hypercube sampling. Monte Carlo simulation determines the 
required machining design parameters. 

In this paper, four different neural networks, including backpropagation (BP), radial basis functions (RBF), extreme learning 
machines (ELM), and wavelet neural networks (WNN), were used and compared with the training and learning datasets to find the 
model with the best prediction with a fitting rate of more than 92%. Tens of thousands of sets of data are composed of a certain step size 
for the design parameters, and the neural network model is used to make regression prediction, so that a set of data with low quality 
and high frequency is found according to the set constraints. 

In this paper, the dimensional optimization design of material change and shell thickness of a vehicle power pack structure is 
optimized, and the static mechanical analysis of the optimized BPE is carried out. Finally, the weight reduction ratio of BPE was 
reduced by 14.3%, the stress was reduced by 18.6%, the deformation displacement was reduced by 14.2%, and the first-order mode 
was increased by 29.1%. 

Prospect 

This paper mainly uses BP neural network to regression prediction of battery pack processing parameters, but there is still room for 
optimization in prediction accuracy, and in the future, bionic algorithms can be used to optimize the initial weight and threshold of the 
neural network to improve the accuracy of prediction, so as to optimize the battery pack processing parameters. 

In terms of structural optimization, topology optimization and biomimetic optimization can be used to strengthen its stress con-
centration and weak points, and in terms of materials, lighter and tougher materials can be used. Examples include nanoscale materials 
or more novel materials. 

The optimized battery pack can be further verified experimentally. 

Fig. 17. Stress and displacement cloud diagram during rough road turning conditions.  
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